Browsing by Author "Mwanauta, Regina"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Item Biopesticide efficacy of four plant essential oils against papaya mealybug, Paracoccus marginatus Williams and Granara de Willink (Hemiptera: Pseudococcidae)(Heliyon, 2023-03-01) Mwanauta, Regina; Ndakidemi, Patrick; Venkataramana, PavithravaniWorldwide, P. marginatus causes 75% of estimated economic loss in papaya farming, with an increase in production costs. The extract of plant essential oils (PEO) has the potential to control P. marginatus by degrading its wax coatings to death; however, it is less studied in the East African agroecosystem. Therefore, this study was conducted to evaluate the efficacy of four PEO from (neem, citrus, garlic, and castor) against P. marginatus at different concentrations (0.5%, 1%, and 1.5%) with and without 0.2% adjuvants separately as a biopesticide. The experiment was con ducted in a completely randomized design with four replications per treatment concentration. The papaya seeds (Carina variety) were used in the experiment. After 3 weeks from transplanting, 50 P. marginatus specimens were inoculated in each plant. Before treatment application, insect abundance, leaf curling, yellowing, and soot mold were assessed. Then, 24 h, 48 h, and 72 h after biopesticide application, insect mortality was assessed. The results showed a significant difference (p = 0.001) for all assessment intervals in PEOs. However, for the PEOs in combination with the adjuvants, the results were significantly different (p = 0.001) only at 24 h. It was found that among the biopesticides, neem oil (1.5%) + isopropyl alcohol was highly effective (95.5%) after 72 h followed by (Imidacloprid (91%), citrus oil 1.5% (90.7%) and neem oil (1.5%) + paraffin oil (81.0%). But also, there were significant differences among treatments on leaf curling, yellowing, and soot mold reduction in papaya plants 21 days after spray. We conclude that neem oil (1.5%) + 0.2% isopropyl alcohol, neem oil (1.5%) + paraffin oil, and citrus oil (1.5%) significantly controlled P. marginatus. Thus, we recommend adopting these formulations for papaya farmers to control P. marginatus in their farms; however, simple formulations which can be easily accessed by smallholder farmers are essential.Item Characterization of Farmer’s knowledge and management practices of papaya mealybug Paracoccus magnatus (Hemiptera: Pseudococcidae) in Tanzania(Elsevier, 2022-02-22) Mwanauta, Regina; Ndakidemi, Patrick; Venkataramana, PavithravaniPapaya mealybug (PMB) is a serious insect pest for papaya production in Sub-Saharan Africa, limiting production potential in farming communities. We did a household survey to evaluate the Characteristics of farmers' knowledge, challenges, and current (PMB) control practices in four papaya growing regions of Tanzania namely, Tanga, Dodoma, Pwani, and Katavi involving 100 papaya farmers. The study found that 96% of farmers reported PMB, as a major challenge in papaya production. Very few (0.8%) of the farmers were knowledgeable on insect pest identification. Chemical pesticides were the only option for PMB control, and 43.0% of farmers were able to access and apply. We also found that 36.4% of the farmers were aware of the adverse effects of chemical pesticides. Furthermore, the study observed that 0.3% of farmers use botanical pesticides. Additionally, the study observed that 44.1% of farmers use control measures against PMB, the remaining 55.9% did not practice any control measure, thus leading to low papaya yields observed in the study regions. Our findings provide insights to farmers into the use of plant-based pesticides, mainly plant essential oils, and its benefits that may promote farmers' attitudes towards increasing papaya yield and reducing chemical pesticide use to avoid pest resistance.Item Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides(Plos One, 2015-11-23) Mkenda, Prisila; Mwanauta, Regina; Stevenson, Philip; Ndakidemi, Patrick; Mtei, Kelvin; Belmain, StevenPlants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris) that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders). Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin) and T. diversifolia (the sesquiterpene lactone tagitinin A). Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.Item Extracts from field margin weeds provide economically viable and environmentally benign pest control compared to synthetic pesticides(Public Library of Science, 2015-11-23) Mkenda, Prisila; Mwanauta, Regina; Stevenson, Philip; Ndakidemi, Patrick; Mtei, Kelvin; Belmain, StevenPlants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris) that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders). Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin) and T. diversifolia (the sesquiterpene lactone tagitinin A). Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.Item Insecticidal Activity of Selected Plant-Derived Essential Oils against Papaya Mealybug (Paracoccus marginatus)(MDPI, 2023-12-02) Mwanauta, Regina; Venkataramana, Pavithravani; Ndakidemi, PatrickThe current study aims to assess the effectiveness of three essential oils derived from neem, citrus, and garlic against papaya mealybug. Papaya seedlings were transplanted in the field in a completely randomized block design with eight treatments with four replications. The treatments included neem, citrus, and garlic oils in combination with isopropyl alcohol or paraffin oil as an adjuvant. Results from this study showed that neem oil at 1.5% + 0.2% isopropyl alcohol was effective against papaya mealybug by 93.0% equivalent to the positive control (imidacloprid) (99.4%), followed by citrus oil at 1.5% + isopropyl alcohol (76.3%) and citrus oil at 1.5% + paraffin oil (68.8%), compared with the untreated 0.01%. Similarly, application of the plant-derived essential oils and adjuvants resulted in positive effects on plant parameters (plant height, number of leaves, flower buds, number of fruits, and fruit weight) and, hence, increased papaya yield from an average of 38 to 90 fruits/plant at first harvest. The finding from this study provides an understanding of papaya farmers towards the use of natural plant products, particularly plant-derived essential oils, and their benefits, which may encourage farmers to increase papaya production and minimize the usage of synthetic pesticides to avoid pest resistance.Item Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods(Original Research, 2018-09-28) Tembo, Yolice; Mkindi, Angela; Mkenda, Prisila; Mpumi, Nelson; Mwanauta, Regina; Stevenson, Philip; Ndakidemi, Patrick; Belmain, StevenIn the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, few natural products are commercialized for pest management whilst on-farm use of existing botanically-based pesticides remains a small, but growing, component of crop protection practice. Uptake of natural pesticides is at least partly constrained by limited data on the trade-offs of their use on farm. The research presented here assessed the potential trade-offs of using pesticidal plant extracts on legume crop yields and the regulating ecosystem services of natural pests enemies. The application of six established pesticidal plants (Bidens pilosa, Lantana camara, Lippia javanica, Tephrosia vogelii, Tithonia diversifolia, and Vernonia amygdalina) were compared to positive and negative controls for their impact on yields of bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), and pigeon pea (Cajanus cajan) crops and the abundance of key indicator pest and predatory arthropod species. Analysis of field trials showed that pesticidal plant treatments often resulted in crop yields that were comparable to the use of a synthetic pesticide (lambda-cyhalothrin). The best-performing plant species were T. vogelii, T. diversifolia, and L. javanica. The abundance of pests was very low when using the synthetic pesticide, whilst the plant extracts generally had a higher number of pests than the synthetic but lower numbers than observed on the negative controls. Beneficial arthropod numbers were low with synthetic treated crops, whereas the pesticidal plant treatments appeared to have little effect on beneficials when compared to the negative controls. The outcomes of this research suggest that using extracts of pesticidal plants to control pests can be as effective as synthetic insecticides in terms of crop yields while tritrophic effects were reduced, conserving the non-target arthropods that provide important ecosystem services such as pollination and pest regulation. Thus managing crop pests using plant secondary metabolites can be more easily integrated in to agro-ecologically sustainable crop production systems.Item Potential of Controlling Common Bean Insect Pests (Bean Stem Maggot (Ophiomyia phaseoli), Ootheca (Ootheca bennigseni) and Aphids (Aphis fabae)) Using Agronomic, Biological and Botanical Practices in Field(Scientific Research Publishing, 2015-05-22) Mwanauta, Regina; Mtei, Kelvin; Ndakidemi, PatrickCommon bean production in Africa suffers from different constrains. The main damage is caused by insect pest infestations in the field. The most common insects pests which attack common bean in the field are the bean stem maggot (Ophiomyia phaseoli), ootheca (Ootheca bennigseni) and aphids (Aphis fabae). Currently, few farmers in Africa are using commercial pesticides for the con trol of these insect pests. Due to the negative side effects of commercial pesticides to human health and the environment, there is a need for developing and recommending alternative methods such as those involving agronomic and botanical/biological measures in controlling common bean in sect pests. This review aim to report the most common insects pests which attack common bean (Phaseolus vulgaris L.) in the field and explore the potential of agronomic, biological and botanical methods as a low-cost, safe and environmentally friendly means of controlling insect pests in le gumes.Item Prospective Bioactive Compounds from Vernonia amygdalina, Lippia javanica, Dysphania ambrosioides and Tithonia diversifolia in Controlling Legume Insect Pests(Scientific Research Publishing, 2014-10-22) Mwanauta, Regina; Mtei, Kelvin; Ndakidemi, PatrickSynthetic insecticides are widely known to control insect pest, but due to high operational cost, environmental pollution, toxicity to humans, harmful effect on non-target organisms and the de velopment of insect resistance to this products, have created the need for developing alternative such as those involving the use of botanical pesticides to control insect pest. Bioactive compounds derived from plant could be an alternative source for insect pest control because they constitute a rich source of natural chemicals. This review aims to explore the potential of plant bioactive com pounds from Vernonia amygdalina, Lippia javanica, Dysphania ambrosioides and Tithonia diversi folia as a low-cost, safe and environmentally friendly means of controlling insect pests in legumeItem A Review on Papaya Mealybug Identification and Management Through Plant Essential Oils(Oxford University Press, 2021-08-12) Mwanauta, Regina; Ndakidemi, Patrick; Venkataramana, PavithravaniPapaya (Carica papaya L.) production suffers from a multitude of abiotic and biotic constraints, among those are insect pests, diseases, and environmental conditions. One of the seriously damaging pests of papaya is invasive papaya mealybug, Paracoccus marginatus, which can inflict heavy yield loss if not contained. Little information on papaya mealybug species has been documented due to challenges in identification approaches to species level. The current approach is based on the morphological features which are restricted to the mealybug life cycle leading to unclear identification. In Sub-Saharan Africa, where a wide diversity of mealybug species exists, it is essential to have a correct identification of these insect species due to the specificity of control measures. Molecular identification could be the best way to identify the mealybug at the species level. Presently, farmers rely heavily on chemical pesticides as their only available option for papaya mealybug control. The overuse of pesticides due to insect waxy covering has led to the development of pesticide resistance and the negative impact on the local ecosystem. Alternatively, the use of plant essential oils (EOs) with adjuvant is suggested as the safe solution to papaya mealybug control as they contain a rich source of natural chemicals that dissolve the insect wax layer, causing the cell membrane to rupture eventually leading to death. This review provides current research knowledge about the papaya mealybug identification approaches and plant EOs from Sweet orange, garlic, castor, and adjuvant (isopropyl alcohol, and paraffin) as sustainable papaya mealybug management.