• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Tazuba, Anthony"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genotype x environment response of ‘matooke’ hybrids (Naritas) to pseudocercospora fijiensis, the cause of black sigatoka in banana
    (MDPI, 2021-06-03) Kimunye, Janet; Jomanga, Kennedy; Tazuba, Anthony; Were, Evans; Viljoen, Altus; Swennen, Rony; Mahuku, George
    Growing bananas resistant to Pseudocercospora fijiensis, the cause of black Sigatoka, is the preferred disease control strategy for resource-poor farmers. Banana breeding programs in east Africa have developed 27 Matooke hybrids (commonly known as NARITAs) with higher yields than local landraces. To assess the response of NARITA hybrids to P. fijiensis, 22 hybrids were evaluated under natural field conditions in four locations—Kawanda and Mbarara in Uganda, and Maruku, and Mitarula in Tanzania—between 2016 and 2018 for three crop cycles. Black Sigatoka was visually assessed and the area under the disease progress curve calculated for each plant over time. Significant differences (p < 0.001) were observed between genotypes, environments, and their interaction. The highest contributor to black Sigatoka severity (39.1%) was the environment, followed by the genotype (37.5%) and the genotype Χ environment interaction (GEI) (23.4%). NARITA 2, 7, 14, 21 and 23 were resistant and the most stable hybrids across locations. If other attributes such as the yield and taste are acceptable to end-users, these hybrids can be released to farmers in the region to replace highly susceptible landraces. Mitarula was identified as an ideal site for evaluating banana against black Sigatoka and should be used as a representative location to minimize costs of disease evaluations.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2026

  • Privacy policy
  • End User Agreement
  • Send Feedback