• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Nwankwo, Ezinne"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Poultry diseases diagnostics models using deep learning
    (Frontiers in Artificial Intelligence, 2022-08-01) Machuve, Dina; Nwankwo, Ezinne; Mduma, Neema; Jimmy, Mbelwa
    Coccidiosis, Salmonella, and Newcastle are the common poultry diseases that curtail poultry production if they are not detected early. In Tanzania, these diseases are not detected early due to limited access to agricultural support services by poultry farmers. Deep learning techniques have the potential for early diagnosis of these poultry diseases. In this study, a deep Convolutional Neural Network (CNN) model was developed to diagnose poultry diseases by classifying healthy and unhealthy fecal images. Unhealthy fecal images may be symptomatic of Coccidiosis, Salmonella, and Newcastle diseases. We collected 1,255 laboratory-labeled fecal images and fecal samples used in Polymerase Chain Reaction diagnostics to annotate the laboratory-labeled fecal images. We took 6,812 poultry fecal photos using an Open Data Kit. Agricultural support experts annotated the farm-labeled fecal images. Then we used a baseline CNN model, VGG16, InceptionV3, MobileNetV2, and Xception models. We trained models using farm and laboratory-labeled fecal images and then fine-tuned them. The test set used farm-labeled images. The test accuracies results without fine-tuning were 83.06% for the baseline CNN, 85.85% for VGG16, 94.79% for InceptionV3, 87.46% for MobileNetV2, and 88.27% for Xception. Finetuning while freezing the batch normalization layer improved model accuracies, resulting in 95.01% for VGG16, 95.45% for InceptionV3, 98.02% for MobileNetV2, and 98.24% for Xception, with F1 scores for all classifiers above 75% in all four classes. Given the lighter weight of the trained MobileNetV2 and its better ability to generalize, we recommend deploying this model for the early detection of poultry diseases at the farm level.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback