Browsing by Author "Pelle, Roger"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa(MDPI, 2021-11-15) Njau, Emma; Machuka, Eunice; Cleaveland, Sarah; Shirima, Gabriel; Kusiluka, Lughano; Okoth, Edward; Pelle, RogerAfrican swine fever (ASF) is a highly infectious and fatal haemorrhagic disease of pigs that is caused by a complex DNA virus of the genus Asfivirus and Asfarviridae African suids family. The disease is among the most devastating pig diseases worldwide including Africa. Although the disease was first reported in the 19th century, it has continued to spread in Africa and other parts of the world. Globally, the rising demand for pork and concomitant increase in transboundary movements of pigs and pork products is likely to increase the risk of transmission and spread of ASF and pose a major challenge to the pig industry. Different genotypes of the ASF virus (ASFV) with varying virulence have been associated with different outbreaks in several countries in sub-Saharan Africa (SSA) and worldwide, and understanding genotype circulation will be important for ASF prevention and control strategies. ASFV genotypes unique to Africa have also been reported in SSA. This review briefly recounts the biology, genomics and genotyping of ASFV and provides an account of the different genotypes circulating in SSA. The review also highlights prevention, control and progress on vaccine development and identifies gaps in knowledge of ASFV genotype circulation in SSA that need to be addressed.Item Association of LEI0258 Marker Alleles and Susceptibility to Virulent Newcastle Disease Virus Infection in Kuroiler, Sasso, and Local Tanzanian Chicken Embryos.(Hindawi, 2020-04-08) Mpenda, Fulgence; Tiambo, Christian; Kyallo, Martina; Juma, John; Pelle, Roger; Lyantagaye, Sylvester; Buza, JoramNewcastle disease (ND) control by vaccination and an institution of biosecurity measures is less feasible in backyard chicken in developing countries. Therefore, an alternative disease control strategy like the genetic selection of less susceptible chicken genotypes is a promising option. In the present study, genetic polymorphism of LEIO258 marker and association with susceptibility to virulent Newcastle disease virus (NDV) infection in Kuroilers, Sasso, and local Tanzanian chicken embryos were investigated. Samples from high (15%) and less (15%) susceptible cohorts were genotyped by sequencing of LEI0258 marker. A total of 75 DNA sequences comprised of 29 Kuroiler, 29 local Tanzanian chickens, and 17 Sasso were analyzed. Neighbor-joining phylogenetic trees were constructed to depict the clustering of LEI0258 marker alleles and relationship with susceptibility. Alleles with frequency ≥3 were considered for association with susceptibility by the use of the inference technique. The present findings suggest that some LEI0258 marker genetic polymorphisms apart from LEI0258 marker allelic based on sizes may be linked with chicken MHC-B haplotypes that confer chickens variability in resistance or susceptibility to infections. Furthermore, these results demonstrate the presence of relationship between LEI0258 marker polymorphisms and variations in chicken susceptibility to NDV infection, which could be utilized in breeding programs designed to improve chicken disease resistance.Item Detection of African swine fever virus genotype XV in a sylvatic cycle in Saadani National Park, Tanzania(Wiley Online Library, 2020-07-22) Njau, Emma; Machuka, Eunice; Githae, Dedan; Okoth, Edward; Cleaveland, Sarah; Shirima, Gabriel; Kusiluka, Lughano; Pelle, RogerAfrican swine fever (ASF) is a severe haemorrhagic disease of domestic pigs caused by ASF virus (ASFV). ASFV is transmitted by soft ticks (Ornithodoros moubata complex group) and by direct transmission. In Africa, ASF is maintained in transmission cycles of asymptomatic infection involving wild suids, mainly warthogs (Phacochoerus afri canus). ASF outbreaks have been reported in many parts of Tanzania; however, active surveillance has been limited to pig farms in a few geographical locations. There is an information gap on whether and where the sylvatic cycle may occur independently of domestic pigs. To explore the existence of a sylvatic cycle in Saadani National Park in Tanzania, blood and serum samples were collected from 19 warthogs se lected using convenience sampling along vehicle-accessible transects within the na tional park. The ticks were sampled from warthog burrows. Blood samples and ticks were subjected to ASFV molecular diagnosis (PCR) and genotyping, and warthog sera were subjected to serological (indirect ELISA) testing for ASFV antibody detection. All warthog blood samples were PCR-negative, but 16/19 (84%) of the warthog sera were seropositive by ELISA confirming exposure of warthogs to ASFV. Of the ticks sampled, 20/111 (18%) were positive for ASFV by conventional PCR. Sequencing of the p72 virus gene fragments showed that ASF viruses detected in ticks belonged to genotype XV. The results