• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Thomas Kivevele"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Selective extraction of uranium from nitric acid leachate of Minjingu rock phosphate
    (2025-04) Kariim, Ishaq; Bakari, Ramadhani; Syed, Muhammad; Park, Ji-Yeon; Lee, In-Gu; Thomas Kivevele
    A sample of beneficiated rock phosphate from Minjingu Mine and Fertilizer Plant, Tanzania was analysed by energy-dispersive X-ray fluorescence (ED-XRF) spectroscopy and found to contain 15.8 % and 5.30 × 10−2 % w/w P2O5 and U, respectively. The U content of the same sample was estimated to be 3.70 × 10−2 % w/w when the digested mass was analysed by inductively coupled plasma mass spectrometry (ICP-MS). The rock was leached with three different mineral acids at 65–70 °C. The outlet liquid and solid streams were analysed by ICP-MS and ED-XRF, respectively. Maximum leaching of P2O5 and U occurred with 8.9 M HNO3. Their respective concentrations in the leachate were 6.69 % w/w (99.0 g L−1) and 1.80 × 10−2 % w/w (0.27 g L−1). The leachate also contained 1.90 × 10−2 % w/w (0.28 g L−1) rare earth elements (REEs). Selective extraction of U was attempted employing Di-2-ethyl hexyl phosphoric acid (D2EHPA) and Tri-butyl phosphate (TBP) as co-extractants. A 2-stage cross-current solvent extraction (10 g scale; 30 °C) with 1:6 mol ratio of D2EHPA:TBP (0.14 M total extractant concentration; 1:1 w/w organic/aqueous ratio) gave 81–89 % U extraction without co-extraction of REEs. The extraction of U increased to 95.6 % after four stages of solvent extraction but there was a noticeable co-extraction of Y beyond the first two stages. Production of fertilizers from U-free leachate is environmentally safer and the recovered U, in pure form, can be used for fuel production.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback