Browsing by Author "Lugodisha, Innocent"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Application of the Kilimanjaro Concept in Reversing Seawater Intrusion and Securing Water Supply in Zanzibar, Tanzania(MDPI, 2021-07-30) Pembe-Ali, Zuleikha; Mwamila, Tulinave; Lufingo, Mesia; Gwenzi, Willis; Marwa, Janeth; Rwiza, Mwemezi; Lugodisha, Innocent; Qi, Qinwen; Noubactep, ChicgouaThere is escalating salinity levels on small islands due to uncontrolled groundwater extraction. Conventionally, this challenge is addressed by adopting optimal groundwater pumping strategies. Currently, on Unguja Island (Zanzibar), urban freshwater is supplied by desalination, which is expensive and energy-intensive. Hence, desalinization cannot be afforded by rural communities. This study demonstrates that the innovative Kilimanjaro Concept (KC), based on rainwater harvesting (RWH) can remediate seawater intrusion in Unguja, while enabling a universal safe drinking water supply. The reasoning is rooted in the water balance of the whole island. It is shown that if rainwater is systematically harvested, quantitatively stored, and partly infiltrated, seawater intrusion will be reversed, and a universal safe drinking water supply will be secured. Water treatment with affordable technologies (e.g., filtration and adsorption) is suggested. The universality of KC and its suitability for small islands is demonstrated. Future research should focus on pilot testing of this concept on Unguja Island and other island nations.Item Effect of groundwater residence time on geogenic fluoride release into groundwater in the Mt. Meru slope area, Tanzania, the Great Rift Valley, East Africa(Elsevier Ltd., 2023) Nakaya, Shinji; Takada, Ryogo; Yasumoto, Jun; Masuda, Harue; Yoshitani, Junichi; Shinjo, Ryuichi; Lugodisha, Innocent; Komakech, HansPeople living in the Great Rift Valley in East Africa suffer from fluorosis resulting from their consumption of groundwater. This paper shows that geogenic fluoride contamination in a natural water system has changed in the last two decades in the Mt. Meru slope area of northern Tanzania based on water quality, dating of the residence time, and stable isotopes of groundwater. The results demonstrate that 1) the average recharge altitude of groundwater with a high geogenic fluoride concentration is estimated to range from 1900 m to 3000 m on the southern slope of Mt. Meru, and the fluoride concentration tends to increase with an increase in the recharge altitude, 2) the fluoride concentration increases with increasing groundwater residence time for groundwater with a residence time of 20 years or longer, suggesting that water-rock interaction processes (weathering, dissolution, and ion exchange), which depend on the contact time between the volcanic aquifer and groundwater, have predominated for approximately 20 years or longer, and 3) the mixing of aerobic young water and old groundwater has been active for approximately 20 years, and the fluoride concentration is increasing in some shallower well waters. The mixing of fluoride-contaminated groundwater with aerobic water infiltrating the aquifer through pumping groundwater in the last two decades may increase the spread of groundwater contaminated with fluoride due to increased water demand caused by rapid population growth, and urbanization, industrial growth, and the expansion of irrigated agriculture.Item Evaluation of recharge areas of Arusha aquifer, northern Tanzania: application of water isotope tracers(NM-AIST, 2022-01) Lugodisha, InnocentIn Arusha urban, northern Tanzania, groundwater contributes about 80% of the water supply. However, elevated fluoride levels and evidence of anthropogenic pollution have been reported in the groundwater around Mount Meru which is a water source for Arusha urban. This study aims at understanding the recharge areas and flow pathways of groundwater in what has been a poorly monitored area. The study uses the isotopic ratio of oxygen and hydrogen to estimate the groundwater recharge area and flow pathway. The results show the recharge elevation of groundwater is between 1800 and 3500 m above mean sea level on the slopes of Mount Meru. Fluoride showed an increasing trend with elevation while NO3 - decreased with sampling altitude. The high content of NO3 - and Cl in water samples from sources in the lower part of the study area is evidence of anthropogenic contamination. The average fluoride contents in the study area are 5.3 ± 0.4 mg/L greater than the limits of 1.5 mg/L and 4 mg/L set by the World Health Organization (WHO) and Tanzania respectively. The nitrate concentration of 83.9 mg/L at the lower elevation areas (<1400 m above mean sea level) exceeds the 50 mg/L WHO limit. The relationship of F- with δ18O and NO3 - suggests the leaching of fluoride in high altitudes and dilution in lower altitudes. Two flow pathways were identified, that start from the recharge area in the south and south-western slopes of Mount Meru towards the southern part of Arusha urban.Item Evaluation of recharge areas of Arusha Aquifer, Northern Tanzania: application of water isotope tracers(IWA Publishing, 2020-10-21) Lugodisha, Innocent; Komakech, Hans; Nakaya, Shinji; Takada, Ryogo; Yoshitani, Junichi; Yasumoto, JunIn Arusha urban, northern Tanzania, groundwater contributes about 80% of the water supply. However, elevated fluoride levels and evidence of anthropogenic pollution have been reported in the groundwater around Mount Meru which is a water source for Arusha urban. This study aims at understanding the recharge areas and flow pathways of groundwater in what has been a poorly monitored area. The study uses the isotopic ratio of oxygen and hydrogen to estimate the groundwater recharge area and flow pathway. The results show the recharge elevation of groundwater is between 1,800 and 3,500 m above mean sea level on the slopes of Mount Meru. The average fluoride contents in the study area are 5.3 ± 0.4 mg/L greater than the limits of 1.5 mg/L set by the World Health Organization (WHO) and Tanzania. The nitrate concentration of 83.9 mg/L at the lower elevation areas (<1,400 m above mean sea level) exceeds the 50 mg/L WHO limit. The relationship of F− with δ18O and NO3− suggests the leaching of fluoride in high altitudes and dilution in lower altitudes.Item White Teeth and Healthy Skeletons for All: The Path to Universal Fluoride-Free DrinkingWater in Tanzania(MDPI, 2019-01-12) Ndé-Tchoupé, Arnaud Igor; Tepong-Tsindé, Raoul; Lufingo, Mesia; Pembe-Ali, Zuleikha; Lugodisha, Innocent; Mureth, Risala Iddi; Nkinda, Mihayo; Marwa, Janeth; Gwenzi, Willis; Mwamila, Tulinave Burton; Rahman, Mohammad Azizur; Noubactep, Chicgoua; Njau, KaroliFluorosis has been prevalent in the great East African Rift Valley (EARV) since before this region was given a name. In the Tanganyika days, Germans reported elevated fluoride concentrations in natural waters. In the 1930s, the clear relationship between high fluoride level and mottling of teeth was established. Since then, the global research community has engaged in the battle to provide fluoride-free drinking water, and the battle is not yet won for low-income communities. An applicable concept for fluoride-free drinking water in the EARV was recently presented, using the Kilimanjaro as a rainwater harvesting park. The Kilimanjaro concept implies that rainwater is harvested, stored on the Kilimanjaro mountains, gravity-transported to the point of use, eventually blended with natural water and treated for distribution. This article provides a roadmap for the implementation of the Kilimanjaro concept in Tanzania. Specifically, the current paper addresses the following: (i) presents updated nationwide information on fluoride contaminated areas, (ii) discusses the quality and quantity of rainwater, and current rainwater harvesting practices in Tanzania, (iii) highlights how low-cost water filters based on Fe0/biochar can be integrating into rainwater harvesting (RWH) systems to provide clean drinking water, and (iv) discusses the need for strict regulation of RWH practices to optimize water collection and storage, while simplifying the water treatment chain, and recommends strict analytical monitoring of water quality and public education to sustain public health in the EARV. In summary, it is demonstrated that, by combining rainwater harvesting and low-cots water treatment methods, the Kilimanjaro concept has the potential to provide clean drinking water, and overcome fluorosis on a long-term basis. However, a detailed design process is required to determine: (i) institutional roles, and community contributions and participation, (ii) optimal location and sizing of conveyance and storage facilities to avoid excessive pumping costs, and (iii) project funding mechanisms, including prospects for government subsidy. By drawing attention to the Kilimanjaro concept, the article calls for African engineers and scientists to take the lead in translating this concept into reality for the benefit of public health, while simultaneously increasing their self-confidence to address other developmental challenges pervasive in Africa.