confirm the existence of a sylvatic cycle of ASFV in Saadani National Park, Tanzania, that involves ticks and warthogs independent of domestic pigs. Our findings suggest that genotype XV previously reported in 2008 in Tanzania is likely to be widely distributed and involved in both wild and domestic infection cycles. Whole-genome sequencing and analysis of the ASFV genotype XV circulating in Tanzania is recommended to determine the phylogeny of the viruses.Item The first genotype II African swine fever virus isolated in Africa provides insight into the current Eurasian pandemic(Scientific Reports, 2021-06-22) Njau, Emma; Entfellner, Jean-Baka; Machuka, Eunice; Bochere, Edwina; Cleaveland, Sarah; Shirima, Gabriel; Kusiluka, Lughano; Upton, Chris; Bishop, Richard; Pelle, Roger; Okoth, EdwardAfrican swine fever (ASF) caused by the African swine fever virus (ASFV) is ranked by OIE as the most important source of mortality in domestic pigs globally and is indigenous to African wild suids and soft ticks. Despite two ASFV genotypes causing economically devastating epidemics outside the continent since 1961, there have been no genome-level analyses of virus evolution in Africa. The virus was recently transported from south-eastern Africa to Georgia in 2007 and has subsequently spread to Russia, eastern Europe, China, and south-east Asia with devastating socioeconomic consequences. To date, two of the 24 currently described ASFV genotypes defined by sequencing of the p72 gene, namely genotype I and II, have been reported outside Africa, with genotype II being responsible for the ongoing pig pandemic. Multiple complete genotype II genome sequences have been reported from European, Russian and Chinese virus isolates but no complete genome sequences have yet been reported from Africa. We report herein the complete genome of a Tanzanian genotype II isolate, Tanzania/Rukwa/2017/1, collected in 2017 and determined using an Illumina short read strategy. The Tanzania/Rukwa/2017/1 sequence is 183,186 bp in length (in a single contig) and contains 188 open reading frames. Considering only un-gapped sites in the pairwise alignments, the new sequence has 99.961% identity with the updated Georgia 2007/1 reference isolate (FR682468.2), 99.960% identity with Polish isolate Pol16_29413_o23 (MG939586) and 99.957% identity with Chinese isolate ASFV-wbBS01 (MK645909.1). This represents 73 single nucleotide polymorphisms (SNPs) relative to the Polish isolate and 78 SNPs with the Chinese genome. Phylogenetic analysis indicated that Tanzania/Rukwa/2017/1 clusters most closely with Georgia 2007/1. The majority of the differences between Tanzania/Rukwa/2017/1 and Georgia 2007/1 genotype II genomes are insertions/deletions (indels) as is typical for ASFV. The indels included differences in the length and copy number of the terminal multicopy gene families, MGF 360 and 110. The Rukwa2017/1 sequence is the first complete genotype II genome from a precisely mapped locality in Africa, since the exact origin of Georgia2007/1 is unknown. It therefore provides baseline information for future analyses of the diversity and phylogeography of this globally important genetic sub-group of ASF viruses.Item Molecular epidemiology of Brucella species in mixed livestock-human ecosystems in Kenya(Springer Nature Limited, 2021-04-23) Akoko, James; Pelle, Roger; Lukambagire, AbdulHamid; Machuka, Eunice; Nthiwa, Daniel; Mathew, Coletha; Fèvre, Eric; Bett, Bernard; Cook, Elizabeth; Othero, Doreen; Bonfoh, Bassirou; Kazwala, Rudovick; Shirima, Gabriel; Schelling, Esther; Halliday, Jo; Ouma, CollinsBrucellosis, caused by several species of the genus Brucella, is a zoonotic disease that affects humans and animal species worldwide. Information on the Brucella species circulating in different hosts in Kenya is largely unknown, thus limiting the adoption of targeted control strategies. This study was conducted in multi-host livestock populations in Kenya to detect the circulating Brucella species and assess evidence of host–pathogen associations. Serum samples were collected from 228 cattle, 162 goats, 158 sheep, 49 camels, and 257 humans from Narok and Marsabit counties in Kenya. Information on age, location and history of abortion or retained placenta were obtained for sampled livestock. Data on age, gender and location of residence were also collected for human participants. All samples were tested using genus level real-time PCR assays with primers specific for IS711 and bcsp31 targets for the detection of Brucella. All genus positive samples (positive for both targets) were further tested with a speciation assay for AlkB and BMEI1162 targets, specific for B. abortus and B. melitensis, respectively. Samples with adequate quantities aggregating to 577 were also tested with the Rose Bengal Test (RBT). A total of 199 (33.3%) livestock and 99 (38.5%) human samples tested positive for genus Brucella. Animal Brucella PCR positive status was positively predicted by RBT positive results (OR = 8.3, 95% CI 4.0–17.1). Humans aged 21–40 years had higher odds (OR = 2.8, 95% CI 1.2–6.6) of being Brucella PCR positive compared to the other age categories. The data on detection of different Brucella species indicates that B. abortus was detected more often in cattle (OR = 2.3, 95% CI 1.1–4.6) and camels (OR = 2.9, 95% CI 1.3–6.3), while B. melitensis was detected more in sheep (OR = 3.6, 95% CI 2.0–6.7) and goats (OR = 1.7, 95% CI 1.0–3.1). Both B. abortus and B. melitensis DNA were detected in humans and in multiple livestock host species, suggesting cross-transmission of these species among the different hosts. The detection of these two zoonotic Brucella species in humans further underpins the importance of One Health prevention strategies that target multiple host species, especially in the multi-host livestock populations.Item Polymorphisms of the Chicken Mx Gene Promoter and Association with Chicken Embryos’ Susceptibility to Virulent Newcastle Disease Virus Challenge(Hindawi, 2019-10-03) Mpenda, Fulgence; Keambou, Christian; Kyallo, Martina; Pelle, Roger; Lyantagaye, Sylvester; Buza, JoramNewcastle disease is a devastating viral disease of chicken in low- and middle-income countries where the backyard production system is predominant. Marker-assisted selection of chickens that are resistant to Newcastle disease virus (NDV) is the promising strategy that needs to be explored. )e aim of the present study was to investigate polymorphisms of the promoter region of the chicken Mx gene and association with Kuroiler, Sasso, and local Tanzanian chicken embryos’ survival variability to virulent NDV infection. Chicken embryos were initially challenged with a minimum lethal dose of virulent NDV suspension and then were followed over time to gather information on their survival variability. Using the survival data, high and less susceptible cohorts were established, and a total of 88 DNA samples from high and less susceptible groups were genotypes by sequencing. Five singlenucleotide polymorphisms (SNPs), which were previously reported, were detected. Interestingly, for the first time, the findings demonstrated the association of the promoter region of chicken myxovirus-resistance (Mx) gene polymorphisms with chicken embryos’ susceptibility to the virulent NDV challenge. At the genotypic level, the SNP4 G>A mutation that was located within the IFN-stimulating response element was associated (LR: 6.97, P � 0.03) with chicken embryos’ susceptibility to the virulent NDV challenge. An allele G frequency was higher in the less susceptible cohort, whereas an allele A frequency was higher in the high susceptible cohort. At the haplotype level, the haplotype group ACGC was associated (OR: 9.8, 95% CI: 1.06–79.43, P � 0.042) with the same trait and had a resistant effect. In conclusion, the results have demonstrated the association of chicken Mx gene promoter polymorphisms and chicken embryos’ survival variability to the virulent NDV challenge, and the information is useful for breeding programs designed to develop chicken genotypes that are resistant to Newcastle disease virus.Item Serological and molecular evidence of Brucella species in the rapidly growing pig sector in Kenya.(BioMed Central Ltd, 2020-05-11) Akoko, James; Pelle, Roger; Kivali, Velma; Schelling, Esther; Machuka, Eunice; Mathew, Coletha; Fèvre, Eric; Kyallo, Victoria; Falzon, Laura; Lukambagire, Abdul; Halliday, Jo; Bonfoh, Bassirou; Kazwala, Rudovick; Ouma, Collins; Shirima, GabrielBackground: Brucellosis is an emerging yet neglected zoonosis that has been reported in Kenya. Epidemiological data on brucellosis in ruminants is readily accessible; however, reports on brucellosis in pigs remain limited. This study sought to detect Brucella infection in pig serum by both serological and molecular techniques. Serum from 700 pigs randomly collected at a centralized abattoir in Nairobi region, Kenya were screened in parallel, using both Rose Bengal Test (RBT) and competitive Enzyme-Linked Immuno-sorbent Assay (cELISA) for antibodies against Brucella spp. All sera positive by RBT and 16 randomly selected negative samples were further tested using conventional PCR targeting bcsp31 gene and real-time PCR (RT-PCR) assays targeting IS711 and bcsp31 genes. Results: A prevalence of 0.57% (n = 4/700) was estimated using RBT; none of these samples was positive on cELISA. All RBT positive sera were also positive by both PCRs, while two sero-negative samples also tested positive on RTPCR (n = 6/20). Brucella abortus was detected in four out of the six PCR positive samples through a real-time multiplex PCR. Conclusion: The detection of antibodies against Brucella spp. and DNA in serum from slaughterhouse pigs confirm the presence of Brucella in pigs. Therefore, investigation of the epidemiology and role of pigs in the transmission of brucellosis in Kenya is needed. Further targeted studies would be useful to systematically quantify and identify the spp. of Brucella in pigs.