Browsing by Author "Tembo, Yolice"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Beneficial insects are associated with botanically rich margins with trees on small farms(2021-07-21) Arnold, Sarah; Elisante, Filemon; Mkenda, Prisila; Tembo, Yolice; Ndakidemi, Patrick; Gurr, Geoff; Darbyshire, Iain; Belmain, Steven; Stevenson, PhilipBeneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species.Item The diversity of aphid parasitoids in East Africa and implications for biological control(Wiley Online Library, 2021-11-18) Woolley, Victoria; Tembo, Yolice; Ndakidemi, Baltazar; Obanyi, Janet; Arnold, Sarah; Belmain, Steven; Ndakidemi, Patrick; Ogendo, Joshua; Stevenson, PhilipBACKGROUND Hymenopteran parasitoids provide key natural pest regulation services and are reared commercially as biological control agents. Therefore, understanding parasitoid community composition in natural populations is important to enable better management for optimized natural pest regulation. We carried out a field study to understand the parasitoid community associated with Aphis fabae on East African smallholder farms. Either common bean (Phaseolus vulgaris) or lablab (Lablab purpureus) sentinel plants were infested with Aphis fabae and deployed in 96 fields across Kenya, Tanzania, and Malawi. RESULTS A total of 463 parasitoids emerged from sentinel plants of which 424 were identified by mitochondrial cytochrome oxidase I (COI) barcoding. Aphidius colemani was abundant in Kenya, Tanzania and Malawi, while Lysiphlebus testaceipes was only present in Malawi. The identity of Aphidius colemani specimens were confirmed by sequencing LWRh and 16S genes and was selected for further genetic and population analyses. A total of 12 Aphidius colemani haplotypes were identified. Of these, nine were from our East African specimens and three from the Barcode of Life Database (BOLD). CONCLUSION Aphidius colemani and Lysiphlebus testaceipes are potential targets for conservation biological control in tropical smallholder agro-ecosystems. We hypothesize that high genetic diversity in East African populations of Aphidius colemani suggests that this species originated in East Africa and has spread globally due to its use as a biological control agent. These East African populations could have potential for use as strains in commercial biological control or to improve existing Aphidius colemani strains by selective breeding.Item Elements of agroecological pest and disease management(University of California Press, 2022-06-01) Belmain, Steven; Tembo, Yolice; Mkindi, Angela; Arnold, Sarah; Stevenson, PhilipThe development of large-scale monocropped agrisystems has facilitated increased problems with pests and diseases, perpetuating the reliance of farmers on synthetic pesticides. The economic success of synthetic inputs has, however, been achieved at a high cost to the environment through the loss of biodiversity, depletion of soil quality, greenhouse gas emissions, and disrupting the ecosystem services that can otherwise help mitigate losses caused by pests and diseases. Environmentally benign alternatives for pest and disease management are urgently needed and are now widely recognized as essential for sustainable food and agriculture. The Food and Agriculture Organization, for example, has published the 10 elements of agroecology as a framework for the transformation of agriculture. Agroecology combines ecological and social concepts and principles to develop sustainable food and agricultural systems by harnessing nature based solutions that are tailored to farmers’ needs. Plant-based biopesticides, for example, offer an alternative to synthetic pesticides that are less harmful to the environment and nonpersistent, yet effective at managing pests and have a long tradition of use among farmers so are more socially acceptable. Here, we provide a critical assessment of how nature-based approaches to pest and disease management comply with the 10 elements of agroecology and show how they integrate with other ecosystem services through farmer participatory research. We conclude that the adoption of nature-based solutions for pest management addresses all 10 elements of agroecology and provides an entry point to promote sustainable farming practices among farmers more widely.Item Enhancing sustainable agriculture through farmer research networks: a pathway to co-learning and innovation(University of Greenwich, 2025-05-01) Stevenson, Philip; Mkindi, Angela; Tembo, Yolice; Belmain, StevenSmallholder farming communities face numerous challenges in securing food production sustainably, often stemming from poor levels of adoption, or uptake, of researcher-led interventions and innovations. Farmer research networks (FRNs) have emerged as a promising approach to address these challenges by involving farmers in the research process through co-development and implementation of research, fostering collaboration, and facilitating knowledge sharing through extended networks. FRNs offer an opportunity to promote agroecological practices and this has been demonstrated through the evaluation and adoption of botanical pesticides. Through this approach FRNs have been an effective route for smallholders to reduce synthetic pesticide use, promoting more sustainable farming practices, and enhancing community resilience. Future potential opportunities for FRNs include enabling farmers to adopt interventions that optimise the contribution of natural enemies for pest control and pollination services by improving agricultural landscapes, expanding the cultivation of useful plants for pest management, and conducting research with FRNs on beneficial insects and soil health.Item Extracts of Common Pesticidal Plants Increase Plant Growth and Yield in Common Bean Plants.(MDPI, 2020-01-23) Mkindi, Angela; Tembo, Yolice; Mbega, Ernest; Smith, Amy; Farrell, Iain; Ndakidemi, Patrick; Stevenson, Philip; Belmain, StevenCommon bean () is an important food and cash crop in many countries. Bean crop yields in sub-Saharan Africa are on average 50% lower than the global average, which is largely due to severe problems with pests and diseases as well as poor soil fertility exacerbated by low-input smallholder production systems. Recent on-farm research in eastern Africa has shown that commonly available plants with pesticidal properties can successfully manage arthropod pests. However, reducing common bean yield gaps still requires further sustainable solutions to other crop provisioning services such as soil fertility and plant nutrition. Smallholder farmers using pesticidal plants have claimed that the application of pesticidal plant extracts boosts plant growth, potentially through working as a foliar fertiliser. Thus, the aims of the research presented here were to determine whether plant growth and yield could be enhanced and which metabolic processes were induced through the application of plant extracts commonly used for pest control in eastern Africa. Extracts from and were prepared at a concentration of 10% and applied to potted bean plants in a pest-free screen house as foliar sprays as well as directly to the soil around bean plants to evaluate their contribution to growth, yield and potential changes in primary or secondary metabolites. Outcomes of this study showed that the plant extracts significantly increased chlorophyll content, the number of pods per plant and overall seed yield. Other increases in metabolites were observed, including of rutin, phenylalanine and tryptophan. The plant extracts had a similar effect to a commercially available foliar fertiliser whilst the application as a foliar spray was better than applying the extract to the soil. These results suggest that pesticidal plant extracts can help overcome multiple limitations in crop provisioning services, enhancing plant nutrition in addition to their established uses for crop pest management.Item Neem and Gliricidia Plant Leaf Extracts Improve Yield and Quality of Leaf Mustard by Managing Insect Pests’ Abundance Without Harming Beneficial Insects and Some Sensory Attributes(MDPI, 2025-02-03) Kamanga, Rowland; Bhikha, Salifu; Kamala, Felix; Mwale, Vincent; Tembo, Yolice; Ndakidemi, PatrickProduction and consumption of vegetable crops has seen a sharp increase in the recent past owing to an increasing recognition of their nutraceutical benefits. In tandem, there has been unwarranted application of agrochemicals such as insecticides to enhance productivity and vegetable quality, at the cost of human health, and fundamental environmental and ecosystem functions and services. This study was conducted to evaluate the efficacy of neem and gliricidia botanical extracts in managing harmful insect pest populations in leaf mustard. Our results report that neem and gliricidia plant extracts enhance the yield and quality of leaf mustard by reducing the prevalence and feeding activity of harmful insect pests in a manner similar to synthetic insecticides. Some of the key insect pests reduced were Lipaphis erysimi, Pieris oleracea, Phyllotreta Cruciferae, Melanoplus sanguinipes, and Murgantia histrionica. However, compared to synthetic insecticides, neem and gliricidia plant extracts were able to preserve beneficial insects such as the Coccinellidae spp., Trichogramma minutum, Araneae spp., Lepidoptera spp., and Blattodea spp. Furthermore, plant extracts did not significantly alter sensory attributes, especially taste and odor, whereas the visual appearance of leaf mustard was greater in plants sprayed with neem and synthetic insecticides. Physiologically, plant extracts were also able to significantly lower leaf membrane damage as shown through the electrolyte leakage assay. Therefore, these plant extracts represent promising pesticidal plant materials and botanically active substances that can be leveraged to develop environmentally friendly commercial pest management products.Item Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods(Original Research, 2018-09-28) Tembo, Yolice; Mkindi, Angela; Mkenda, Prisila; Mpumi, Nelson; Mwanauta, Regina; Stevenson, Philip; Ndakidemi, Patrick; Belmain, StevenIn the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, few natural products are commercialized for pest management whilst on-farm use of existing botanically-based pesticides remains a small, but growing, component of crop protection practice. Uptake of natural pesticides is at least partly constrained by limited data on the trade-offs of their use on farm. The research presented here assessed the potential trade-offs of using pesticidal plant extracts on legume crop yields and the regulating ecosystem services of natural pests enemies. The application of six established pesticidal plants (Bidens pilosa, Lantana camara, Lippia javanica, Tephrosia vogelii, Tithonia diversifolia, and Vernonia amygdalina) were compared to positive and negative controls for their impact on yields of bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), and pigeon pea (Cajanus cajan) crops and the abundance of key indicator pest and predatory arthropod species. Analysis of field trials showed that pesticidal plant treatments often resulted in crop yields that were comparable to the use of a synthetic pesticide (lambda-cyhalothrin). The best-performing plant species were T. vogelii, T. diversifolia, and L. javanica. The abundance of pests was very low when using the synthetic pesticide, whilst the plant extracts generally had a higher number of pests than the synthetic but lower numbers than observed on the negative controls. Beneficial arthropod numbers were low with synthetic treated crops, whereas the pesticidal plant treatments appeared to have little effect on beneficials when compared to the negative controls. The outcomes of this research suggest that using extracts of pesticidal plants to control pests can be as effective as synthetic insecticides in terms of crop yields while tritrophic effects were reduced, conserving the non-target arthropods that provide important ecosystem services such as pollination and pest regulation. Thus managing crop pests using plant secondary metabolites can be more easily integrated in to agro-ecologically sustainable crop production systems.Item Phytochemical Analysis of across East Africa Reveals Three Chemotypes that Influence Its Use as a Pesticidal Plant.(MDPI, 2019-12-12) Mkindi, Angela; Tembo, Yolice; Mbega, Ernest; Medvecky, Beth; Kendal-Smith, Amy; Farrell, Iain; Ndakidemi, Patrick; Belmain, Steven; Stevenson, Philipis a plant species chemically characterized by the presence of entomotoxic rotenoids and used widely across Africa as a botanical pesticide. Phytochemical analysis was conducted to establish the presence and abundance of the bioactive principles in this species across three countries in East Africa: Tanzania, Kenya, and Malawi Analysis of methanolic extracts of foliar parts of revealed the occurrence of two distinct chemotypes that were separated by the presence of rotenoids in one, and flavanones and flavones that are not bioactive against insects on the other. Specifically, chemotype 1 contained deguelin as the major rotenoid along with tephrosin, and rotenone as a minor component, while these compounds were absent from chemotype 2, which contained previously reported flavanones and flavones including obovatin-3--methylether. Chemotype 3 contained a combination of the chemical profiles of both chemotype 1 and 2 suggesting a chemical hybrid. Plant samples identified as chemotype 1 showed chemical consistency across seasons and altitudes, except in the wet season where a significant difference was observed for samples in Tanzania. Since farmers are unable to determine the chemical content of material available care must be taken in promoting this species for pest management without first establishing efficacy. While phytochemical analysis serves as an important tool for quality control of pesticidal plants, where analytical facilities are not available simple bioassays could be developed to enable extension staff and farmers to determine the efficacy of their plants and ensure only effective materials are adopted.