• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Nakaya, Shinji"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Effect of groundwater residence time on geogenic fluoride release into groundwater in the Mt. Meru slope area, Tanzania, the Great Rift Valley, East Africa
    (Elsevier Ltd., 2023) Nakaya, Shinji; Takada, Ryogo; Yasumoto, Jun; Masuda, Harue; Yoshitani, Junichi; Shinjo, Ryuichi; Lugodisha, Innocent; Komakech, Hans
    People living in the Great Rift Valley in East Africa suffer from fluorosis resulting from their consumption of groundwater. This paper shows that geogenic fluoride contamination in a natural water system has changed in the last two decades in the Mt. Meru slope area of northern Tanzania based on water quality, dating of the residence time, and stable isotopes of groundwater. The results demonstrate that 1) the average recharge altitude of groundwater with a high geogenic fluoride concentration is estimated to range from 1900 m to 3000 m on the southern slope of Mt. Meru, and the fluoride concentration tends to increase with an increase in the recharge altitude, 2) the fluoride concentration increases with increasing groundwater residence time for groundwater with a residence time of 20 years or longer, suggesting that water-rock interaction processes (weathering, dissolution, and ion exchange), which depend on the contact time between the volcanic aquifer and groundwater, have predominated for approximately 20 years or longer, and 3) the mixing of aerobic young water and old groundwater has been active for approximately 20 years, and the fluoride concentration is increasing in some shallower well waters. The mixing of fluoride-contaminated groundwater with aerobic water infiltrating the aquifer through pumping groundwater in the last two decades may increase the spread of groundwater contaminated with fluoride due to increased water demand caused by rapid population growth, and urbanization, industrial growth, and the expansion of irrigated agriculture.
  • Loading...
    Thumbnail Image
    Item
    Evaluation of recharge areas of Arusha Aquifer, Northern Tanzania: application of water isotope tracers
    (IWA Publishing, 2020-10-21) Lugodisha, Innocent; Komakech, Hans; Nakaya, Shinji; Takada, Ryogo; Yoshitani, Junichi; Yasumoto, Jun
    In Arusha urban, northern Tanzania, groundwater contributes about 80% of the water supply. However, elevated fluoride levels and evidence of anthropogenic pollution have been reported in the groundwater around Mount Meru which is a water source for Arusha urban. This study aims at understanding the recharge areas and flow pathways of groundwater in what has been a poorly monitored area. The study uses the isotopic ratio of oxygen and hydrogen to estimate the groundwater recharge area and flow pathway. The results show the recharge elevation of groundwater is between 1,800 and 3,500 m above mean sea level on the slopes of Mount Meru. The average fluoride contents in the study area are 5.3 ± 0.4 mg/L greater than the limits of 1.5 mg/L set by the World Health Organization (WHO) and Tanzania. The nitrate concentration of 83.9 mg/L at the lower elevation areas (<1,400 m above mean sea level) exceeds the 50 mg/L WHO limit. The relationship of F− with δ18O and NO3− suggests the leaching of fluoride in high altitudes and dilution in lower altitudes.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback