• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Habanabakiz, T."

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Experimental Study on Physio-Chemical Characteristics of Stinging Nettle Fiber Toward Compatibility for Polymer Composites Used in Wind Turbine Blade Application
    (Taylor & Francis Group, 2025-06-25) Nsanzumuhire, C.; Daramola, O.; Oladele, I.; Akinwekomi, A.; Aramide, F.; Igadwa, Mwasiagi; Dulo, Ben; Habanabakiz, T.
    This study investigated the compatibility of stinging nettle (urticadioica) fiber to improve the performance characteristics of wind turbine blade applica tions. The fiber was extracted using the water retting method, and the alkali treatment was performed using 6% NaOH. This concentration was reported to be optimal for the alkaline treatment of many natural fibers. The fiber maximum normal density achieved was 1.213 g/cm3 and 1.229 g/cm3 for raw and alkali-treated samples. Through alkali treatment, the linear density reduced from 12.64 taxes to 11.98 taxes with a decrease of 5.509%, whereas the maximum breaking force increased from 5.51 to 5.82 N, and the breaking elongation increased from 0.63% to 0.71%. It was further observed that the tenacity of the untreated and treated samples was, respectively, 43.67 and 46.12 cN/tex. The maximum cellulose content of 78.736% was achieved with alkali treatment, whereas hemicellulose, lignin, moisture content, extractives, and volatile matter decreased. On the other hand, the ash content, alpha- cellulose, and holocellulose contents increased with alkali treatment. Owing to its properties compared to other natural fibres used for wind turbine blades, the achieved alkali-treated fibre can also be considered a better reinforcement to improve the mechanical characteristics of polymer compo sites for this area. The novelty of this work is to evaluate the compatibility of stinging nettle fibre as a reinforcement material in polymer composites for wind turbine blade applications, given the global push towards more sus tainable and biodegradable alternatives to synthetic fibre-reinforced com posites.Keywords: Chemical characterization, natural fibre-reinforced polymer composites, single fibre tensile strength, stinging nettle fibre, wind turbine blade application, wind energy.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback