• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Minhas, Muhammad"

Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Combined reverse osmosis and constant-current operated capacitive deionization system for seawater desalination
    (Elsevier B.V., 2014-07-01) Minhas, Muhammad; Jande, Yusufu; Kim, Woo-Seung
    There is an increase in the use of water purification technologies to produce the purified water from saline water. The desalination process may either involve the use of a single desalination technology, or may include the utilization of multiple desalination methods. In this study, reverse osmosis (RO) is integrated with the constant-current operated capacitive deionization (CCOCD) to desalinate seawater into high-quality ultrapure water, in addition to producing fresh water from the same system. For systems with the same feed concentration and feed flow rates, the RO–CCOCD hybrid system is superior to the RO–CVOCD (CVOCD is the constant voltage operated capacitive deionization) system. The advantages of RO–CCOCD over RO–CVOCD include a longer adsorption time for CDI cells with the same capacitance and spacer volume/dead volume as that of CVOCD, and increased quality of ultrapure water (> 18 MΩ cm) along-with its production. The specific energy consumption for the production of desalted water is generally the same for RO–CCOCD and RO–CVOCD given the same feed concentration and feed flow rate.
  • Loading...
    Thumbnail Image
    Item
    Hybrid Reverse Osmosis‐Capacitive Deionization versus Two‐Stage Reverse Osmosis: A Comparative Analysis
    (John Wiley & Sons, Inc., 2014-06-06) Minhas, Muhammad; Jande, Yusufu; kim, Woo-Seung
    Reverse osmosis (RO) is a high‐pressure single‐phase desalination process used to obtain freshwater from seawater/brackish water. The RO system shows high energy consumption for a given unit volume of pure water produced. The reported hybrid system of RO and capacitive deionization (CDI) aims at improving the RO water recovery and minimizing energy consumption. The RO‐CDI system is simulated and compared with two‐stage RO, to determine the effectiveness of the new hybrid system. The energy recovery from RO brine was also studied. The specific energy consumption by two‐stage RO for two different arrangements of the energy recovery device is higher than for RO‐CDI. The hybrid RO‐CDI system is energy efficient for the production of freshwater from brackish water.
  • Loading...
    Thumbnail Image
    Item
    Ultrapure water from seawater using integrated reverse osmosis-capacitive deionization system
    (Taylor & Francis Online, 2013-12-19) Jande, Yusufu; Minhas, Muhammad; Kim, Woo-Seung
    The use of water for particular application depends on its purity level. In accordance with the world health organization, water with total dissolved salts (TDS) less than 500 ppm can be considered good for human consumption. Ultrapure water is used in areas such as semiconductor industry, pharmaceuticals, and laboratories. Purification processes like electrodeionization process, thermal processes, and membrane processes are used to produce ultrapure water from very low salinity (10–200 ppm) water source. In this study, seawater is desalinated to produce ultrapure water using the integrated reverse osmosis (RO)-capacitive deionization (CDI). The RO permeate is fed to the CDI cell to generate the high purity water. It has been found that, with the use of RO-CDI integrated system, seawater can be used to produce ultrapure water with TDS less than 2 ppm and potable water with TDS less than 400 ppm by consuming 3.171 kWh/m3 of energy. The proposed integrated RO-CDI system is of significant interest in the areas where ultrapure water along with fresh water is required from seawater.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback