• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Electrochemical Sensing Fabricated with TaO Nanoparticle-Electrochemically Reduced Graphene Oxide Nanocomposite for the Detection of Oxytetracycline.

    Thumbnail
    View/Open
    Research Article (3.431Mb)
    Date
    2020-01-08
    Author
    Magesa, Felista
    Wu, Yiyong
    Dong, Shuai
    Tian, Yaling
    Li, Guangli
    Vianney, John Mary
    Buza, Joram
    Liu, Jun
    He, Quanguo
    Metadata
    Show full item record
    Abstract
    A novel tantalum pentoxide nanoparticle-electrochemically reduced graphene oxide nanocomposite-modified glassy carbon electrode (TaO-ErGO/GCE) was developed for the detection of oxytetracycline in milk. The composition, structure and morphology of GO, TaO, and TaO-ErGO were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Oxytetracycline electrochemical behavior on the bare GCE, GO/GCE, ErGO/GCE, and TaO-ErGO/GCE was studied by cyclic voltammetry. The voltammetric conditions (including scan rate, pH, deposition potential, and deposition time) were systematically optimized. With the spacious electrochemical active area, the TaO-ErGO/GCE showed a great magnification of the oxidation signal of oxytetracycline, while that of the other electrodes (GCE, GO/GCE, ErGO/GCE) could not reach the same level. Under the optimum conditions, the currents were proportional to the oxytetracycline concentration in the range from 0.2 to 10 μM, and a low detection limit of 0.095 μM (S/N = 3) was detectable. Moreover, the proposed TaO-ErGO/GCE performed practically with satisfactory results. The preparation of TaO-ErGO/GCE in the current work provides a minor outlook of detecting trace oxytetracycline in milk.
    URI
    https://doi.org/10.3390/biom10010110
    http://dspace.nm-aist.ac.tz/handle/123456789/547
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV