• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Kija, Hamza"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparative Assessment of UAV and Sentinel-2 NDVI and GNDVI for Preliminary Diagnosis of Habitat Conditions in Burunge Wildlife Management Area, Tanzania
    (MDPI, 2022-06-28) Mangewa, Lazaro; Ndakidemi, Patrick; Alward, Richard; Kija, Hamza; Bukombe, John; Nasolwa, Emmanuel; Munishi, Linus
    Habitat condition is a vital ecological attribute in wildlife conservation and management in protected areas, including the Burunge wildlife management areas in Tanzania. Traditional techniques, including satellite remote sensing and ground-based techniques used to assess habitat condition, have limitations in terms of costs and low resolution of satellite platforms. The Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI) have potential for assessing habitat condition, e.g., forage quantity and quality, vegetation cover and degradation, soil erosion and salinization, fire, and pollution of vegetation cover. We, therefore, examined how the recently emerged Unmanned Aerial Vehicle (UAV) platform and the traditional Sentinel-2 differs in indications of habitat condition using NDVI and GNDVI. We assigned 13 survey plots to random locations in the major land cover types: three survey plots in grasslands, shrublands, and woodlands, and two in riverine and mosaics cover types. We used a UAV-mounted, multi-spectral sensor and obtained Sentinel-2 imagery between February and March 2020. We categorized NDVI and GNDVI values into habitat condition classes (very good, good, poor, and very poor). We analyzed data using descriptive statistics and linear regression model in R-software. The results revealed higher sensitivity and ability of UAV to provide the necessary preliminary diagnostic indications of habitat condition. The UAV-based NDVI and GNDVI maps showed more details of all classes of habitat conditions than the Sentinel-2 maps. The linear regressions results showed strong positive correlations between the two platforms (p < 0.001). The differences were attributed primarily to spatial resolution and minor atmospheric effects. We recommend further studies to test other vegetation indices.
  • Loading...
    Thumbnail Image
    Item
    Land Use/Cover Classification of Large Conservation Areas Using a Ground-Linked High-Resolution Unmanned Aerial Vehicle
    (MDPI, 2024-08-22) Mangewa, Lazaro; Ndakidemi, Patrick; Alward, Richard; Kija, Hamza; Nasolwa, Emmanuel; Munishi, Linus
    High-resolution remote sensing platforms are crucial to map land use/cover (LULC) types. Unmanned aerial vehicle (UAV) technology has been widely used in the northern hemisphere, addressing the challenges facing low- to medium-resolution satellite platforms. This study establishes the scalability of Sentinel-2 LULC classification with ground-linked UAV orthoimages to large African ecosystems, particularly the Burunge Wildlife Management Area in Tanzania. It involved UAV flights in 19 ground-surveyed plots followed by upscaling orthoimages to a 10 m × 10 m resolution to guide Sentinel-2 LULC classification. The results were compared with unguided Sentinel-2 using the best classifier (random forest, RFC) compared to support vector machines (SVMs) and maximum likelihood classification (MLC). The guided classification approach, with an overall accuracy (OA) of 94% and a kappa coefficient (k) of 0.92, outperformed the unguided classification approach (OA = 90%; k = 0.87). It registered grasslands (55.2%) as a major vegetated class, followed by woodlands (7.6%) and shrublands (4.7%). The unguided approach registered grasslands (43.3%), followed by shrublands (27.4%) and woodlands (1.7%). Powerful ground-linked UAV-based training samples and RFC improved the performance. The area size, heterogeneity, pre-UAV flight ground data, and UAV-based woody plant encroachment detection contribute to the study’s novelty. The findings are useful in conservation planning and rangelands management. Thus, they are recommended for similar conservation areas. Keywords: community wildlife management areas; random forest algorithm; remote sensing technologies; Sentinel-2; pre-UAV flight ground data; unmanned aerial vehicles
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback