• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Burgess, Shane"

Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genotype-Dependent Tumor Regression in Marek’s Disease Mediated at the Level of Tumor Immunity
    (Springer, 2008-03-18) Kumar, Shyamesh; Buza, Joram; Burgess, Shane
    Marek’s disease (MD) of chickens is a unique natural model of Hodgkin’s and Non Hodgkin’s lymphomas in which the neoplastically-transformed cells over-express CD30 (CD30hi) antigen. All chicken genotypes can be infected with MD virus and develop microscopic lymphomas. From 21 days post infection (dpi) microscopic lymphomas regress in resistant chickens but, in contrast, they progress to gross lymphomas in susceptible chickens. Here we test our hypothesis that in resistant chickens at 21 dpi the tissue microenvironment is pro T-helper (Th)-1 and compatible with cytotoxic T lymphocyte (CTL) immunity but in susceptible lines it is pro Th-2 or pro T-regulatory (T-reg) and antagonistic to CTL immunity. We used the B2, non-MHC-associated, MD resistance/susceptibility system (line [L]61/line [L]72) and quantified the levels of key mRNAs that can be used to define Th-1 (IL-2, IL-12, IL-18, IFNγ), Th-2 (IL-4, IL-10) and T-reg (TGFβ, GPR-83, CTLA-4, SMAD-7) lymphocyte phenotypes. We measured gene expression in both whole tissues (represents tissue microenvironment and tumor microenvironment) and in the lymphoma lesions (tumor microenvironment) themselves. Gene ontology-based modeling of our results shows that the dominant phenotype in whole tissue as well as in microscopic lymphoma lesions, is pro T-reg in both L61 and L72 but a minor pro Th-1 and anti Th-2 tissue microenvironment exists in L61 whereas there is an anti Th-1 and pro Th-2 tissue microenvironment in L72. The tumor microenvironment per se is pro T-reg, anti Th-1 and pro Th-2 in both L61 and L72. Together our data suggests that the neoplastic transformation is essentially the same in both L61 and L72 and that resistance/susceptibility is
  • Loading...
    Thumbnail Image
    Item
    Modeling the proteome of a Marek's disease transformed cell line: a natural animal model for CD30 overexpressing lymphomas.
    (Proteomics, 2007-04-18) Buza, Joram; Burgess, Shane
    Marek's disease (MD) in the chicken, caused by the highly infectious MD alpha-herpesvirus (MDV), is both commercially important and a unique, naturally occurring model for human T-cell lymphomas overexpressing the Hodgkin's disease antigen, CD30. Here, we used proteomics as a basis for modeling the molecular functions and biological processes involved in MDV-induced lymphomagenesis. Proteins were extracted from an MDV-transformed cell line and were then identified using 2-D LC-ESI-MS/MS. From the resulting 3870 cellular and 21 MDV proteins we confirm the existence of 3150 "predicted" and 12 "hypothetical" chicken proteins. The UA-01 proteome is proliferative, differentiated, angiogenic, pro-metastatic and pro-immune-escape but anti-programmed cell death, -anergy, -quiescence and -senescence and is consistent with a cancer phenotype. In particular, the pro-metastatic integrin signaling pathway and the ERK/MAPK signaling pathways were the two predominant signaling pathways represented. The cytokines, cytokine receptors, and their related proteins suggest that UA-01 has a regulatory T-cell phenotype.
  • Loading...
    Thumbnail Image
    Item
    The neoplastically transformed (CD30hi) Marek’s disease lymphoma cell phenotype most closely resembles T-regulatory cells
    (Springer-Verlag, 2008-02-07) Shack, Leslie; Buza, Joram; Burgess, Shane
    Introduction Marek’s disease (MD), a herpesvirus-induced lymphoma of chickens is a unique natural model of CD30- overexpressing (CD30hi) lymphoma. We have previously proposed that the CD30hi neoplastically transformed CD4+ T cells in MD lymphomas have a phenotype antagonistic to cell mediated immunity. Here were test the hypothesis that the CD30hi neoplastically transformed MD lymphoma cells have a phenotype more closely resembling T-helper (Th)-2 or regulatory T (T-reg) cells. Materials and methods We separated ex vivo-derived CD30hi, from the CD30lo/¡ (non-transformed), MD lymphoma cells and then quantiWed the relative amounts of mRNA and proteins for cytokines and other genes that deWne CD4+ Th-1, Th-2 or T-reg phenotypes. Results and discussion Gene Ontology-based modeling of our data shows that the CD30hi MD lymphoma cells having a phenotype more similar to T-reg. Sequences that could be bound by the MD virus putative oncoprotein Meq in each of these genes’ promoters suggests that the MD herpesvirus may play a direct role in maintaining this T-reg-like phenotype.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback