Browsing by Author "Mkenda, Prisila"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Beneficial insects are associated with botanically rich margins with trees on small farms(2021-07-21) Arnold, Sarah; Elisante, Filemon; Mkenda, Prisila; Tembo, Yolice; Ndakidemi, Patrick; Gurr, Geoff; Darbyshire, Iain; Belmain, Steven; Stevenson, PhilipBeneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species.Item Extracts from Field Margin Weeds Provide Economically Viable and Environmentally Benign Pest Control Compared to Synthetic Pesticides(Plos One, 2015-11-23) Mkenda, Prisila; Mwanauta, Regina; Stevenson, Philip; Ndakidemi, Patrick; Mtei, Kelvin; Belmain, StevenPlants with pesticidal properties have been investigated for decades as alternatives to synthetics, but most progress has been shown in the laboratory. Consequently, research on pesticidal plants is failing to address gaps in our knowledge that constrain their uptake. Some of these gaps are their evaluation of their efficacy under field conditions, their economic viability and impact on beneficial organisms. Extracts made from four abundant weed species found in northern Tanzania, Tithonia diversifolia, Tephrosia vogelii, Vernonia amygdalina and Lippia javanica offered effective control of key pest species on common bean plants (Phaseolus vulgaris) that was comparable to the pyrethroid synthetic, Karate. The plant pesticide treatments had significantly lower effects on natural enemies (lady beetles and spiders). Plant pesticide treatments were more cost effective to use than the synthetic pesticide where the marginal rate of return for the synthetic was no different from the untreated control, around 4USD/ha, compared to a rate of return of around 5.50USD/ha for plant pesticide treatments. Chemical analysis confirmed the presence of known insecticidal compounds in water extracts of T. vogelii (the rotenoid deguelin) and T. diversifolia (the sesquiterpene lactone tagitinin A). Sesquiterpene lactones and the saponin vernonioside C were also identified in organic extracts of V. amygdalina but only the saponin was recorded in water extracts which are similar to those used in the field trial. Pesticidal plants were better able to facilitate ecosystem services whilst effectively managing pests. The labour costs of collecting and processing abundant plants near farm land were less than the cost of purchasing synthetic pesticides.Item Field Margin Vegetation in Tropical African Bean Systems Harbours Diverse Natural Enemies for Biological Pest Control in Adjacent Crops(MDPI, 2019-11-14) Mkenda, Prisila; Ndakidemi, Patrick; Stevenson, Philip; Arnold, Sarah; Belmain, Steven; Chidege, Maneno; Gurr, GeoNon-crop vegetation around farmland can be valuable habitats for enhancing ecosystem services but little is known of the importance of field margins in supporting natural enemies of insect pests in tropical agriculture. This study was conducted in smallholder bean fields in three elevation zones to assess the importance of field margin vegetation to natural enemy populations and movement to the bean crop for biological pest control. The pests and natural enemies were assessed using di erent coloured water pan traps (to ensure the capture of insects with di erent colour preferences) and the interactions of the two arthropod groups with the margin vegetation and their movement to the bean crop were monitored using fluorescent dye. Sentinel plants were used to assess predation and parasitism levels. A total of 5003 natural enemies were captured, more in the field margin than within the bean field for low and mid elevation zones, while in the high elevation zone, they were more abundant within the bean field. Pests were more abundant in the crop than margins for all the elevation zones. The use of a dye applied to margin vegetation demonstrated that common natural enemy taxa moved to the crop during the days after dye application. The proportion of dye-marked natural enemies (showing their origin to be margin vegetation) sampled from the crop suggest high levels of spatial flux in the arthropod assemblage. Aphid mortality rates (measured by prey removal and parasitism levels on sentinel plants) did not di er between the field edges and field centre in any of the three elevation zones, suggesting that for this pest taxon, the centre of the fields still receive comparable pest control service as in the field edges. This study found that field margins around smallholder bean fields are useful habitats to large numbers of natural enemy taxa that move to adjacent crops providing biological pest control service.Item Multiple ecosystem services from field margin vegetation for ecological sustainability in agriculture: scientific evidence and knowledge gaps.(PubMed, 2019-11-28) Mkenda, Prisila; Ndakidemi, Patrick; Mbega, Ernest; Stevenson, Philip; Arnold, Sarah; Gurr, Geoff; Belmain, Steven;Background Field margin and non-crop vegetation in agricultural systems are potential ecosystem services providers because they offer semi-natural habitats for both below and above ground animal groups such as soil organisms, small mammals, birds and arthropods that are service supplying units. They are considered as a target area for enhancing farm biodiversity. Methodology To explore the multiple potential benefits of these semi-natural habitats and to identify research trends and knowledge gaps globally, a review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A total of 235 publications from the year 2000 to 2016 in the Scopus and Web of Science databases were reviewed. Results The literature showed an increasing trend in the number of published articles over time with European studies leading in the proportion of studies conducted, followed by North America, Asia, South America, Africa and Australia. Several functional groups of organisms were studied from field margin and non-crop vegetation around agricultural lands including natural enemies (37%), insect pests (22%), birds (17%), pollinators (16%), soil macro fauna (4%) and small mammals (4%). Ecosystem services derived from the field margin included natural pest regulation, pollination, nutrient cycling and reduced offsite erosion. Some field margin plants were reported to host detrimental crop pests, a major ecosystem dis-service, potentially leading to increased pest infestation in the field. Conclusion The majority of studies revealed the importance of field margin and non-crop vegetation around arable fields in enhancing ecosystem biodiversity. Promotion of field margin plants that selectively enhance the population of beneficial organisms would support sustainable food security rather than simply boosting plant diversity. Our analyses also highlight that agro-ecological studies remain largely overlooked in some regions. Item Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods(Original Research, 2018-09-28) Tembo, Yolice; Mkindi, Angela; Mkenda, Prisila; Mpumi, Nelson; Mwanauta, Regina; Stevenson, Philip; Ndakidemi, Patrick; Belmain, StevenIn the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, few natural products are commercialized for pest management whilst on-farm use of existing botanically-based pesticides remains a small, but growing, component of crop protection practice. Uptake of natural pesticides is at least partly constrained by limited data on the trade-offs of their use on farm. The research presented here assessed the potential trade-offs of using pesticidal plant extracts on legume crop yields and the regulating ecosystem services of natural pests enemies. The application of six established pesticidal plants (Bidens pilosa, Lantana camara, Lippia javanica, Tephrosia vogelii, Tithonia diversifolia, and Vernonia amygdalina) were compared to positive and negative controls for their impact on yields of bean (Phaseolus vulgaris), cowpea (Vigna unguiculata), and pigeon pea (Cajanus cajan) crops and the abundance of key indicator pest and predatory arthropod species. Analysis of field trials showed that pesticidal plant treatments often resulted in crop yields that were comparable to the use of a synthetic pesticide (lambda-cyhalothrin). The best-performing plant species were T. vogelii, T. diversifolia, and L. javanica. The abundance of pests was very low when using the synthetic pesticide, whilst the plant extracts generally had a higher number of pests than the synthetic but lower numbers than observed on the negative controls. Beneficial arthropod numbers were low with synthetic treated crops, whereas the pesticidal plant treatments appeared to have little effect on beneficials when compared to the negative controls. The outcomes of this research suggest that using extracts of pesticidal plants to control pests can be as effective as synthetic insecticides in terms of crop yields while tritrophic effects were reduced, conserving the non-target arthropods that provide important ecosystem services such as pollination and pest regulation. Thus managing crop pests using plant secondary metabolites can be more easily integrated in to agro-ecologically sustainable crop production systems.