• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Rana, Sohel"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission
    (Elsevier, 2016) Islam, Saiful; Sultana, Jakeya; Rana, Sohel; Islam, Mohammad; Faisal, Mohammad; Kaijage, Shubi; Abbott, Derek
    In this paper, we present a porous-core circular photonic crystal fiber (PC-CPCF) with ultra-low material loss for efficient terahertz wave transmission. The full vector finite element method with an ideally matched layer boundary condition is used to characterize the wave guiding properties of the proposed fiber. At an operating frequency of 1 THz, simulated results exhibit an extremely low effective material loss of 0.043 cm 1, higher core power fraction of 47% and ultra-flattened dispersion variation of 0.09 ps/THz/cm. The effects of important design properties such as single mode operation, confinement loss and effective area of the fiber are investigated in the terahertz regime. Moreover, the proposed fiber can be fabricated using the capillary stacking or sol-gel technique and be useful for long distance transmission of terahertz waves.
  • Loading...
    Thumbnail Image
    Item
    Ultra Low-Loss Hybrid Core Porous Fiber For Broadband Applications
    (Optical Society of America, 2017-02-01) Islam, Md.Saiful; Sultana, Jakeya; Atai, Javita; Abbott, Derek; Rana, Sohel; Mohammad Dakibul, Islam
    In this paper, we present the design and analysis of a novel hybrid porous core octagonal lattice photonic crystal fiber for terahertz (THz) wave guidance. The numerical analysis is performed using a full-vector finite element method (FEM) that shows that 80% of bulk absorption material loss of cyclic olefin copolymer (COC), commercially known as TOPAS can be reduced at a core diameter of 350 μm. The obtained effective material loss (EML) is as low as 0.04 cm−1 at an operating frequency of 1 THz with a core porosity of 81%. Moreover, the proposed photonic crystal fiber also exhibits comparatively higher core power fraction, lower confinement loss, higher effective mode area, and an ultra-flattened dispersion profile with single mode propagation. This fiber can be readily fabricated using capillary stacking and sol-gel techniques, and it can be used for broadband terahertz applications. © 2017 Optical Society of America
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback