Show simple item record

dc.contributor.authorMachuve, Dina
dc.contributor.authorNwankwo, Ezinne
dc.contributor.authorMduma, Neema
dc.contributor.authorJimmy, Mbelwa
dc.date.accessioned2022-08-04T09:15:45Z
dc.date.available2022-08-04T09:15:45Z
dc.date.issued2022-08-01
dc.identifier.urihttps://doi.org/10.3389/frai.2022.733345
dc.identifier.urihttps://dspace.nm-aist.ac.tz/handle/20.500.12479/1454
dc.descriptionThis research article was published by Frontiers in Artificial Intelligence, 2022en_US
dc.description.abstractCoccidiosis, Salmonella, and Newcastle are the common poultry diseases that curtail poultry production if they are not detected early. In Tanzania, these diseases are not detected early due to limited access to agricultural support services by poultry farmers. Deep learning techniques have the potential for early diagnosis of these poultry diseases. In this study, a deep Convolutional Neural Network (CNN) model was developed to diagnose poultry diseases by classifying healthy and unhealthy fecal images. Unhealthy fecal images may be symptomatic of Coccidiosis, Salmonella, and Newcastle diseases. We collected 1,255 laboratory-labeled fecal images and fecal samples used in Polymerase Chain Reaction diagnostics to annotate the laboratory-labeled fecal images. We took 6,812 poultry fecal photos using an Open Data Kit. Agricultural support experts annotated the farm-labeled fecal images. Then we used a baseline CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models. We trained models using farm and laboratory-labeled fecal images and then fine-tuned them. The test set used farm-labeled images. The test accuracies results without fine-tuning were 83.06% for the baseline CNN, 85.85% for VGG16, 94.79% for InceptionV3, 87.46% for MobileNetV2, and 88.27% for Xception. Finetuning while freezing the batch normalization layer improved model accuracies, resulting in 95.01% for VGG16, 95.45% for InceptionV3, 98.02% for MobileNetV2, and 98.24% for Xception, with F1 scores for all classifiers above 75% in all four classes. Given the lighter weight of the trained MobileNetV2 and its better ability to generalize, we recommend deploying this model for the early detection of poultry diseases at the farm level.en_US
dc.language.isoenen_US
dc.publisherFrontiers in Artificial Intelligenceen_US
dc.subjectDeep learningen_US
dc.subjectAgricultureen_US
dc.subjectPoultry disease diagnosticsen_US
dc.subjectDataseten_US
dc.subjectImage classificationen_US
dc.titlePoultry diseases diagnostics models using deep learningen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record