• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Kakande, Josephine"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Optimized Demand Side Management for Refrigeration: Modeling and Case Study Insights from Kenya
    (MDP, 2025-06-21) Kakande, Josephine; Philipo, Godiana; Krauter , Stefan
    According to the International Institute of Refrigeration (IIR), 20% of worldwide electricity consumption is for refrigeration, with domestic refrigeration appliances comprising a fifth of this demand. As the uptake of renewable energy sources for on-grid and isolated electricity supply increases, the need for mechanisms to match demand and supply better and increase power system flexibility has led to enhanced attention on demand-side management (DSM) practices to boost technology, infrastructure, and market efficiencies. Refrigeration requirements will continue to rise with development and climate change. In this work, particle swarm optimization (PSO) is used to evaluate energy saving and load factor improvement possibilities for refrigeration devices at a site in Kenya, using a combination of DSM load shifting and strategic conservation, and based on appliance temperature evolution measurements. Refrigeration energy savings of up to 18% are obtained, and the load factor is reduced. Modeling is done for a hybrid system with grid, solar PV, and battery, showing a marginal increase in solar energy supply to the load relative to the no DSM case, while the grid portion of the load supply reduces by almost 25% for DSM relative to No DSM.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback