• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Adeeyo, Adeyemi"

Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Application of Magnetic Surfactants in Nanoparticle Fabrication
    (ACS Publication, 2023-08-28) Ademola, Ebenezer; Oyetade, Joshua; Adeeyo, Adeyemi
    Magnetic nanoparticles (MNPs) are a group of nanoparticles made from a magnetic material such as iron, chromium, manganese, cobalt or nickel and a chemical component that exhibit superparamagnetic properties. They have a wide range of applications in medicine, wastewater treatment and bioremediation, food industries, and molecular biology, among others, due to their size effects, surface-to-volume ratio, interaction, magnetic separation, specificity, and surface chemistry. However, the incorporation of amphiphilic surface active agents called surfactants into MNPs to serve as capping, structure-directing, ion-exchange, oxidation, and reduction agents is known to affect MNPs physicochemical properties including size, shape, dispersability, stability, surface charge, biocompatibility, optical properties, thermal properties, selectivity, cellular uptake, magnetic energy, functionality, and applicability. Thereby increasing their applications in drug delivery, cancer therapy, biosensors, diagnostic testing, bioimaging, water treatment, enhanced oil recovery, catalysis, energy storage, and information storage. This chapter addresses the mechanisms of synthesis of Magnetic Surfactant Nanoparticles (MSNPs), the roles of surfactants in MNPs fabrication, the influence of surfactants on the properties of MNPs, comparative performances and applications of MSNPs, cost analysis and future prospects, and likely challenges.
  • Loading...
    Thumbnail Image
    Item
    Recovery of precious metals from processed wastewater: conventional techniques nexus advanced and pragmatic alternatives
    (IWA Publishing, 2023-06-01) Adeeyo, Adeyemi; Bello, Olugbenga; Agboola, Oluwatobi; Adeeyo, Rebecca; Oyetade, Joshua; Alabi, Mercy; Edokpayi, Joshua; Makungo, Rachel
    The loss of highly sought-after metals such as gold, silver, and platinum during extraction processes not only constitutes a significant waste of valuable resources but also contributes to alarming environmental pollution. The ever-growing adverse impacts of these highly valued metals significantly increase the contamination of water bodies on discharge, while reducing the reusability potential of their corresponding processed wastewater. It is, therefore, of great interest to identify pragmatic solutions for the recovery of precious materials from processed water. In this review, pollution from targeted precious metals such as gold, silver, platinum, palladium, iridium, ruthenium, and rhodium was reviewed and analyzed. Also, the hazardous effects are elicited, and detection techniques are enumerated. An insightful approach to more recent treatment techniques was also discussed. The study reveals nano- and bio-sorption techniques as adoptable pragmatic alternatives, among other techniques, especially for industrial applications with merits of cost, time, waste management, and eco-friendliness. The results indicate that gold (46.2%), palladium (23.1%), platinum (19.2%), and silver (11.5%) are of utmost interest when considering recent recovery techniques. High yield and cost analysis reduction are reasons for the observed preference of this recovery process when considering groups of precious metals. The challenges and prospects of nanomaterials are highlighted.
  • Loading...
    Thumbnail Image
    Item
    Tuning water chemistry for the recovery of greener products: pragmatic and sustainable approaches
    (Royal Sociaty of Chemistry, 2023-02-17) Adeeyo, Adeyemi; Oyetade, Joshua; Adeeyo, Rebecca; Samie, A; Makungo, R.
    The early techniques for recovery of bioactive metabolites involve conventional cold or hot solvent extraction.1 The choice is a function of the nature of the bioactive compound of interest.2 The adverse effect of organic solvents (Table 1) which are mostly preferred extraction techniques has warranted the search for greener alternatives. One of the ways green extrac tions is described involves the isolation of medicinally active portions from a bio-material,3 with the simultaneous use of eco friendly solvents and optimal use of energy.4–9 Prospecting for green solvents has brought water to the fore of extraction technology.10 Water is affirmatively described as the “greenest solvent” imaginable, with its availability at the required purity, it is cost-effective, readily recycled, non-toxic, non-ammable, and eco-friendly.10–13 Based on the green chemistry precept, water is considered a green chemical per excellence.14–16 Water is useful in the recovery of various phytochemicals including alcohols, sugars, proteins, and organic acids with natural water soluble properties.12,16–21 However, water as a solvent has some physical and chemical property disadvantages when compared to organic solvent.21–23 The polar nature of water in its natural form reduces its efficacy and acceptability when compared with organic solvents for some kinds of extractions. Organic solvents are extensively desirable since they exhibit better recovery than water at ambient conditions.3 Further setbacks experienced when using conventional hydro-extraction include time and energy consumption, thermal decomposition of thermo sensitive metabolites and low recovery of hydro-solvent in its natural form. There exists the need to investigate water properties that can be improved to complement its natural advantage and eradicate its attendant limitations as a solvent for extraction.5,8,10,28,29 have indicated that improving traditional extraction must entail decreased energy input, sustainability and a non-toxic nal product. Improving water to own variable chemistry will aid the extraction of a broad range of polar and non-polar biomolecules from sustainable natural products with non-toxic quality and eco-friendliness.10,21,29 This approach will prevent the use of organic solvents, fossil energy, chemical waste and risks of extraction. It is known that water existing in its tunable form satises the conditions of green solvents.11–13 Recently, the
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback