• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Abubakar, Attai Ibrahim"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Intelligent handover decision scheme using double deep reinforcement learning
    (Elsevier B.V., 2020-10) Mollel, Michael; Abubakar, Attai Ibrahim; Ozturk, Metin; Kaijage, Shubi; Michael, Kisangiri,; Zoha, Ahmed; Imran, Muhammad Ali; Abbasi, Qammer
    Handovers (HOs) have been envisioned to be more challenging in 5G networks due to the inclusion of millimetre wave (mm-wave) frequencies, resulting in more intense base station (BS) deployments. This, by its turn, increases the number of HOs taken due to smaller footprints of mm-wave BSs thereby making HO management a more crucial task as reduced quality of service (QoS) and quality of experience (QoE) along with higher signalling overhead are more likely with the growing number of HOs. In this paper, we propose an offline scheme based on double deep reinforcement learning (DDRL) to minimize the frequency of HOs in mm-wave networks, which subsequently mitigates the adverse QoS. Due to continuous and substantial state spaces arising from the inherent characteristics of the considered 5G environment, DDRL is preferred over conventional -learning algorithm. Furthermore, in order to alleviate the negative impacts of online learning policies in terms of computational costs, an offline learning framework is adopted in this study, a known trajectory is considered in a simulation environment while ray-tracing is used to estimate channel characteristics. The number of HO occurrence during the trajectory and the system throughput are taken as performance metrics. The results obtained reveal that the proposed method largely outperform conventional and other artificial intelligence (AI)-based models.
  • Loading...
    Thumbnail Image
    Item
    A Survey of Machine Learning Applications to Handover Management in 5G and Beyond
    (IEEE, 2021-03-19) Mollel, Michael; Abubakar, Attai Ibrahim; Ozturk, Metin; Kaijage, Shubi; Michael, Kisangiri; Hussain, Sajjad; Imran, Muhammad Ali; Abbasi, Qammer
    Handover (HO) is one of the key aspects of next-generation (NG) cellular communication networks that need to be properly managed since it poses multiple threats to quality-of-service (QoS) such as the reduction in the average throughput as well as service interruptions. With the introduction of new enablers for fifth-generation (5G) networks, such as millimetre wave (mm-wave) communications, network densification, Internet of things (IoT), etc., HO management is provisioned to be more challenging as the number of base stations (BSs) per unit area, and the number of connections has been dramatically rising. Considering the stringent requirements that have been newly released in the standards of 5G networks, the level of the challenge is multiplied. To this end, intelligent HO management schemes have been proposed and tested in the literature, paving the way for tackling these challenges more efficiently and effectively. In this survey, we aim at revealing the current status of cellular networks and discussing mobility and HO management in 5G alongside the general characteristics of 5G networks. We provide an extensive tutorial on HO management in 5G networks accompanied by a discussion on machine learning (ML) applications to HO management. A novel taxonomy in terms of the source of data to be utilized in training ML algorithms is produced, where two broad categories are considered; namely, visual data and network data. The state-of-the-art on ML-aided HO management in cellular networks under each category is extensively reviewed with the most recent studies, and the challenges, as well as future research directions, are detailed.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback