Browsing by Author "Philippe, Charlotte"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Environmental risks of a commonly used pyrethroid: Insights from temporary pond species of the Lake Manyara Basin, Tanzania(Elsevier, 2023-01) Kafula, Yusuph; Thoré, Eli; Philippe, Charlotte; Munishi, Linus; Moyo, Francis; Vanschoenwinkel, Bram; Brendonck, LucEnvironmental risks posed by widespread pesticide application have attracted global attention. Currently, chemical risk assessments in aquatic environments rely on extrapolation of toxicity data from classic model species. However, similar assessments based on local species could be complementary, particularly for unusual living environments such as temporary ponds. Here, we carried out an environmental risk assessment (ERA) of a pyrethroid model compound, cypermethrin, based on local temporary pond species. First, we measured cypermethrin residue concentrations in rivers, irrigation canals and temporary ponds in the Lake Manyara Basin (LMB). Then, we estimated the environmental risks of cypermethrin by combining these data with acute toxicity data of three resident species across three trophic levels: primary producers (Arthrospira platensis), invertebrate grazers (Streptocephalus lamellifer) and fish (Nothobranchius neumanni). Furthermore, we compared the derived ERA to that obtained using toxicity data from literature of classic model species. Cypermethrin residue concentrations in contaminated systems of the LMB ranged from 0.01 to 57.9 ng/L. For temporary pond species, S. lamellifer was the most sensitive one with a 96 h-LC50 of 0.14 ng/L. Regardless of the assumed exposure concentration (0.01 and 57.9 ng/L), the estimated risks were low for primary producers and high for invertebrate grazers, both for local species as well as for classic model species. The highest detected cypermethrin concentration resulted in a moderate risk estimation for local fish species, while the estimated risk was high when considering classic fish models. Our results confirm that, at least for pyrethroids, ERAs with classic model species are useful to estimate chemical risks in temporary pond ecosystems, and suggest that complementary ERAs based on local species could help to fine-tune environmental regulations to specific local conditions and conservation targets.Item Environmental risks of a commonly used pyrethroid: Insights from temporary pond species of the Lake Manyara Basin, Tanzania(Elservier, 2023-04-10) Kafula, Yusuph; Thoré, Eli; Philippe, Charlotte; Munishi, Linus; Moyo, Francis; Vanschoenwinkel, Bram; Brendonck, LucEnvironmental risks posed by widespread pesticide application have attracted global attention. Currently, chemical risk assessments in aquatic environments rely on extrapolation of toxicity data from classic model species. However, similar assessments based on local species could be complementary, particularly for unusual living environments such as temporary ponds. Here, we carried out an environmental risk assessment (ERA) of a pyrethroid model compound, cypermethrin, based on local temporary pond species. First, we measured cypermethrin residue concentrations in rivers, irrigation canals and temporary ponds in the Lake Manyara Basin (LMB). Then, we estimated the environmental risks of cypermethrin by combining these data with acute toxicity data of three resident species across three trophic levels: primary producers (Arthrospira platensis), invertebrate grazers (Streptocephalus lamellifer) and fish (Nothobranchius neumanni). Furthermore, we compared the derived ERA to that obtained using toxicity data from literature of classic model species. Cypermethrin residue concentrations in contaminated systems of the LMB ranged from 0.01 to 57.9 ng/L. For temporary pond species, S. lamellifer was the most sensitive one with a 96 h-LC50 of 0.14 ng/L. Regardless of the assumed exposure concentration (0.01 and 57.9 ng/L), the estimated risks were low for primary producers and high for invertebrate grazers, both for local species as well as for classic model species. The highest detected cypermethrin concentration resulted in a moderate risk estimation for local fish species, while the estimated risk was high when considering classic fish models. Our results confirm that, at least for pyrethroids, ERAs with classic model species are useful to estimate chemical risks in temporary pond ecosystems, and suggest that complementary ERAs based on local species could help to fine-tune environmental regulations to specific local conditions and conservation targets.Item Pesticide sensitivity of Nothobranchius neumanni, a temporary pond predator with a non-generic life-history(Elsevier, 2022-03) Kafula, Yusuph; Philippe, Charlotte; Pinceel, Tom; Munishi, Linus; Moyo, Francis; Vanschoenwinkel, Bram; Brendonck, Luc; Thoré, EliPesticides are crucial to improve agricultural productivity, but often adversely affect surrounding aquatic systems and their fauna. To determine the environmental risk of pesticides, routine ecotoxicological tests are performed on several organisms, including standard fish models. However, these typically do not include fish species from variable habitats and with non-generic life-histories. In particular, inhabitants from temporary ponds such as annual killifish are conventionally understood to be resilient to natural stressors which could translate to higher pesticide resistance or, alternatively, trade-off with their resistance to pesticides and render them more sensitive than classic fish models. Using standard exposure tests, we assessed short-term toxicity effects of two commonly used pesticides, Roundup and cypermethrin, on the annual killifish Nothobranchius neumanni, and compared its sensitivity with that of classic fish models. For Roundup, we found a 72 h-LC50 of 1.79 ± 0.11 mg/L, which is lower than the values reported for zebrafish, medaka, fathead minnow and rainbow trout, suggesting that N. neumanni is more sensitive to the compound. The opposite was true for cypermethrin, with a 72 h-LC50 of 0.27 ± 0.03 mg/L. However, these LC50-values do not deviate strongly from those reported for other fish species, supporting earlier findings in the congeneric N. furzeri that the sensitivity of annual killifish to pollutants is similar to that of classic fish models despite their assumed robustness to environmental stress.