xmlui.dri2xhtml.structural.head-subtitle

16S rRNA Amplicons Survey Revealed Unprecedented Bacterial Community in Solid Biomedical Wastes

Show simple item record

dc.contributor.author Mwaikono, Kilaza Samson
dc.contributor.author Maina, Solomon
dc.contributor.author Sebastian, Aswathy
dc.contributor.author Kapur, Vivek
dc.contributor.author Gwakisa, Paul
dc.date.accessioned 2019-05-22T08:01:00Z
dc.date.available 2019-05-22T08:01:00Z
dc.date.issued 2015
dc.identifier.uri DOI:10.12691/ajmr-3-4-3
dc.identifier.uri http://dspace.nm-aist.ac.tz/handle/123456789/141
dc.description Research Article published by Science and Education Publishing Vol. 3, No. 4, 2015 en_US
dc.description.abstract Despite known risks of inappropriate disposal of biomedical solid waste; most cities in developing countries are still disposing unsorted and untreated solid biomedical waste in common dumpsites. While many studies reported the presence of pathogens in fresh biomedical waste from hospitals, none has reported on the abundance and diversity of bacterial community in aged solid biomedical waste from a common dumpsite. A qualitative survey was done to identify types of solid biomedical waste on the dumpsite. Soils, sludge or washings of biomedical wastes were sampled. Total DNA was extracted and v4 region of 16S rRNA amplicons were sequenced using an Illumina MiSeq platform. A total of 1,706,442 sequences from 15 samples passed quality control. The number of sequences per sample ranged from 70664 to 174456 (mean 121765, SD 35853). Diversity was high with an InvSimpson index of 63 (Range 5 – 496, SD 121). Thirty five phyla were identified, but only 9 accounted for 96% of all sequences. The dominant phyla were Proteobacteria 37.4%, Firmicutes 34.4%, Bacteroidetes 14.1 %, Actinobacteria 5.6% and Chloroflex 1.7%. Catchall analysis predicted a mean of 9399 species per sample. Overall, 31402 operational taxonomic units (OTUs) were detected, however, only 19.8% (6,202) OTUs were found more than ten times. The most predominant OTUs were Proteinclasticum (10.4%), Acinetobacter (6.9), Halomonas (3.9), Pseudomonas (1.7%), Escherichia/Shigella 1.5% and Planococcus (1.3%). Proteiniclasticum spp and Acinetobacter spp were found in 67% (10/15) of all samples at relative abundance of 1%. Taxonomic-to-phenotype mapping revealed the presence of 36.2% related to bacteria involved in dehalogenation, 11.6% degraders of aromatic hydrocarbons, 14.8% chitin degraders, 8.5% chlorophenol degradation and Atrazine metabolism 8.3%. Taxonomy-to human pathogen mapping found 34% related to human pathogens and 39.4% were unknown. Conclusions There’s rich and diverse bacterial community in aged solid biomedical waste. Some of the predominant OTUs are related to bacteria of industrial use.We found a good number of OTUs mapping to human pathogens. Most of OTUs mapped to unknown metabolism and also to group unknown whether they human pathogens or not. To our knowledge, this is the first reports on bacteria related to industrial use from solid biomedical waste. This finding will facilitate to design further research using functional metagenomics to better understand the potential of bacteria from aged solid biomedical waste. en_US
dc.language.iso en_US en_US
dc.publisher Science and Education Publishing en_US
dc.subject solid biomedical waste en_US
dc.subject molecular diversity en_US
dc.subject 16S rRNA en_US
dc.title 16S rRNA Amplicons Survey Revealed Unprecedented Bacterial Community in Solid Biomedical Wastes en_US
dc.type Article en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Our NM-AIST IR


Browse NM-AIST IR

My NM-AIST IR Account

Statistics