• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Philipo, Godiana Hagile"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Demand-SideManagement of Solar Microgrid Operation: Effect of Time-of-Use Pricing and Incentives
    (Hindawi, 2020-06-05) Philipo, Godiana Hagile; Jande, Yusufu; Kivevele, Thomas
    Over 17% of the world’s population lack access to electricity, the majority being in rural areas of sub-Saharan Africa and South Asia. Microgrid technologies are a promising solution towards rural and remote area electrification; however, ever-increasing electricity demand remains a big challenge leading to pronounced power outages. Demand-side management is an indispensable tool towards addressing the challenges. is paper employs a mathematical model based on incentives and time-of-use rates to simulate daily power usage pattern of residential customers using data collected from an isolated village Ngurdoto solar microgrid, Arusha, Tanzania. Customer responsiveness on the increase in price was evaluated based on the concept of price elasticity of demand. Using two demand response strategies, namely, load shifting (LS) and scheduled load reduction (SLR), the results reveal that LS can achieve up to 4.87% energy-saving, 19.23% cost-saving, and about 31% and 19% peak reduction and power factor improvement, respectively. SLR method resulted in about 19% energy-saving, 49% cost-saving, and 24% power factor improvement. us, the results presented in this study may lead to a more efficient and stable system than the current state in developing countries’ utility
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback