• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Madili, Nyanda"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Theoretical and experimental studies of combination of synthetic dye (indoline d131) and natural dye (lawsone) for dye sensitized solar cells applications
    (NM-AIST, 2019-02) Madili, Nyanda
    Dye sensitized solar cells (DSSCs) convert visible sunlight to electricity using a wide band semiconductor. The DSSCs have attracted many researchers due to their environmental friendliness, low manufacturing cost and simple fabrication process. In the DSSCs, a sensitizer captures sunlight, injects electrons onto the semiconductor and becomes regenerated by electrolyte (redox mediator). Main challenges facing sensitizers relate to dye degradation, low efficiency, as well as high price and toxicity of some dyes. Co-sensitization of dyes which broaden the absorption spectrum of the sensitizer is among the different methods used to enhance the DSSCs efficiency. In this work, the theoretical design of complex molecule (C45H32N2O4) through combination (esterification reaction) of the natural dye lawsone (C10H6O3) and synthetic metal free indoline dye D131 (C35H28N2O2) was performed. The molecular structures, vibration and electronic absorption spectra, excitation energies, and electron transitions of individual dyes and complex molecule were investigated using density functional theory (DFT) and time-dependent (TD-DFT) methods with B3LYP5 functional and 3-21G, 6-31G and 6-31G(d,p) basis sets. For the complex formation reaction, enthalpy, entropy and Gibbs free energy were calculated; the results predicted the reaction to be endothermic and non-spontaneous. Electron density distribution of the frontier and adjacent molecular orbitals and energy levels alignment were used for analysis of the electronic spectra and mechanism of transitions. The results indicated that the designed complex molecule satisfied the requirements for good photosensitizer for DSSCs. The UV-Vis absorption spectra of the individual dyes and their mixture in chloroform solution were measured using spectrophotometer. The solution of the dyes mixture was prepared by combination of the 2.95×10–5 M indoline D131 and 1.15×10–4 M lawsone dye solutions in the ratio of 1:1. Generally despite the slight dissimilarities, the observed bands in the spectrum of the mixture corresponded to those of the individual dyes. Also DSSCs were fabricated using TiO2 electrode with active area of 36 mm2. The DSSCs’ performance was tested at outdoor conditions. The power conversion efficiency (PCE) of the DSSC with lawsone was 0.05%, indoline D131 2.8% and mixture of dyes 0.5%. Thus the PCE of the cell with natural dye was increased in ten times when the synthetic dye added. Combination of naural lawsone dye and indoline dye resulted into wider absorption range compared to those of the individual dyes.
  • Loading...
    Thumbnail Image
    Item
    Theoretical Design of Complex Molecule via Combination of Natural Lawsone and Synthetic Indoline D131 Dyes for Dye Sensitized Solar Cells Application
    (Scientific Research Publishing Inc., 2018-10-31) Madili, Nyanda; Pogrebnoi, Alexander; Pogrebnaya, Tatiana
    The dye sensitized solar cells (DSSCs) have been extensively studied due to their low production cost and simple fabrication process. Dye co-sensitization broadens the absorption spectrum of the sensitizer; thus enhances light harvesting efficiency; and contributes to the improvement of the DSSCs overall efficiency. In this study we performed theoretical design of complex molecule (C45H32N2O4) through combination (esterification reaction) of the natural dye lawsone and synthetic metal free indoline dye D131. The excitation energies, vibration spectra, molecular structures, electronic absorption spectra and electron transitions in individual dyes and complex molecule were investigated using density functional theory (DFT) and time dependent density functional theory (TD-DFT) B3LYP5 methods, with 3-21G, 6-31G and 6-31G(d,p) basis sets. The UV-Vis absorption spectra of the individual dyes and their mixture in chloroform solution were measured using spectrophotometer. For the complex formation reaction, enthalpy, entropy and Gibbs free energy were calculated and the results indicated the reaction was endothermic and non-spontaneous. Electron density distribution of the frontier and adjacent molecular orbitals and energy levels alignment were used for analysis of the electronic spectra and mechanism of transitions. The results indicated that the designed complex molecule satisfied the requirements for good photosensitizer of DSSCs.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback