• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Mustafa, Ummul-Khair"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Integrated rapid risk assessment for dengue fever in settings with limited diagnostic capacity and uncertain exposure: Development of a methodological framework for Tanzania
    (Public Library of Science, 2025-03-28) Belau, Matthias; Boenecke, Juliane; Ströbele, Jonathan; Himmel, Mirko; Dretvić, Daria; Mustafa, Ummul-Khair; Kreppel, Katharina; Sauli, Elingarami; Brinkel, Johanna; Clemen, Ulfia; Clemen, Thomas; Streit, Wolfgang; May, Jürgen; Ahmad, Amena; Reintjes, Ralf; Becher, Heiko
    Background Dengue fever is one of the world’s most important re-emerging but neglected infectious diseases. We aimed to develop and evaluate an integrated risk assessment framework to enhance early detection and risk assessment of potential dengue outbreaks in settings with limited routine surveillance and diagnostic capacity. Methods Our risk assessment framework utilizes the combination of various methodological components: We first focused on (I) identifying relevant clinical signals based on a case definition for suspected dengue, (II) refining the signal for potential dengue diagnosis using contextual data, and (III) determining the public health risk associated with a verified dengue signal across various hazard, exposure, and contextual indicators. We then evaluated our framework using (i) historical clinical signals with syndromic and laboratory-confirmed disease information derived from WHO’s Epidemic Intelligence from Open Sources (EIOS) technology using decision tree analyses, and (ii) historical dengue outbreak data from Tanzania at the regional level from 2019 (6,795 confirmed cases) using negative binomial regression analyses adjusted for month and region. Finally, we evaluated a test signal across all steps of our integrated framework to demonstrate the implementation of our multi-method approach. Results The result of the suspected case refinement algorithm for clinically defined syndromic cases was consistent with the laboratory-confirmed diagnosis (dengue yes or no). Regression between confirmed dengue fever cases in 2019 as the dependent variable and a site-specific public health risk score as the independent variable showed strong evidence of an increase in dengue fever cases with higher site-specific risk (rate ratio = 2.51 (95% CI = [1.76, 3.58])). Conclusions The framework can be used to rapidly determine the public health risk of dengue outbreaks, which is useful for planning and prioritizing interventions or for epidemic preparedness. It further allows for flexibility in its adaptation to target diseases and geographical contexts.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback