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ABSTRACT  

In Tanzania, the invasive plant Parthenium hysterophorus threatens natural and semi–natural 

environments. Little is known about how this species affects plant–pollinator interactions and 

soil–chemical properties. Roadside survey was conducted to assess P. hysterophorus invasion 

status within and outside Arusha National Park (ANP), Tanzania. Soil samples were also 

collected in invaded and uninvaded plots to investigate the impact of P. hysterophorus on 

soil–chemical properties. To test alternative natural–based management strategies, the study 

examined the bio–herbicide potential of Desmodium uncinatum leaf (DuL) crude extract and 

the competitive ability of fodder legume plant species (Lablab purpureus, Desmodium 

intortum and Medicago sativa) to suppress P. hysterophorus in pot and plot experiments. 

Results showed that ANP is currently uninvaded with P. hysterophorus, but some adjacent 

villages i.e. King’ori, Maleu, Napoco, Ngongongare, Ngurdoto, Oligilai and Sakila have 

already invaded by this invasive. Parthenium hysterophorus invaded site was more acidic 

with lower electrical conductivity, less calcium and phosphorus, and high cation exchange 

capacity. The DuL extract suppressed P. hysterophorus growth vigour, particularly at higher 

concentrations (>70%). At these concentrations, the invasive seedling stem height was >30% 

shorter, and seed germination was inhibited by >55% compared to seedlings sprayed with 

lower concentrations. When P. hysterophorus was grown in combination with all three test 

plants, its seedling stem heights and total fresh biomass were reduced by >60% and >59% in 

pots, and >40% and >45% in field plots respectively, compared to when grown alone or in 

mixture with just D. intortum or M. sativa.  

Moreover, surveys conducted on invaded and uninvaded sites to investigate the impact of P. 

hysterophorus on plant–pollinator interactions when two common target plants (Ocimum 

gratissimum and Ageratum conyzoides) were present showed that flower visitation rate to 

target plants was significantly lower in invaded plots than in uninvaded plots. This implies 

that P. hysterophorus may be disrupting pollen flow. The study recommends that the use of 

bio–herbicide and suppressive plant species to control the invasive should be promoted. 

However, it emphasizes the use of native suppressive plant species because non–natives may 

turn into invasives in the future.  
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CHAPTER ONE  

INTRODUCTION 

1.1  Background of the Problem  

Human activities and increased movement of people and goods across continents or countries 

due to globalization have immensely enhanced the introduction and long–distance dispersal 

of alien species into new environments (Axmacher & Sang, 2013; Dukes & Mooney, 1999; 

Early et al., 2016; Pratt et al., 2017; Primack, 2010; Shackleton et al., 2017). Climate change 

along with anthropogenic activities also accelerate dispersal of non–native species outside 

their natural range  (Axmacher & Sang, 2013; Brunel et al., 2014; Dukes & Mooney, 1999; 

Nigatu et al., 2010; Taylor et al., 2012). According to the “tens rule” of Williamson, only 

10% of transported species are released into novel locations, 10% of these introduced species 

successfully establish new populations, and 10% of these established individuals expand their 

geographical location and become invasive (Lake & Leishman, 2004; Primack, 2010). 

Invasive species generally expand their population from the location of original arrival into 

natural or semi–natural vegetation communities (Brunel et al., 2014; Early et al., 2016; 

Primack, 2010). Therefore, biological invasion occurs when accidentally or intentionally, a 

non–native or alien plant species is introduced into new habitats where it proliferates, 

colonize and become invasive (Axmacher & Sang, 2013; CBD, 2002; Ellison & Cock, 2017; 

Foxcroft et al., 2019; Pratt et al., 2017). Biological invasion is an element of human–induced 

global change, along with habitat disturbances (Bellingham et al., 2018; Lake & Leishman, 

2004; Shackleton et al., 2017). Too often, plant invasions cause homogenization of natural 

flora community in the recipient ecosystems (Bellingham et al., 2018; Hejda et al., 2009; 

Lake & Leishman, 2004).     

The terms ‘alien’, ‘non-native’, and ‘introduced’ allude to those species or taxa that may have 

crossed an international border and are considered as ‘foreign’ or ‘new’ to a place where they 

had never existed or lived before (Obiri, 2011; Perkins et al., 2011; Pyšek et al., 2004; 

Richardson et al., 2000). Many of these species fail to establish self–sustaining populations in 

their novel locations (as in the tens rule of Williamson). However, sometimes when a species 

relocates to a new site its population grow exponentially due to lack of natural enemies i.e. 

potential pests, pathogens and predators that control the species within its home range 

(Cappuccino & Carpenter, 2005; Pyšek et al., 2004; Richardson et al., 2000). Alien 
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aggressive plant species are usually known as invasive alien plant species (IAPs) or invaders 

(Pyšek et al., 2004).    

Alien invasive species exert environmental or economic harm, and negatively interfere with  

human wellbeing (Adkins & Shabbir, 2014; Bajwa et al., 2019; Tanveer et al., 2015; Witt et 

al., 2018). Thus, IAPs may be defined as non–native plant species, which threaten global 

biodiversity, ecosystem function, services and structure, agricultural production, economy 

and the sustainability of human societies (Axmacher & Sang, 2013; Ellison & Cock, 2017; 

Hinz & Schwarzlaender, 2004; Perkins et al., 2011). The International Union for 

Conservation of Nature (IUCN) defines invasive species as animals, plants or other living 

organisms introduced into a new range where they establish and pose negative impacts on the 

recipient environments and native species (IUCN, 2000). The process by which an invasive 

species enters into new environment, its establishment and eventual spread in other habitats is 

known as invasion (Richardson et al., 2000; Richardson & Rejmánek, 2011). Invasibility 

implies the level of how vulnerable an environment is to invasions from IAPs (Foxcroft et al., 

2010; Perkins et al., 2011), whereas invasiveness is the ability of alien species to establish 

self–sustaining populations and to expand in a natural vegetation community, with which 

they had not existed before (Perkins et al., 2011; Pyšek et al., 2004; Richardson & Rejmánek, 

2011).       

Invasive plants are considered competitively superior to native plant species (Čuda et al., 

2015; Vilà & Weiner, 2004). They have strategies or specific suites of traits that influence 

their invasive potential, i.e. enabling them to colonize their novel environments and compete 

with native species (Perkins et al., 2011). These include capacity to produce abundant seeds 

(Kaur et al., 2014), rapid germination and growth rate (Axmacher & Sang, 2013; Čuda et al., 

2015), high survival rate, tall stature and early or late flowering (Čuda et al., 2015), short life 

cycle, many dispersal mechanisms (Adkins & Shabbir, 2014; Axmacher & Sang, 2013; Lurgi 

et al., 2016; Qasem & Foy, 2001), ability to form persistent seed banks (Gioria et al., 2019) 

and long seed dormancy (Qasem & Foy, 2001). Their seeds also spread rapidly and establish 

along anthropogenic waterways and road networks (Axmacher & Sang, 2013; Christen & 

Matlack, 2006; Wabuyele et al., 2015). Further, IAPs are often free from biotic constraints 

outside their native range (Obiri, 2011; Perkins et al., 2011) as they lack effective natural 

enemies, for instance, bacteria, fungi, insects, mites, viruses and larger grazing animals (Hinz 

& Schwarzlaender, 2004; Lake & Leishman, 2004; Mitchell & Power, 2003). This may also 
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due to anti–microbial or anti–herbivory properties of IAPs (Cappuccino & Carpenter, 2005; 

Ellison & Cock, 2017; Mitchell & Power, 2003). 

Further, IAPs exploit limiting resources more efficiently, and increase in biomass faster than 

native plant species (Bellingham et al., 2018; Rojas-Sandoval et al., 2016; Subhashni & Lalit, 

2014). Following their establishment in the recipient ecosystem, IAPs displace native and 

valuable species through competition for resources such as light, nutrients, space, and water 

(Perkins et al., 2011; Pyšek et al., 2004; Tanveer et al., 2015; Vardien et al., 2012). Many 

IAPs use allelopathy to suppress growth vigour, seed germination and development of native 

plant species by releasing allelochemicals into the environment (Callaway et al., 2008; 

Namkeleja et al., 2013). As a result, they alter vegetation structure of the recipient habitats by 

changing the diversity, richness and renewal of native flora and fauna species (Adkins & 

Shabbir, 2014; Bellingham et al., 2018; Rojas-Sandoval et al., 2016). Allelopathy can be 

defined as the adverse or favourable effects of one plant species on other plants through the 

release of allelochemicals or toxic compounds from living or dead plants (Bhadoria, 2010; 

Christina et al., 2015; Michael Van der Laan, 2007; Zhao et al., 2008). Plant species that 

have co–evolved or co–existed with allelopathic plants might be less susceptible to 

allelochemicals, whereas newly exposed plants such as natives could be sensitive to toxic 

compounds (Callaway & Aschehoug, 2000; Callaway et al., 2008; Callaway & Ridenour, 

2004; Cappuccino & Arnason, 2006). Thus, native plants without defensive mechanisms to 

counteract the allelochemicals released by the IAPs are more vulnerable to biological 

invasions (Callaway et al., 2008).   

Some invasive plants alter soil physico–chemical properties, nutrient cycles, shading, fire 

regimes, as well as reducing water infiltration (Fan et al., 2010; Osunkoya et al., 2017; Rojas-

Sandoval et al., 2016; Vardien et al., 2012; Wakjira et al., 2009). They can deplete the soil 

seedbank of native species to the point that the latter cannot exert enough propagule pressure 

to occupy the bare space left following invasive removal (Gerber et al., 2008; Schuster et al., 

2018). Furthermore, some invasive species negatively affect invertebrate and amphibian 

assemblages as well as species composition. For instance, Gerber et al. (2008) reported that 

invasive knotweeds (Fallopia spp.) in temperate riparian habitats (i.e., in Southern and 

Western Switzerland, South–western Germany and Eastern France) lowered the invertebrate 

abundance, biomass and morphospecies richness; and an invasive shrub, Lonicera maackii 

(Amur honeysuckle) lowered the species richness and evenness of native amphibians of the 
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August A. Busch Memorial Conservation Area in Missouri, USA (Watling et al., 2011). 

Moreover, IAPs have been found to disrupt inherent interactions such as pollination services 

among co–evolved native plant species in recipient environments which afterward may alter 

various ecosystem process (Aizen et al., 2008, 2008; Albrecht et al., 2014; Callaway et al., 

2008; Chittka & Schürkens, 2001; Traveset et al., 2013). Pollination is a vital process that 

contributes to the production of food i.e. fruits and seeds (Barrios et al., 2016; Lázaro et al., 

2013; Martins, 2014; Weissman & Schaefer, 2017). It maintains plant diversity and 

contributes towards biodiversity conservation and ecosystem health (Bjerknes et al., 2007; 

Martins, 2014; Stiers et al., 2014).     

Biological invasions which disrupt pollination networks endanger plant community stability, 

and may lead to biodiversity loss or change in species composition (Knops et al., 1999; 

Miranda et al., 2014; Tanveer et al., 2015; Tracy et al., 2004). They may also impede 

smallholders’ livelihoods and sustainable development, food security and nutrition (Foxcroft 

et al., 2010; Kaur et al., 2014; Richardson et al., 2007; Richardson & Rejmánek, 2011). For 

instance, many crops grown by the world’s poorest people (ca. 70% of the entire global 

population), often living in rural areas, are vulnerable to invasions, particularly in developing 

countries (Pratt et al., 2017). It is estimated by the United Nation Environmental Programme 

(UNEP) that IAPs cost the world economy an annual US $1.4 trillion (Obiri, 2011). Since 

invasion of IAPs is predicted to increase globally in many areas (Adhikari et al., 2015; Early 

et al., 2016; Kriticos et al., 2015; Mcconnachie et al., 2011) managing the spread of IAPs is 

crucial in order to ensure biodiversity and ecosystem conservation, human welfare, crop 

production, food security, poverty alleviation and overall economic growth (Crall et al., 

2013; Maistrello et al., 2016; Pocock et al., 2017). Invasive plants also have some advantages 

such as provision of timber, firewood, charcoal and medicine (Dawson et al., 2008; 

Mwendwa et al., 2020). In general, biological invasion is one of the most important global 

change drivers of biodiversity loss after habitat loss (Nguyen et al., 2017).  

1.1.1  Status of Invasive Species in Tanzania   

The United Republic of Tanzania (URT), with a total area of 945 087 km², is located in 

eastern Africa between latitudes 1° 00' and 11° 45' south of the equator and longitudes 29° 

15' and 41° 00' east of the Greenwich meridian. It is surrounded by Burundi, Democratic 

Republic of Congo, Kenya, Malawi, Mozambique, Rwanda, Uganda, Zambia and the 

Comoro Islands in the Indian Ocean (URT, 2014). It is one of the mega–biodiversity rich 
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countries on earth, supporting about 14 500 known species (URT, 2014). In addition to 

hosting six out of the 25 known biodiversity hotspots, Tanzania is among 25 countries with 

the highest number of endemic and threatened species (URT, 2014). In terms of numbers of 

large mammals, it accounts for 20% of Africa’s large mammals, and more than one–third of 

all plant species in Africa (URT, 2014). Despite being a home to many animal and plant 

species, it also harbours many invasive plant species which threaten biodiversity conservation 

(Foxcroft et al., 2006; Ngondya et al., 2016a; Witt et al., 2018). Alien plants introduced for 

food, agroforestry and forestry are the most important cause for spreading of invasive species 

(Reichard & White, 2001; Richardson & Rejmánek, 2011). Trade of plants or their products 

also have played significant role in the spreading of alien plants in Tanzania (Dawson et al., 

2008). Introductions of alien plants for ornamentation use are considered to be effective 

pathway for introducing invasive species (Reichard & White, 2001). For example, through 

the Amani botanical garden, several IAPs including Maesopsis eminii were introduced in 

Tanzania as an attempt to satisfy the social and economic needs of communities, for example, 

commercial gain such as timber production (Dawson et al., 2008; Mwendwa et al., 2020).  

A survey conducted in Tanzania reported several invasive plant species with major threats to 

biodiversity, economy, environment and agricultural production (Witt et al., 2018). Other 

alien species such as Argemone mexicana, Cedrela odorata, Eichhornia crassipes, Salvinia 

molesta, Opuntia monocantha, Setaria verticillata that invaded Tanzanian ecosystems are 

described in literature such as Dawson et al. (2008), Foxcroft et al. (2006), Obiri (2011), 

Vardien et al. (2012), Ngondya et al. (2017) and Witt et al. (2018), in the Global Invasive 

Species Database (GISP), and in the Invasive Species Compendium of the Centre for 

Agriculture and Bioscience International (CABI). Alien species, which are considered non–

invasive in the country today, can become invasive with disastrous effects in the future due to 

climate and anthropogenic changes (Moore et al., 1987; Navie et al., 2005; Obiri, 2011; 

Subhashni & Lalit, 2014; Taylor et al., 2012; Thapa et al., 2018).    

Among the IAPs listed in Table 1, P. hysterophorus (Plate 1) is considered as an invasive 

weed of global significance (Kaur et al., 2014; Tanveer et al., 2015). In Tanzania, P. 

hysterophorus was first reported in the Arusha region in 2010 (Pratt et al., 2017). Since then 

it has spread in other four regions including Kilimanjaro, Manyara, Geita and Kagera (Fig.1). 

It is commonly known as carrot weed or ‘gugu karoti’ in Swahili. It has invaded perennial 

crops such as banana (Musa acuminata), tomatoes (Solanum lycopersicum), maize (Zea 
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mays), sunflower (Helianthus annuus) and common beans (Phaseolus vulgaris), as well as 

pastures, grazing land, and roadsides (Personal observation, 2018). In addition to increasing 

smallholders’ dependence on pesticides, P. hysterophorus threatens protected areas and 

livestock production. Because of this, urgent control is required to counteract its rapid 

invasion. The biology, ecology, life cycle, impact and global distribution of P. hysterophorus 

are elucidated in chapter two. 

 

 

 Figure 1:  Parthenium hysterophorus Invaded Regions in Tanzania. Data from TPRI, 

2018-2019 
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Table 1: Some of the Main Invasive Plant Species Found in Tanzania and their Negative Impacts on the Environment. Examples were 

Taken from Witt et al. (2018) 

Invasive species Family Growth form  Impact 

Acacia mearnsii  Fabaceae Tree/shrub Displaces/hinder growth of native species. Reduces surface water 

runoff and rangelands productivity. Increases soil nitrogen levels, and 

alter soil physical-chemical properties   

 

Acacia melanoxylon  Fabaceae Tree/shrub Deleteriously affects biodiversity, displaces natural plant species, and 

alter soil nutrient as it increases levels of nitrogen 

 

Agave angustifolia  Agavaceae Shrub Exploits resources (water and nutrients) more efficiently compared to 

natural vegetation, and displaces them in recipient ecosystems 

 

Austrocylindropuntia subulata Cactaceae Shrub Its dense thickets preclude animals’ access to pastures and water 

resources. Also, its spines cause injuries to people and animals 

 

Azadirachta indica   Meliaceae Tree/shrub Alter ecosystem vegetation structure, reduces the abundance of small 

mammals in coastal areas where it forms dense stands 

 

Caesalpinia decapetala  Fabaceae Climber/shrub Detrimental to flora and fauna, climbs over vegetation in forest and 

woodland canopies. It forms impassable thickets inhibiting free 

movement of animals/people. Hampers forest management operations, 

as stems have large spines causing injuries to animals and people 



8 
 

Invasive species Family Growth form  Impact 

Calotropis procera  Apocynaceae Shrub Displaces native species, forms huge and dense thickets, mainly along 

roadsides. Plant sap causes severe eye irritation, and illness when 

ingested 

 

Cascabela thevetia  Apocynaceae Tree or shrub Very toxic, displaces native plant and animal species. It also forms 

dense thickets 

 

Chromolaena odorata Asteraceae Shrub Causes health problems to people and animals, reduces rangeland 

productivity, displaces native plants, changes vegetation community 

structure, and may increase fire intensities 

 

Clidemia hirta  Melastomataceae Shrub Toxic to cattle, displaces native vegetation and threatens 

endemic/endangered species. It forms dense stands in recipient 

ecosystems  

 

Datura stramonium  Solanaceae Herb Forms thick monospecific stands competing with and displacing native 

plants and crops. Toxic to both flora and fauna species 

 

Lantana camara   Verbenaceae Shrub Affects biodiversity, hinder vegetation growth and reduces fodder 

production 

Leucaena leucocephala  Fabaceae Tree/shrub It forms a large monospecific stands which outcompete native flora and 

fauna species, reduces habitats quality and alters secondary succession 
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Invasive species Family Growth form  Impact 

processes and ecosystem structure 

 

Mimosa diplotricha  Fabaceae Tree/shrub It forms shades which prevent regeneration of light demanding flora 

species. Its dense stands hinder free movement of livestock and 

wildlife. It is also toxic to pigs and sheep 

 

Opuntia stricta  Cactaceae Succulent/shrub Its spines cause injuries to people, livestock, and wildlife, prevents 

access to pasture. Displaces native flora and fauna species  

 

Parthenium hysterophorus Asteraceae Herb Noxious invasive weed, rapidly suppresses native vegetation through 

allelopathy and resource competition. Alters native plant community 

structure to monospecific stands, reduces rangeland productivity and 

crop yields, and causes health problems to people and animals.  

 

Pinus patula   Pinaceae Tree Its dense stands displace native plant and animal species, and reduces 

water run-off 

 

Pistia stratiotes Araceae Free-floating 

aquatic 

macrophyte 

Hampers fishing activities, block water ways and slow water flow rates, 

destroy fish nesting sites, increases siltation rates and nutrient loading, 

decreases fish and macro-invertebrate survival 
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Invasive species Family Growth form  Impact 

Prosopis juliflora   Fabaceae Tree/shrub Extirpates plants in invaded habitats, reduces rangelands and 

ecosystems grazing capacity, also decreases groundwater resource  

 

Psidium guajava   Myrtaceae Tree/shrub Displaces native plant and animal species in invaded habitats. 

Adversely affects crops via allelopathy, and forms dense stands 

 

Ricinis communis Euphorbiaceae Shrub Forms thick stands which displace native plant species, particularly in 

riparian areas 

  

Rubus niveus   Rosaceae Climber/ shrub Its dense thickets displace/hinder renewal of native species. It alters 

plants and ecosystems structure, hence threatening rare plant species 

 

Senna spectabilis   Fabaceae Tree Outcompetes native plant species and impede their renewal. It grows 

rapidly and becomes dominant, also displaces fauna species  

 

Solanum campylacanthum Solanaceae Shrub Its dense stands reduce the abundance and diversity of native plant 

species. Animals, e.g. sheep may die if it consumes unripe fruits 

 

Solanum mauritianum  Solanaceae Tree/shrub Toxic when eaten by animals, disrupts natural mechanisms of seed 

dispersal, and it displaces natural flora and fauna species  

Tephrosia vogelli Fabaceae Tree/shrub  Toxic (leaves) to fishes, frogs, toads, molluscs, worms and insects. Also 

has allelopathy   
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Invasive species Family Growth form  Impact 

Tithonia diversifolia  Asteraceae Shrub Reduces rangelands productivity, alters plant community structure, 

causes local extinction of some natives as it outcompetes vegetation and 

lowers their species diversity.  

 

Xanthium strumarium   Asteraceae Herb Rapidly displaces other plants by forming large stands. Its toxicity 

causes death in livestock when consumed 
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Plate 1: Parthenium hysterophorus: (a) Seedling (left) and Mature Flowering Plant 

(right) and (b) Invaded Grazing Area in Arusha, Tanzania 

1.1.2  Management of Invasive Species in Tanzania 

In Tanzania, there are a number of laws, legislations and policies governing the introduction 

and management of alien plants. These include the Environmental Management Act No. 20 of 

2004, the Plant Protection Act of 1997, the Forest Act No. 14 of 2002, National Fisheries 

Policy and Strategy Statement of 1998, Marine Parks and Reserves Act No 29 of 1994 
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Articles 10, Fisheries Act No 22 of 2003 section 22 (1) and the National Disaster 

Management Policy of 2004 that are administered by the Ministry of Environment and 

Natural Resources (Lyimo et al., 2009). The country is also a contracting part of the Nairobi 

protocol concerning protected areas and wild fauna and flora in the Eastern African region 

(21 June 1985). The protocol requires the parties to co–ordinate efforts and take vital actions 

to prohibit the accidental or deliberate introduction of harmful alien or new species to the East 

African region (art. 7) (Lyimo et al., 2009). The country is also a member of Forest Invasive 

Species Network for Africa. Forest Invasive Species Network for Africa was created in 2004 

by the Food and Agriculture Organization (FAO) to share and implement action plans for 

managing and controlling serious invasive species in sub–Saharan Africa (Lyimo et al., 

2009).  

Despite having laws, institutions, conventions, and protocols, which prevent the introduction 

of alien species, new potentially harmful IAPs have often been reported in the country 

(Lyimo et al., 2009). In addition, there is no clear long term strategies dealing with the 

management of invasive species (Lyimo et al., 2009). Thus, there is a need for the ecologists 

to find viable and sustainable alternative means of managing alien invasions.  

1.2  Statement of the Problem   

Despite the growing knowledge about P. hysterophorus and its harmful impacts on 

biodiversity, environments and human welfare, information for its current distribution in 

natural or semi–natural habitats is still lacking in Tanzania. Similarly, management methods 

to control its invasions are limited in the country. Arusha National Park, which is found in the 

Arusha region of Tanzania, is more vulnerable to P. hysterophorus invasion compared to 

other protected areas because its immediate surroundings are already invaded with P. 

hysterophorus. Local communities’ socio–economic activities (e.g. agriculture, grazing, 

collection of fodder and fuel wood) nearby the park may influence P. hysterophorus seeds 

dispersal into the border zones of ANP. These border zones are important as they can easily 

promote the spread of the invasive seeds into the park. Parthenium hysterophorus can also 

enter into ANP as a contaminant of travellers, tourists and staff, in particular as seeds in their 

belongings (Gervilla et al., 2019), or with seeds carried in mud adhered to their shoes into the 

park. Similarly, vehicles from invaded areas in Arusha may carry P. hysterophorus seeds in 

mud adhered to the tyres into the park and /or its border zones. This study sought to assess the 

current and potential distribution of P. hysterophorus within ANP and areas adjacent to its 
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border zones. If current P. hysterophorus distribution is known and can be predicated, it can 

enable planning management to direct control efforts to areas with current and potential 

invasion.  

1.3      Rationale of the Study    

Current control techniques of P. hysterophorus (i.e. biological, chemical, mechanical 

removal) in some countries have not been effective to suppress the invasive (Adkins & 

Shabbir, 2014; Brunel et al., 2014; Shabbir et al., 2013; Shrestha et al., 2015). In Tanzania, 

experimental approaches to control P. hysterophorus have been rare and little is known about 

how the invasive can be controlled. For example, forage plant species have not been tested 

experimentally for their efficiency to suppress P. hysterophorus growth vigour in competition 

experiments. Although bio–herbicide extracts of native or non–invasive plant species might 

be a potential management tool for controlling P. hysterophorus in Tanzania, very limited 

studies have investigated their bio–herbicide potential to suppress IAPs.     

The evidence of P. hysterophorus’ negative impacts on crop productivity, biodiversity, and 

composition of native plants through allelopathy (Ayele et al., 2013; Bajwa et al., 2019; 

Miranda et al., 2014; Osunkoya et al., 2017; Timsina et al., 2011) and competition for 

resources such as space, light, nutrients and water is growing (Shabbir et al., 2013; Shabbir & 

Bajwa, 2006; Shrestha et al., 2015; Tamado & Milberg, 2000). However, there remains a gap 

in knowledge about its impact on pollination services for co–flowering plants. Thus, this 

study assessed bio–herbicide potential of D. uncinatum leaf crude extract, and suppressive 

ability of legume fodder plant species Lablab purpureus, Desmodium intortum and Medicago 

sativa in controlling P. hysterophorus growth. It also investigated the impact of P. 

hysterophorus on soil–chemical properties, and foraging behaviour and visitation of insect 

flower visitors to co–flowering plant species.  

1.4 Objectives 

1.4.1  General Objective 

The primary objective of the study is to assess the distribution, management and impact of 

Parthenium hysterophorus on insect flower visitation to co–flowering plants and soil 

chemical properties in Tanzania.  
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1.4.2  Specific Objectives 

(i) To assess current P. hysterophorus distribution within and at the border zones of 

Arusha National Park (ANP). 

(ii) To assess whether P. hysterophorus affects soil–chemical properties in the invaded 

locations. 

(iii) To investigate if P. hysterophorus suppresses pollinator visitation to co–flowering 

plants. 

(iv) To assess whether combinations of forage plant species in multi–species plant 

communities can outcompete P. hysterophorus.   

(v) To assess whether D. uncinatum leaf crude extract suppresses P. hysterophorus 

growth.  

1.5  Research Questions 

(i) What is the current P. hysterophorus distribution within and at the border zones of 

ANP? 

(ii) Does P. hysterophorus affect soil–chemical properties? 

(iii) Does P. hysterophorus affect pollinator visitation to co–flowering plant species? 

(iv) Does P. hysterophorus affect pollinators’ visitation rate on co–flowering plants? 

(v) Does P. hysterophorus reduce the number of arriving pollinators on co–flowering 

plants? 

(vi) Does the combination of forage plant species in multi–species competitive 

communities suppress P. hysterophorus growth?   

(vii) Does D. uncinatum leaf crude extract suppress growth vigour of P. hysterophorus? 

1.6  Hypotheses 

(i) Parthenium hysterophorus invasion affects soil–chemical properties. 
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(ii) Parthenium hysterophorus has negative impacts on pollination dynamics in habitats it 

invades, specifically:  

(a) It decreases the pollinator visitation rate on co–flowering plants. 

(b) It reduces the number of arriving pollinators on co–flowering plants.  

(iii) The combination of forage plant species in multi–species competitive communities 

suppresses P. hysterophorus growth more strongly than just one competitive forage 

plant species alone. 

(iv) Desmodium uncinatum leaf crude extract suppresses P. hysterophorus growth vigour. 

1.7  Significance of the Study  

Awareness and knowledge about the distribution of the invasive species are important for the 

management of biological invasion. This study establishes current spread of P. hysterophorus 

within and around the border zones of ANP. This serves as a baseline for future studies and 

management of P. hysterophorus invasion in protected areas. Knowing the current 

distribution of P. hysterophorus can inform the ANP, Tanzania National Park (TANAPA) 

and Tanzania Wildlife Research Institute (TAWIRI) to take immediate collective action to 

control the invasive before it invades other protected areas in the country. In addition, it can 

help to reduce the cost of managing the invasions by directing the management efforts to 

areas with potential spread. The study also raises awareness to conservation managers about 

the presence of P. hysterophorus within and surrounding border zones of the ANP and its 

adjacent villages. Thus, it is vital to carry out a survey in order to document the spread of P. 

hysterophorus in this area (ANP) of high economic significance. The survey information 

collected can further aid in monitoring of P. hysterophorus through repetitive surveys, 

thereby facilitating tracking of the invasive. 

Furthermore, this study is vital to smallholders and extension officers as it discourses the 

impact of P. hysterophorus to pollination services on co–flowering plants, and soil chemical 

properties. This raises awareness about the urgency of controlling the invasive to avoid 

competition for flower visitors between P. hysterophorus and flowering crops and hence, loss 

or decrease of crop yield as a result of reduced pollinators. In addition, the study provides an 

ideal approach of using crude extracts of native or non-invasive plants with bio–herbicide 
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potential to control P. hysterophorus. This should catalyse researchers to conduct further 

studies to investigate more native plants with bio–herbicide traits able to control P. 

hysterophorus and other invasives in Tanzania.   

This study, study also highlights the use of suppressive fodder plant species as an approach of 

controlling P. hysterophorus. These fodder plants can additionally be used as forage for 

livestock, and for controlling invasive weeds in agroecosystems. Competitive fodder plant 

species may be planted on private lands, and/or protected areas to maintain species density 

and /or diversity, and thus, enhance ecosystem resilience against invasions. The study is 

opportunity for further research on P. hysterophorus ecology and management techniques. 

Moreover, it will be a good reference for invasion biologists, botanists, entomologist, 

agricultural community, students and researchers.  

1.8  Delineation of the Study  

This study was carried out to study the impact of P. hysterophorus on soil chemical properties 

and pollinator visitations in the invaded habitats using only five permanent plots. However, it 

would have been prudent to have larger replication sizes (i.e. more than five plots) for the 

number of sites. Soil sampling and field surveys were conducted only once during the study. 

Several sampling and surveys would have been conducted to provide a broad understanding 

of the impact of P. hysterophorus on the soil properties and its distribution within and outside 

the ANP. Further, the experiments to investigate suppressive effect of D. uncinatum leaf 

crude extract and fodder plant species to control growth vigour of P. hysterophorus had short 

duration. This duration did not cover the whole growth season of focal species. Furthermore, 

experiment particularly pot experiment was conducted under controlled environments. Thus, 

it would have been practical to extend the duration of experiments to cover entire growth 

season of the species so that the related findings may be extrapolated to the real field 

conditions.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1  Biology of Parthenium hysterophorus    

Parthenium hysterophorus L. (1753) bears numerous common English and local or 

vernacular names given in the countries where P. hysterophorus has established (CABI, 

2019; Kaur et al., 2014). These names may reflect a specific trait, utility, or character of P. 

hysterophorus (CABI, 2019). International common English names include but are not 

limited to carrot grass, congress grass, ragweed parthenium, carrot weed, Santa–Maria, 

whitetop weed, and whiteheads (Annapurna & Singh, 2003; CABI, 2019; Kohli et al., 2006). 

Nonetheless, the most common used name is Parthenium weed. Parthenium hysterophorus is 

a genus of sixteen shrubs, herbaceous perennials and annual species in North and South 

America (Brunel et al., 2014; Kaur et al., 2014; Usharani & Raju, 2018; Wakjira et al., 2009). 

However, only P. hysterophorus is invasive in the novel range and tends to become a 

dominant species and crowd out native plants (Adkins & Shabbir, 2014). It has finely lobed 

leaves and a deep tap root with forked lateral roots, as well as branched inflorescence bearing 

creamy–white flower heads or capitula (Brunel et al., 2014; Usharani & Raju, 2018). 

Parthenium hysterophorus stem is hairy, erect and branched, which become tough and woody 

with age (Kaur et al., 2014). Its flowers (4 to 10 mm in diameter) arise from the leaf branches 

and produce about 4 to 5 small black wedge shaped seeds (2 to 3.5 mm long) each (Adkins & 

Shabbir, 2014; Dhileepan, 2012). Only a few seeds can be shed earlier, but most remain in the 

capitula until senescence (Kaur et al., 2014).  

Parthenium hysterophorus flowers develop when the plant is 30 – 45 days old after 

germination (Adkins & Shabbir, 2014; Usharani & Raju, 2018). It may continue to flower for 

further 180 – 240 days in suitable temperatures and soil moisture conditions (Adkins & 

Shabbir, 2014). On average, an individual P. hysterophorus plant produces approximately 

810 flower heads, 624 million pollen grains, and 10 000 – 25 000 seeds (Kaur et al., 2014). In 

addition, P. hysterophorus flowers, roots, seeds and shoot contain allelopathic compounds 

which makes it toxic to native flora and fauna (Adkins & Shabbir, 2014; Kaur et al., 2014; 

Shabbir et al., 2013). The most toxic allelochemical in P. hysterophorus responsible for the 

health hazards to humans and livestock is a bitter glycoside parthenin, a main sesquiterpene 

lactone (Adkins & Shabbir, 2014; Nyasembe et al., 2015; Patel, 2011).       
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2.2  Life Cycle of Parthenium hysterophorus     

A typical life cycle of P. hysterophorus begins with the dispersal of seeds by agents such as 

winds, water currents or floods, and as contaminant of soil, harvested materials (crops, 

fodders etc.) and farm machineries (Kaur et al., 2014). The plant reproduces only by seeds, 

and is incapable of reproducing by apomixis or vegetatively from plant parts (CABI, 2019; 

Dhileepan, 2012). Its flowers are considered to be both entomophilous and anemophilous, i.e. 

pollinated either by insects (e.g. bees, butterflies and flies) and wind, respectively (Usharani 

& Raju, 2018). Parthenium hysterophorus seeds can live for 4 to 6 years in the soil seed bank 

(Kaur et al., 2014; Navie et al., 2004) and germinate all–year round as long as there is 

sufficient moisture in the soil (Kaur et al., 2014). Parthenium hysterophorus takes 28–42 

days to grow from seeds, rosette (or juvenile) to mature plant and 112–150 days to complete 

its life cycle (Kaur et al., 2014; Tanveer et al., 2015). It can grow up to 2 m in height (Knox 

et al., 2011) and completes 4–5 generations per year under favourable conditions (Tanveer et 

al., 2015). Parthenium hysterophorus may only die under extremely harsh conditions such as 

winter frost, prevalent drought or complete shading which prevents light penetration (Navie et 

al., 2004). In general, its life span and flowering duration is significantly determined by the 

soil moisture (Navie et al., 2004). Plate 2 depicts the flowers, seeds, stem and rosettes of P. 

hysterophorus.  

 

 

  Plate 2: Parthenium hysterophorus (a) Flowers, (b) Seeds (ca. 2 mm in size), (c) Stem 

and (d) Rosette 
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2.3  Ecology of Parthenium hysterophorus    

Parthenium hysterophorus grows across a wide range of habitats and soil types such as 

alkaline, black, clay and cracking soils of high fertility because it can endure severe 

environmental conditions, i.e., saline, drought and moisture stress (Kaur et al., 2014; 

Upadhyay et al., 2013). Nevertheless, its seeds are unable to germinate in soil below a depth 

of 5 cm (Adkins & Shabbir, 2014). Though its growth rates may differ across soil types, 

studies found that P. hysterophorus grows better on alkaline clay loam soils where annual 

rainfall is greater than 500 mm (Brunel et al., 2014; Tanveer et al., 2015; Timsina et al., 

2011). Annapurna and Singh (2003) reported that P. hysterophorus seedlings grown on soils 

with high clay content enhanced shoots biomass and growth rate in diameter and height, but 

reduced root growth and prolonged the rosette stage. The average minimum and maximum 

temperatures for P. hysterophorus seed germination is 10 ºC and 25 ºC respectively (Brunel et 

al., 2014; Tamado et al., 2002). The optimum soil pH for seed germination is 5.5–7.0, but it 

can germinate over a wide range of pH (2.5–10) (Kaur et al., 2014). When P. hysterophorus 

is freed from controlling agents or natural enemies, e.g. the leaf–eating beetle Zygogramma 

bicolorata (Chrysomelidae), it increases its biomass and suppresses native flora in a recipient 

ecosystem (Nguyen et al., 2017; Shabbir et al., 2016).   

 

Parthenium hysterophorus normally invades degraded, disturbed, overgrazed pastures, bare 

soil, and areas with poor grass cover (Bajwa et al., 2019; Nishanthan et al., 2013). However, 

it cannot establish in habitats with intact natural vegetation or pastures. Often it grows along 

road sides, railway tracks, landfills,  around buildings, and in low elevation areas (Etana et 

al., 2015). Thus, changes in land–use patterns due to habitat degradation increase the 

prevalence of P. hysterophorus invasions (Ayele et al., 2013; Kaur et al., 2014; Nishanthan et 

al., 2013). Its invasions into ecosystems is also promoted by its prolific capacity, large 

seedbank and rapid seed germination (Dhileepan, 2012; Kaur et al., 2014; Nishanthan et al., 

2013; Roy & Shaik, 2013). Research to investigate physiological mechanisms, which enhance 

P. hysterophorus invasibility in novel locations, are required. This might help to develop 

methods to interfere with its life cycle and subsequently, control its invasions globally.         

2.4  Global Distribution of Parthenium hysterophorus    

Parthenium hysterophorus is native to North and South America but is an invasive species 

outside its natural range (Brunel et al., 2014; CABI, 2019; Kaur et al., 2014). It has invaded 
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more than 20 countries (CABI, 2019; Safdar et al., 2015). Figure 2 depicts global distribution 

of P. hysterophorus as invasive and non–invasive. Like other IAPs, P. hysterophorus perhaps 

found its way to new territory as a contaminant of imported seeds or grain intended for 

consumption, processing or planting (Axmacher & Sang, 2013; Brunel et al., 2014; Gervilla 

et al., 2019; Nigatu et al., 2010; Shackleton et al., 2017).  

 

 

Figure 2: Global Distribution of Parthenium hysterophorus. Source of data: CABI 

(2019). Red Dots Indicate where P. hysterophorus has been Introduced and 

has Become Invasive. Green Dots are where it has been Introduced, but has 

not yet Become Invasive 

In Asia, it is a major invasive in Bangladesh, India, Pakistan, Nepal, Israel, Taiwan, southern 

China, Sri Lanka, and Vietnam (Bajwa et al., 2019; CABI, 2019; Nigatu et al., 2010; 

Shrestha et al., 2015). It is also invasive in Australia, New Caledonia, Vanuatu, Papua New 

Guinea, Hawaii, Christmas Island and New Caledonia (Adkins & Shabbir, 2014; Nguyen et 

al., 2017). In African countries such as Egypt, Eritrea, Ethiopia, Kenya, Mauritius, 

Madagascar, Mozambique, Somalia, South Africa, Réunion and the Seychelles, Swaziland, 

Uganda, Zimbabwe and Tanzania (CABI, 2019; Etana et al., 2011; Nigatu & Sharma, 2013; 

Nyasembe et al., 2015; Strathie et al., 2011; Witt et al., 2018), P. hysterophorus has 

colonized rangelands, farmlands, grazing lands, road sides, nature reserves and protected 
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areas (Ayele et al., 2013; Kija et al., 2013; Mcconnachie et al., 2011; Seta et al., 2013; Van 

der Laan et al., 2008; Witt et al., 2018). Its invasion is associated with negative impacts on 

environments (e.g. reducing population size of native plants) and smallholders’ livelihoods 

(Safdar et al., 2015, 2016).   

Previous studies found that rapid climate change along with elevated atmospheric CO2 can 

benefit C3 species and their biomass production is likely to be greater than that of C4 plants 

(Dukes & Mooney, 1999; Moore et al., 1987). Parthenium hysterophorus, being a C3 plant 

species, grew taller at higher CO2 concentrations (Moore et al., 1987; Navie et al., 2005; 

Navie et al., 2004). When P. hysterophorus was grown under a high CO2 concentration (550 

μmol mol-1), it also produced more branches (35%), greater dry biomass (38%) and more 

seeds per plants (37%) than when it was grown in ambient CO2 concentration (380 μmol mol-

1) (Shabbir et al., 2019). This indicates that P. hysterophorus invasion range may increase in 

the future under climate change and make the management of rangelands and ecosystems 

comprising merely C4 species more problematic (Dukes & Mooney, 1999; Moore et al., 

1987; Navie et al., 2005). In this regard, P. hysterophorus invasion and proliferation are 

expected to increase globally.    

  

Having knowledge about the current and potential future distribution of P. hysterophorus is 

imperative for planning effective management of the invasion (Suárez-Mota et al., 2016; 

Taylor et al., 2012). Models that predict potential distribution of IAPs are vital tools 

(Adhikari et al., 2015; Thapa et al., 2018) because they inform and enable on–ground control 

of biological invasions (Adams et al., 2015; Suárez-Mota et al., 2016). Species distribution 

models (SDMs), for instance, MaxEnt and agent based models (ABM) are scientifically 

recognised tools for assessing and predicting the distribution of IAPs (Adams et al., 2015; de 

Albuquerque et al., 2019; Thapa et al., 2018). They are increasingly used to predict the 

invasive range or spatial patterns of IAPs and prioritize localities for early detection and 

managing invasion outbreaks (Kija et al., 2013). These models construct relationships 

between environmental parameters and species occurrences, and biophysical in the study site 

(Adams et al., 2015; Adhikari et al., 2015; Kija et al., 2013; Taylor et al., 2012; Thapa et al., 

2018). This study aims to establish the current P. hysterophorus distribution within and 

outsides the ANP in Tanzania to help in managing the species invasion and proliferation. 
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2.5  Parthenium hysterophorus’ Negative Impact on the Environment  

Globally, P. hysterophorus invasions threaten natural community biodiversity (Brunel et al., 

2014; Clark & Lotter, 2011; Kija et al., 2013; Wabuyele et al., 2015), agriculture (Ayele et 

al., 2013; Clark & Lotter, 2011; Pratt et al., 2017; Terblanche et al., 2016), and the delivery 

of ecosystem services (Tanveer et al., 2015; Terblanche et al., 2016). It affects various 

ecosystems on earth and displaces native plant species (Adkins & Shabbir, 2014). It alters 

native plants’ community structure into Parthenium–dominated stands by inhibiting the 

growth of neighbouring co–existing plants using allelochemicals (Shrestha et al., 2015; 

Timsina et al., 2011). Its invasion reduces rangeland production (i.e. fodder quantity) and 

grazing capacity (Tanveer et al., 2015; Terblanche et al., 2016), as well as pasture quality 

where it has established  (Clark & Lotter, 2011; Pratt et al., 2017; Terblanche et al., 2016). 

Heavy P. hysterophorus invasions can reduce natural vegetation seed banks and their ability 

to regenerate (Navie et al., 2004). In Ethiopia, Nigatu et al. (2010) found that native flora 

diversity and above–ground dry biomass in grazing lands declined with increasing P. 

hysterophorus invasion level; and Ayele et al. (2013) reported a 62.7% decline of grass cover 

in the rangelands invaded with P. hysterophorus. Similarly, in south east Queensland, 

Australia, P. hysterophorus invasion was reported to reduce significantly pasture community 

diversity (Nguyen et al., 2017).     

Parthenium hysterophorus invasion was reported to cause minimal impact on soil physico–

chemical properties (Etana et al., 2015; Osunkoya et al., 2017). A study in central Nepal 

reported that total soil nitrogen, organic matter content, available phosphorus, potassium and 

soil pH were highest in P. hysterophorus invaded plots than in non–invaded plots (Timsina et 

al., 2011). In central and south east Queensland P. hysterophorus was reported to enhance 

microbial traits (Osunkoya et al., 2017). These changes are asserted to alter ecosystem 

function and trophic levels in the invaded ecosystems (Timsina et al., 2011). Owing to the 

changes it causes in the invaded ecosystems, P. hysterophorus acts as an “ecosystem 

engineer” (Nigatu et al., 2010; Perkins et al., 2011).  

Parthenium hysterophorus has numerous recorded negative impacts on both domestic 

livestock and human health. Studies assert that its parthenin causes haemorrhage in internal 

organs due to tissue damage and ultimately death of livestock when significant amounts of P. 

hysterophorus (10 to 50%) are accidentally consumed (Kaur et al., 2014; Nigatu & Sharma, 

2013; Patel, 2011; Usharani & Raju, 2018). It also lessens meat and milk quality (Roy & 
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Shaik, 2013). If people are repeatedly exposed to P. hysterophorus, especially flowers or 

pollen which contain parthenin, they are likely to suffer from respiratory illness, bronchitis, 

dermatitis, skin allergies, hay fever and asthma (Kaur et al., 2014; Terblanche et al., 2016; 

Usharani & Raju, 2018).   

Adkins and Shabbir (2014) report that after P. hysterophorus had been introduced in the 

1950s in Queensland, the plant had invaded about 17 million ha of grazing pastures by 1994. 

Losses to the livestock industry in pastoral regions of central Queensland was estimated at 

AU$22 million per year due cost related to P. hysterophorus management and pasture loss 

(Brunel et al., 2014; Nigatu et al., 2010). Field experiments conducted in Ethiopia showed a 

97% decrease of Sorghum bicolor grain yield when P. hysterophorus was left uncontrolled 

(Tamado et al., 2002). A study in India revealed yield losses of agricultural crops up to 40% 

owing to P. hysterophorus invasions (Brunel et al., 2014). Moreover, field experiments 

conducted in Pakistan demonstrated a linear decrease in maize plant height, grain yield and 

grain weight per cob with increasing P. hysterophorus density (Safdar et al., 2015).  

In Tanzania, P. hysterophorus invasion has been reported to interfere with fodder, livestock 

and agricultural productivity, as well as biodiversity conservation (Pratt et al., 2017; Witt et 

al., 2018). It is estimated that annual maize production losses to smallholders under P. 

hysterophorus expansion range in Tanzania for 5–10 year timescale will be US$5.6 to 

US$11.2 million (Pratt et al., 2017). Centre for Agriculture and Bioscience International 

(CABI) also estimated that the present value of time invested by smallholder farmers in 

managing P. hysterophorus in Tanzania is US$0.3 million at basic rate (Pratt et al., 2017). 

Since P. hysterophorus invasions are expected to increase in the future, with negative impact 

on the economy of many rural areas (Pratt et al., 2017), its management is essential in order 

to protect smallholders’ livelihoods and ecological integrity of natural areas and rangelands.  

Furthermore, it has been reported that flowering IAPs affect pollination and reproductive 

success of native co–flowering flora (Brown et al., 2002; Emer et al., 2015; Flanagan et al., 

2009; Morales & Traveset, 2008) because they attract flower visitors away from native plants 

(Gibson et al., 2013; Molina-Montenegro et al., 2008; Nielsen et al., 2008). Many invasive 

plants have attractive flowers (Brown et al., 2002; Nielsen et al., 2008) with greater amounts 

of pollen and nectar which attract pollinators (Emer et al., 2015; Morales & Traveset, 2008). 

Most invasives have a generalist pollination syndrome and thus, receive diversity of different 

flower visitors, both generalist and specialist pollinators, compared to natives (Ballantyne et 
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al., 2015; Blüthgen et al., 2008; Brown et al., 2002; Chittka et al., 1999). Thus, generalist 

invasive flowering plants may have greater impacts on plant community, for instance, 

pushing out native specialist plant species from the plant–pollinator interaction networks by 

drawing flower visitors away from the natives (Ballantyne et al., 2015; Blüthgen et al., 2008; 

Brown et al., 2002). This makes flowering IAPs outcompete native flowering flora due to 

limited visits (Albano et al., 2009; Larson et al., 2006). Few pollinator visits can lead to loss 

or less pollen on the stigma of native flowers (Bartomeus et al., 2008; Lopezaraiza–Mikel et 

al., 2007). Conspecific pollen loss on heterospecific flowers decreases the volume of pollen 

conveyed between conspecific flowers (Jakobsson et al., 2008; Molina-Montenegro et al., 

2008; Morales & Traveset, 2008). Also, heterospecific pollen deposition on conspecific 

flowers or stigma can cause stigma clogging (Fang & Huang, 2013; Nielsen et al., 2008). 

Stigma clogging and pollen loss reduce female and male fitness, respectively (Fang & Huang, 

2013). This may further result in reduced fruits and seeds production in native (specialist) 

plant species (Nielsen et al., 2008; Tiedeken et al., 2015).   

For P. hysterophorus, its pollen was reported to inhibit the fruit and seed set via allelopathy in 

peppers (Capsicum annuum), eggplant (Solanum melongena) and tomatoes (S. lycopersicum) 

and grain filling of Z. mays (Brunel et al., 2014; Kanchan & Chandra, 1980). However, not 

all IAPs have negative effects on pollination; some have neutral or positive effects (Albano et 

al., 2009; Bartomeus et al., 2008; Molina-Montenegro et al., 2008; Nielsen et al., 2008; 

Traveset & Richardson, 2014; Ye et al., 2014). Invasive alien plants  with negative effects on 

pollination compete for flower visitors with native plant species, and those with positive 

effects facilitate pollinators visitation to native co–flowering plants (Moragues & Traveset, 

2005; Morales & Traveset, 2008). While many studies have investigated the effect of P. 

hysterophorus on native plant community via allelopathy and competition for resources 

(Nishanthan et al., 2013; Seta et al., 2013; Tamado & Milberg, 2000; Wakjira et al., 2009), 

little is known whether P. hysterophorus can affect pollinator visitation on co–flowering 

plants. In this view, studies to investigate the adverse impacts of P. hysterophorus on 

pollination services in invaded habitats are very important.   

2.6  Management of Parthenium hysterophorus   

Managing P. hysterophorus invasions is crucial in order that biodiversity conservation and 

ecosystem integrity (Navie et al., 2004; Nguyen et al., 2017), recovery of native floras (Flory 

& Clay, 2009), and famers’ livelihoods (Bajwa et al., 2019; Knox et al., 2011) are assured. 
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Various techniques such as classical biological control, competitive displacement, synthetic 

herbicides and mechanical or physical control (Ellison & Cock, 2017; Kaur et al., 2014; 

Kumar, 2009; Lenteren et al., 2006; O’Donnell & Adkins, 2005; Shabbir et al., 2013) have 

been tried or used to control P. hysterophorus. Different studies (Adkins & Shabbir, 2014; 

Khan et al., 2013; Kumar, 2009; Shabbir et al., 2019; Shaw et al., 2009), the Global Invasive 

Species Programme (GISP) and CABI (Ellison & Cock, 2017) advise biological control as 

effective and environmentally benign method for controlling IAPs.  

2.6.1  Biological Control 

Biological control employs herbivorous invertebrate pests or plant pathogens to control IAPs 

(Ellison & Cock, 2017; Hinz & Schwarzlaender, 2004; Kumar, 2009; Lenteren et al., 2006; 

Shabbir et al., 2016; Shaw et al., 2018). They are often natural enemies which may include 

insects, bacteria, viruses, fungi, and mites (Ellison & Cock, 2017; Shabbir et al., 2016). 

Though biological control does not wholly eradicate alien invasions, it helps to maintain 

invasive populations lower than they would be in the absence of biological control agents 

(Kumar, 2009; Shabbir et al., 2016). Unlike other countries, Australia and India have widely 

used insects as biological control agents to suppress P. hysterophorus growth (Dhileepan, 

2007; Khan et al., 2013; Shabbir et al., 2019). A few examples of biological control agents 

deployed against P. hysterophorus include Epiblema strenuana (Lepidoptera: Tortricidae), 

and Hypothenamus  erudistus (Coleoptera: Curculionidae) used in India (Kumar, 2009; 

Shabbir et al., 2016); Smicronyx lutulentus (Coleoptera: Curculionidae), Contrachelus 

albocinereus (Coleoptera: Curculionidae), Listronotus setosipennis (Coleoptera: 

Curculionidae), Bucculatrix pathenica (Lepidoptera: Bucculatrigidae) in Australia (Adkins & 

Shabbir, 2014; Dhileepan, 2007; Shabbir et al., 2019) and  Zygogramma bicolorata in India, 

Pakistan, Nepal, South African and Australia (Dhileepan, 2012; Kaur et al., 2014; Shabbir et 

al., 2016; Strathie et al., 2011).   

In Tanzania, only Z. bicolorata introduced from South Africa has been released to control P. 

hysterophorus in a few places in Arusha by the Tropical Pesticides Research Institute (TPRI) 

(Kilewa, 2018). Biological control through microorganisms (bacteria, fungi and viruses) have 

also been used in India and Australia to suppress P. hysterophorus (Adkins & Shabbir, 2014; 

Kaur et al., 2014; Kumar, 2009; Shabbir et al., 2013). The use of alien insects as biological 

control agent has received great attention globally because they can cause harmful effects in 

the released ecosystems (Lenteren et al., 2006). When they are introduced in new habitats, 
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they can attack untargeted native species, establish and become difficult to control (Evans, 

1997). To avoid such risks, biological control agents for suppressing P. hysterophorus must 

be host specific or specialised organisms (Shabbir et al., 2016; Zhao et al., 2008). Also, their 

efficacy at controlling P. hysterophorus may be influenced by temperature, rainfall, native 

predators, native pathogens, land use change, and elevated CO2 concentration in the 

introduced range (Shabbir et al., 2019). This is because these factors may affect microclimate, 

behaviour, population growth and establishment of the biological control agents. Previous 

studies reported that most biocontrol agents such as the leaf–mining moth Bucculatrix 

parthenica (Lepidoptera: Bucculatricidae), stem–boring weevil Listronotus setosipennis 

(Coleoptera: Curculionidae), and the seed–feeding weevil Smicronyx lutulentus (Coleoptera: 

Curculionidae) have limited impact on P. hysterophorus as they are unable to reduce the 

invasive biomass efficiently (Dhileepan, 2007). These observations suggest that novel 

research approaches are essential to identify effective but ecologically friendly biological 

agents to control the invasive plant species.     

2.6.2  Chemical and Mechanical Control  

Chemicals or synthetic herbicides contribute substantially to the control of P. hysterophorus 

(Adkins & Shabbir, 2014; Kaur et al., 2014; Shrestha et al., 2015). Synthetic herbicides such 

as ametryn, atrazine, bromoxynil, chlorimuron ethyl, glyphosate, metribuzin and 2,4-D EE 

are considered very effective in suppressing P. hysterophorus (Kaur et al., 2014). However, 

due to their potentially detrimental effects on the environment and human health they are 

discouraged for use in natural areas (Flory & Clay, 2009; Ngondya et al., 2016b; Yu et al., 

2018). They may damage or kill ecologically beneficial species such as insect natural 

enemies, pollinators and decomposers, as well as soil macrobes and  microbes which play 

significant roles in nutrient cycling (Frimpong et al., 2018). Most synthetics herbicides leave 

toxic residues that prevent native plant recruitment by inhibiting seed germination, or lead to 

negative effects on a particular plant species (Flory & Clay, 2009). They can also alter soil 

and water physical–chemical properties (Qasem & Foy, 2001; Yu et al., 2018). Furthermore, 

IAPs may also become immune against synthetic herbicides and, thus, difficult to eradicate 

(Ngondya et al., 2016b). 

Mechanical or physical control (i.e., uprooting and burning) is also considered an effective 

method for controlling P. hysterophorus invasions (Adkins & Shabbir, 2014; Kaur et al., 

2014). Through this technique, invaded ecosystems can be restored, and native plants re–



28 
 

establish (Adkins & Shabbir, 2014; Kaur et al., 2014; Lurgi et al., 2016). However, the 

method provides only a short term solution as many IAPs have large seedbanks (Qasem & 

Foy, 2001). Hand–weeding is also a time consuming, labour–intensive and costly technique 

in large areas (Kaur et al., 2014; Shabbir et al., 2016). While non–target species might be 

affected through soil disturbance and disruption of roots or mycorrhizal networks during 

uprooting (Flory & Clay, 2009), people may suffer from health problems as a result of direct 

skin contact with P. hysterophorus (Kaur et al., 2014; Seta et al., 2013).  

If uprooting is conducted after seed setting of P. hysterophorus plants, one would expect that 

it will enhance invasion in the area (Kaur et al., 2014). Thus, P. hysterophorus should be 

removed when it is at rosette stage and followed by sowing competitive plants, perennial 

pasture or crops. Moreover, burning as a strategy is not a viable approach to manage the 

invasive because it needs large quantities of fuel, but also destroys other valuable and 

economically important plant species. Methods other than burning may be used for 

controlling P. hysterophorus to avoid promoting the invasions by reducing natural vegetation 

biomass in the invaded habitat.  

2.6.3  Bio–herbicide Approach 

Bio–herbicides are natural products derived from living organisms to suppress invasive 

growth. These include, but are not limited to, plant–derived natural products and microbial 

(bacteria, fungi, virus, nematodes) metabolites (Christina et al., 2015; Kaur et al., 2014; 

Singh et al., 2005; Zhao et al., 2008). Bio–herbicides are regarded as a form of inundative 

biological control (Bailey, 2014; Kaur et al., 2014). Earlier studies have revealed that extracts 

of allelopathic plants with bio–herbicide potential can suppress the germination and growth 

vigour of IAPs (Bhadoria, 2010; Christina et al., 2015; Hooper et al., 2010; Ming Chen & -

Lin Peng, 2018; Ngondya et al., 2016b; Zhao et al., 2008). Bio–herbicides from native or 

alien plants have been reported to suppress germination, growth and development of P. 

hysterophorus (Evans, 1997; Kaur et al., 2014). Most of these studies were conducted under 

controlled environments, in screen house (pots), field plots, or laboratory. None of the 

available studies have ever confirmed that bio–herbicide was successfully deployed in a field 

situation to control an invasive. Hence, trials to test efficacy of bio–herbicides in the field 

situation is required.   
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Bio–herbicide extracts are considered a potential management tool to control P. 

hysterophorus as their non–target impacts are likely to be less severe to the environment 

compared to synthetic herbicides (Christina et al., 2015; Zhao et al., 2008). Roots, shoots and 

leaf extracts of several plant species i.e. Aegle marmelos, Azadirachta indica, Cassia 

occidentalis, Cenchrus pennisetiformis, Dicanthium annulatum, Eucalyptus citriodora, 

Eucalyptus tereticornis and Sorghum halepense were reported to inhibit P. hysterophorus 

germination, respiratory activity, seedling growth, and reduced chlorophyll content (Evans, 

1997; Kaur et al., 2014; Singh et al., 2005; Singh et al., 2013). Similarly, metabolites of 

bacteria, fungi, nematodes, and viruses have been used to control P. hysterophorus in some 

countries such as Australia, Pakistan and India (Adkins & Shabbir, 2014; Kaur et al., 2014; 

Kumar, 2009; Shabbir et al., 2013). For example, a phytotoxin from a fungi Phoma herbarum 

(Vikrant et al., 2006) and Alternaria alternata (Saxena & Kumar, 2010) investigated in India 

demonstrated a potential to control P. hysterophorus. This study highlights the potential 

management of P. hysterophorus using bio–herbicides and thus, promotes studies to assess 

native plants and microbial natural products with potential for managing P. hysterophorus 

invasions.  

2.6.4  Competitive Displacement  

Control of IAPs through competitive plants embraces the use of native or beneficial alien–

non–invasive forage species (Ammondt & Litton, 2012; Ngondya et al., 2016a; Shabbir et al., 

2013). Competitive displacement is considered the most economic and feasible way of 

suppressing alien invasives (Čuda et al., 2015; Flory & Clay, 2009). Previous studies have 

demonstrated that competitive suppressive plants can be used to suppress P. hysterophorus 

growth in the invaded habitats (Adkins & Shabbir, 2014; Khan et al., 2013; Shabbir et al., 

2013). Australia and India have extensively tested and used suppressive fodder plant species 

(e.g. Xanthium strumarium, Sorghum halepense, Clitoria ternatea, Panicum maximum, Sida 

acuta, Croton bonapladanium, Cenchrus pennisetiformis, Digitaria eriantha, Amaranthus 

spinosus) to control P. hysterophorus (Adkins & Shabbir, 2014; Khan et al., 2019). Other 

countries where suppressive plants have been tested to control P. hysterophorus are South 

Africa and Pakistan (Khan et al., 2014; Shabbir et al., 2013; Shabbir & Bajwa, 2005; Van der 

Laan et al., 2008). More competitive plants were reported to suppress growth and biomass of 

P. hysterophorus (Khan et al., 2013; Shabbir et al., 2013). Butterfly pea legume (C. ternatea), 

purple pigeon grass (S. incrassata), and buffel grass (Cenchrus ciliaris) suppressed P. 
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hysterophorus growth by >50% under a simulated grazing experiment (Khan et al., 2019). 

Cenchrus ciliaris which is widely planted all over central Queensland by landholders, 

competes with and suppresses P. hysterophorus (O’Donnell & Adkins, 2005). In Australia, 

the fodder species C. ciliaris, C. ternatea, Chloris gayana, Dichanthium sericeum, and 

Bothriochloa insculpta reduced P. hysterophorus growth by > 62% (Khan et al., 2014). But, 

in Tanzania, very limited studies have been conducted to identify and use competitive plants 

for controlling P. hysterophorus invasion.    

Due to the challenges facing biological control through insects and microorganisms, and 

manual removal of invasive plants, areas invaded by P. hysterophorus may be assisted to 

recover following invasive removal with the addition of competitive diverse plant species 

(Ammondt & Litton, 2012; Shabbir et al., 2013; Tracy et al., 2004). Literature show that an 

increase of suppressive native plant diversity in grassland could reduce ecosystem invasibility 

(Ammondt & Litton, 2012; Knops et al., 1999; Shabbir et al., 2013; Tracy et al., 2004). Li et 

al. (2015) reported that the invasive weed Ipomoea cairica biomass and stem length were 

significantly depressed when planted together with competitive native plants Pueraria lobata 

or Paederia scandens. Knops et al. (1999) and Tracy et al. (2004) acknowledged that an 

increase in native plant diversity in grassland reduced ecosystem invasibility. Hence, 

competitive displacement method (i.e. using competitive suppressive plants) might be the 

potential tool to improve efficacy of managing P. hysterophorus in natural or semi–natural 

habitats where burning and/ or chemical herbicides application may not be permitted 

(Christina et al., 2015; Evans, 1997; Khan et al., 2019; Ngondya et al., 2016b).  

The two methods (competitive displacement and native plant–derived bio–herbicide) appear 

to be promising options for controlling IAPs because they are potentially less harmful to the 

environment. Hence, they must be explored further. The study aimed to assess the potential 

use of legume fodder plant species (L. purpureus, D. intortum and M. sativa) to compete with 

and displace (or suppress) P. hysterophorus in field plots and in the screen house; and D. 

uncinatum leaf crude extract to inhibit seed germination and growth vigour of P. 

hysterophorus.   

2.7  Benefits of Parthenium hysterophorus   

Despite its largely negative impacts on the environment, some studies have shown that P. 

hysterophorus might also have some beneficial aspects (Kushwaha & Maurya, 2012; 
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Nyasembe et al., 2015; Patel, 2011). The species contains various chemical constituents such 

as glucosides, histamine, saponin, and triterpene (Adkins & Shabbir, 2014; Roy & Shaik, 

2013). These chemicals are thought to have potential to be used as biocontrol against different 

pathogens as herbicidal, insecticidal, antibacterial, trypanocidal and nematicidal products 

(Kushwaha & Maurya, 2012). Parthenium hysterophorus is also suspected to have medicinal 

values such as antifungal, antiamoebic and antimalarial (Kushwaha & Maurya, 2012; 

Nyasembe et al., 2015). Patel (2011) and Roy and Shaik (2013) report that P. hysterophorus 

has traditionally been used as a remedy for allergies, asthma, dizziness, dysentery, diarrhoea, 

vomiting, malaria, urinary tract infections, psoriasis, nausea, skin inflammation, neuralgia, 

rheumatic pain and tinnitus in Asia. Although is not tested, there has been an assumption that 

P. hysterophorus can be used as fodder for the livestock when it is detoxified via anaerobic 

fermentation (Patel, 2011). It can also be used as a source of additives in livestock manure for 

biogas production, removal of dye and heavy metals from environment, and mitigating other 

weeds (Patel, 2011). Though P. hysterophorus appears to have some benefits, detailed 

research to investigate the applicability and safety of such uses under different environmental 

settings is needed.   
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CHAPTER THREE  

MATERIALS AND METHODS 

3.1  Study Area 

This study was conducted in Meru district of Arusha region in Tanzania. A field survey to 

assess the current distribution of P. hysterophorus was conducted within the Arusha National 

Park (ANP) and neighbouring villages at the border zones (3º 15ꞌ S, 37º 00ꞌ E). Arusha 

national park is located between the peaks of Mountain Kilimanjaro and on the eastern side of 

Mount Meru in Arusha region. The park was established in 1960 (Boshe, 1984) with a total 

area of 137 km2. There are two rainy seasons, the long rains (April to May) and the short 

rains (October to November). The mean annual rainfall for the higher moist areas ranges 

between 1400 and 2400 mm and lower drier areas 600 and 1300 mm. It is rich in flora (i.e. 

Albizia schimperiana Asystasia gangetica, Barleria submollis, Hypoestes aristata, Carissa 

edulis, Caesalpinia decapetala, and Ficus thonningii) and fauna (i.e. Cape buffalo, Zebra, the 

Black-and-white colobus monkey, the Blue monkey, Flamingo, Elephant and Bushbuck) 

which varies with topography (Boshe, 1984).  

Field studies were conducted at Tengeru (3° 22.002′ S, 36° 47.008′ E) and Mikuuni–King’ori 

(3°20.613'S, 36° 59.892' E) to investigate the impact of P. hysterophorus on insect flower 

visitation to co–flowering plants. The mean annual temperature in Tengeru and Mikuuni–

King’ori is 19.5°C and 19.6°C, and average annual rainfall is 1078 mm and 1361 mm, 

respectively. Experiments to investigate suppressive effects of selected competitive fodder 

plant species and bio–herbicide of D. uncinatum leaf crude extract on P. hysterophorus 

growth vigour were carried out at the NM–AIST Tengeru campus (3º 24.149′ S and 36º 

47.790′ E).  

3.2  Assessing P. hysterophorus Distribution Within and Outside Arusha National 

Park 

A field survey was conducted within ANP and villages nearby the park border zones (Fig. 3) 

between January and June 2018 to collect current distribution data of P. hysterophorus. The 

ANP was surveyed because it is more vulnerable to the invasions as it is located in Arusha 

region where P. hysterophorus invasion is high (Kilewa & Rashid, 2014). Therefore, the 

probability of P. hysterophorus invading ANP is high compared to other protected areas. 
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Adjacent villages at the border zones were surveyed because human socio-economic activities 

(farming, livestock keeping and fuelwood collection) may enhance the spread of P. 

hysterophorus and thus, promote its invasion into the park. A survey inside and outside the 

ANP was conducted along roads using a vehicle and motorcycle respectively. Roads were 

scanned at both sides for the presence of P. hysterophorus. Outside ANP stops were made 

after every 30 to 50 m to scan P. hysterophorus in farms, grazing fields and settlements close 

to the roads, whereas, inside ANP stops were made at interval of 1 km. The 30 – 50 m 

interval was chosen in order to ensure sufficient capture of P. hysterophorus locations (Thapa 

et al., 2018).  Furthermore, whenever P. hysterophorus was seen, stops were made and a 

thorough scanning was conducted in the adjacent areas. The invasive locations were recorded 

using Garmin etrex20 GPS. Presence data were recorded which comprised latitude, longitude, 

elevation, land use type and density per square meter. The density of P. hysterophorus was 

visually estimated as high, medium and low when P. hysterophorus plants were more than 4, 

3–4 and 1–2 individuals in 1 m2 quadrat respectively.    

 

 Figure 3: Arusha National Park and Surrounding Villages  
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The roadside survey method was opted for because P. hysterophorus frequently grow along 

roadsides as it is being spread via seeds on vehicle tyres (Thapa et al., 2018; Wabuyele et al., 

2015). The method also ensures a rapid assessment of the invasive distribution (Christen & 

Matlack, 2006; Kosaka et al., 2010; Von Der Lippe & Kowarik, 2007; Wabuyele et al., 

2015). Further, the road verges are suitable for colonization by P. hysterophorus as they 

provide suitable microhabitats for the invasive (Johnston & Johnston, 2004; Kosaka et al., 

2010; Thapa et al., 2018). It is also a good method for surveying the population of a single 

species or early detection of new and known invasive species (Thapa et al., 2018). In general, 

the roadsides are preferential migration corridors of many IAPs, and the starting points for 

their invasions into adjacent surroundings (Christen & Matlack, 2006; Johnston & Johnston, 

2004). The geographical coordinates recorded during our field surveys were used to create a 

map of P. hysterophorus current distribution within ANP and surrounding villages nearby the 

border zones using a quantum geographic information system (QGIS) version 3.2. 

Parthenium hysterophorus frequency of occurrence was compared at different elevations, 

land use types and density.   

3.3  Assessing P. hysterophorus Impact Soil Chemical Properties  

During the field survey, patches with and without P. hysterophorus invasions (invaded and 

uninvaded respectively) were randomly selected for soil sampling. One–meter square 

quadrats were established at each of the selected patches. The invaded and non–invaded 

patches were 30 m apart. Prior to collection of soil samples, the litter layer was removed and 

five soil samples, one from the center and one from each of the four corners of the quadrat to 

a depth of 10 cm were collected using a garden trowel. The five soil samples were pooled to 

make a single sample for each quadrat. The soil samples were collected from 20 sampling 

points i.e. 10 from invaded and another 10 from non–invaded patches. The samples were 

individually placed into zip–lock plastic bags and transported to the laboratory at the Ministry 

of Agriculture Training Institute (MATI) at Uyole in Mbeya region of Tanzania for analyses.    

The soil was sieved through 2 mm fine–mesh screen to get rid of fine rocks, roots, and other 

unwanted particles. The soil samples were then analysed for chemical properties i.e. organic 

carbon (OC), pH, Electrical conductivity (EC), Organic matter, Total nitrogen (Total N), 

available Phosphorus (P), Calcium (Ca), Magnesium (Mg), Potassium (K), Manganese (Mn) 

and Cation exchange capacity (CEC). Recommended standard soil analytical methods were 

used (Osunkoya et al., 2017; Osunkoya & Perrett, 2011; Perrett et al., 2012). Total OC was 
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determined by the Tinsley method; the pH was measured potentiometrically in a soil–distilled  

water suspension (ratio 1:2.5); EC with a saturated soil paste; organic matter and total N were 

determined by the Walkley–black and Kjeldahl methods respectively; 0.5 M NaHCO3 used to 

extract the available P and analyzed colourimetrically with the ascorbic acid molybdate 

method according to Bray and Curtz No 1; NH4C2H3O2 extracted soil cations (Ca2+, Mg2+ and 

K+) and analyzed on atomic absorption spectrophotometer with flame atomizer (Perkin- 

Elmer Analyst 100); diethylene triamine pentaacetic acid (DTPA) was used to extract Mn; 

and CEC was determined with Ammonium Acetate method at pH 7.0.   

3.4  Assessing P. hysterophorus Impact on Flower Visitation to co–Flowering Plants 

3.4.1  Characteristics of Study Plant Species    

In addition to characteristics described earlier in sections 2.1–2.3 above, P. hysterophorus 

contains hundreds small white flower heads per plant which produce abundant pollen and 

nectar (Kaur et al., 2014; Kushwaha & Maurya, 2012). Its inflorescence, which is corymb 

like, benefits from insect pollination as well as wind (Kushwaha & Maurya, 2012; Usharani 

& Raju, 2018). Target study plants Ocimum gratissimum (Lamiaceae) and Ageratum 

conyzoides (Asteraceae) (Plate 3) were used as indicator species to investigate the mediated 

impact of P. hysterophorus on flower visitation (the number of arriving flower visitors and 

visitation rate) and foraging behaviour (duration of visits) of flower visitors on adjacent co–

flowering plant species.   

 

Ocimum gratissimum is an erect shrub growing up to 3.0 m tall (Nweze & Eze, 2009) and 

native to East Africa. It has zygomorphic, nectar–rich inflorescences attracting flower 

visitors. Ageratum conyzoides is an annual erect branched herb with 0.5 – 1.0 m height (Kohli 

et al., 2006). The branched inflorescence of A. conyzoides carries pale purple coloured flower 

heads which are arranged in flat–topped clusters. Though A. conyzoides is non–native to 

Tanzania, it was chosen because (a) it has morphologically similar flowers with P. 

hysterophorus and (b) it was abundant co–flowering plant with P. hysterophorus in field sites.     
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Plate 3: Pictures of (a) P. hysterophorus on the Invaded site and (b) its Flowers, (c) O. 

gratissimum and (d) Close Up of its Inflorescence and (e) A. conyzoides 

The field work was conducted at two sites invaded with P. hysterophorus, at Tengeru and 

Mikuuni–King’ori. Each site (ca. 4 ha) was situated within an agricultural landscape and 

relatively close (<200 m) to settlements. At each study site, two areas ca. 100 m apart, with 

and without P. hysterophorus invasion (invaded and uninvaded quadrats respectively) were 

selected for studying foraging behaviour, visitation of flowers and visitation networks. The 

two sites had similar soil type, vegetation type and coverage. Prior to observations, uninvaded 

and invaded quadrats were assessed to ensure that the target co–flowering plant species were 

present.  

3.4.2  Observation of Foraging Behaviour and Visitation of Flower Visitors 

Five permanent quadrats (plots) of 25 m2 were randomly established over co–flowering 

patches within invaded and uninvaded sites at Tengeru between January and April 2018 

during P. hysterophorus flowering periods. Each quadrat was marked using a marker stick 

positioned at each corner of the quadrat. Prior to observations, the number of floral units of 
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each target plant species within each 25 m2 quadrat was counted. The flower visitors were 

observed within quadrats over two days per week per month. Each quadrat was observed 

twice per day, once in the morning (08:00 – 12:00) and once in the afternoon (14:00 – 18:00) 

for 15 minutes in the same order. The observer noted the number of arriving flower visitors 

and taxonomic groups in the quadrats. The time spent per flower on the target plant species 

by each visitor was recorded using a stop watch. Photographs and video clips of flower 

visitors were taken during field work to aid in identification. Every site was observed on the 

same day in the absence of rainfall and harsh wind that would affect the activity of flower 

visitors.  

Any flower insect visitor that touched the floral parts or reproductive parts of a flower 

(anthers or stigmas) of O. gratissimum, A. conyzoides and P. hysterophorus during the 15 

minute period was considered as a potential pollinator (Albrecht et al., 2016; Molina-

Montenegro et al., 2008; Stiers et al., 2014; Weissman & Schaefer, 2017). However, the term 

flower visitor instead of pollinator is used in this dissertation as it was not possible to confirm 

whether every flower visitor was an effective pollinator. Visit in this dissertation refers to 

landing of an insect visitor on a flower, which may include probing for nectar and/or pollen, 

which results in contact with the anthers or stigmas. Flower visitors were identified to 

taxonomic group level, using the categories; Hymenoptera (honey bees, other bees, wasps and 

ants), Lepidoptera (brown veined white butterflies, acraea butterflies, monarch butterflies and 

other butterflies), Coleoptera (blister beetles, ladybird beetles, chafer beetles and other 

beetles), Diptera (hoverflies, and other flies) and Hemiptera. Visitation rate was calculated 

according to Stiers et al. (2014) as the number of flower visitors to the individual target plant 

divided by the number of open flowers or inflorescences of that plant within the quadrat to 

avoid the bias of unequal flower numbers between replicates.  

3.4.3  Plant–insect Flower Visitor Network  

Considering the absence of studies on flower visitor guilds of P. hysterophorus and guilds of 

flower visitors shared with native flowers, we set out to map the interactions of flower 

visitors and flowering plants available in the study site. Five 36 m2 quadrats were randomly 

established in the invaded and uninvaded sites at Mikuuni–King’ori and Tengeru. Twice a 

week from April to June 2018, quadrats were observed in the same order, in the morning 

(08:00 – 12:00) and afternoon (14:00 – 17:00) for 15 minutes while recording plant–flower 

visitor interactions. Since it was difficult to identify all flower visitors on P. hysterophorus 
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and co–flowering plants to species level in the field, insect visitors were identified by eye 

where possible, some were photographed, and a representative subset were captured using a 

sweep net. These preserved specimens were then taken to the University of Dar–es–salaam, 

Department of Zoology, for identification by an entomologist. Plate 4 depicts some examples 

of flower visitor guilds of P. hysterophorus. 

 

 

Plate 4: Flower Visitors Foraging on P. hysterophorus Flowers: Syrphidae (Hoverflies: 

(a) and (b), Calliphoridae (c), Melyridae (d), Meloidae (e), Coccinellidae 

(Ladybird beetles: (f) and (g), Apidae (A. mellifera: (h) and Lepidoptera  

A quantitative plant–flower insect visitor network or interaction for each site was constructed 

using R bipartite package 2.08 (Dormann et al., 2009) based on the number of visits by 

flower visitors to each plant species. Interaction networks are tools which help to understand 
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plant–flower visitor communities and to investigate possible threats to plant diversity and 

food production if the ecosystem service (pollination) provided by pollinators decreases 

(Dormann et al., 2009). The network–level metrics, such as, network nestedness, 

connectance, linkage density, number of links per species, network generality and network 

specialization (H2ꞌ) were calculated using the command for network level in the bipartite 

package (Dormann et al., 2009). Nestedness describes the interactions between specialist 

species and most generalised species (e.g. P. hysterophorus) in the network (Adedoja et al., 

2018). Similarly, it explains the ability of specialists to interact with species that also interact 

with generalists in the network (Adedoja et al., 2018). It confers to interaction network 

stability where the lower the nestedness value, the lesser stable and vulnerable the network is 

to disruption (Adedoja et al., 2018). Further, the lower nestedness shows a lower randomness 

level in the species interactions (Blüthgen et al., 2008). Nestedness usually ranges from 1 to 

100 (Adedoja et al., 2018). Connectance is a measure of connections between species or 

proportion of links observed in a network (Adedoja et al., 2018; Blüthgen et al., 2008).  

Linkage density refers to the mean number of links per species in the network (Adedoja et al., 

2018; Dormann et al., 2009). It takes into account species evenness and richness of the 

distribution as it describes the distribution degree of interacting species in a network (Ferrero 

et al., 2013; Padrón et al., 2009). For large networks, linkage density can be a better network 

stability descriptor compared to nestedness (Adedoja et al., 2018). Generality infers the 

number of plant flower resources available for species of an insect visitor in the interaction 

network (Adedoja et al., 2018). The higher the generality the more generalised behaviour of 

species i.e. a flower insect visitor interacting with a larger number of plant species. Network 

specialization (H2ꞌ) estimates the constancy and selection of interaction between species in a 

network (Adedoja et al., 2018). It ranges from 0 (for generalized network) to 1 (for perfectly 

specialized network) (Adedoja et al., 2018; Dormann et al., 2009). Thus, presence of P. 

hysterophorus may disrupt these network metrics in plant–pollinator interactions.  

3.5  Parthenium hysterophorus–Suppressive Plant Species Competition Experiments  

3.5.1  Characteristics of Selected Suppressive Plant Species         

Selected forage legume plant species D. intortum (Fabaceae), L. purpureus (Fabaceae) and M. 

sativa (Fabaceae) were investigated for their competitive ability to suppress P. hysterophorus 
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growth (Plate 5). The selected plant species are non–invasive, drought–resistant, fast growing 

and are used as crop or ground cover (Debela et al., 2012). 

 

Plate 5: Test plant species (a) Lablab purpureus, (b) Medicago sativa and (c) Desmodium 

intortum  

Desmodium intortum (Greenleaf Desmodium) and M. sativa (Lucerne) have been widely 

grown in eastern and southern Africa to feed livestock (Aganga & Tshwenyane, 2003; Debela 

et al., 2012; Ngondya et al., 2016b). Lablab purpureus is a crop grown for seed and/or forage 

production (Amole et al., 2013). Its seeds are consumed by some animals including birds and 

humans (Maass et al., 2010). Additional competitive advantage of the test plants over P. 

hysterophorus is their ability to fix atmospheric nitrogen. They are also significant sources of 

nectar and pollen for honeybees and other flower visitors (Al-Kahtani et al., 2017; Bohart, 

1958).  

Lablab purpureus (Hyacinth bean) is a fast growing herbaceous legume plant in bush form. It 

can attain a stem height of 3 – 6 m (Aganga & Tshwenyane, 2003; Madzonga & Mogotsi, 

2014). It grows in a diverse range of environmental conditions, in bushland, grassland and 
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forest in the wild because it is highly adaptable and drought resistant (Maass et al., 2010). 

Lablab purpureus endures high temperatures range of 18 – 35°C and annual rainfall of 650 – 

3000 mm (Madzonga & Mogotsi, 2014). It is a multi–purpose perennial crop grown all over 

the tropics often as food and forage for human and livestock, respectively (Maass et al., 

2010). During dry season it remains green and provide fodders to livestock when other 

forages are scarce and dry (Madzonga & Mogotsi, 2014). Apart from maintaining soil fertility 

by fixing atmospheric nitrogen, L. purpureus can also suppress various invasive weeds 

(Amole et al., 2013). Studies have shown that L. purpureus is a good pioneer crop for 

preparing habitat formerly invaded with alien invasives (Amole et al., 2013; Maass et al., 

2010; Madzonga & Mogotsi, 2014). These traits make L. purpureus a good suppressive 

forage species for controlling P. hysterophorus.  

Desmodium intortum is another annual tropical forage legume which might suppress P. 

hysterophorus. It grows in areas with annual rainfall of 900 and 3000 mm, and temperatures 

of 25 and 30°C (Kariuki et al., 1999), and its height may range from 1.5 to 7.5 m. This 

nitrogen fixer also tolerates flooding, waterlogged habitats and shade (Kariuki et al., 1999; 

Maina et al., 2006). Desmodium intortum takes about 4 months to cover the soil and prevent 

weeds growth (Maina et al., 2006). It is grazed as a long–term pasture, and used as a 

conservation cover crop because its leaf materials decay mildly in the soil.    

Medicago sativa is the third plant identified for this experiment. It is relatively tolerant to 

drought (Lei et al., 2018). It can live for several years within its ideal temperature range of 15 

– 25°C, and rainfall of 200 – 2500 mm (Al-Kahtani et al., 2017; Lei et al., 2018; Radovic et 

al., 2009). It is a widely used legume forage due to its high protein content, high biomass 

production and adaptability (Al-Kahtani et al., 2017). Its erect stem can reach up to 1 m tall 

with numerous branches (Radovic et al., 2009). The M. sativa deep root system (4 –7 m) 

increases its resilience in droughts (Radovic et al., 2009). Its seeds can be consumed by 

humans as food; however, it is often grown and used as a cover crop, hay, silage, and green 

manure. It is also valued for honey production because its flowers attract honeybees and 

enhance biodiversity conservation (Al-Kahtani et al., 2017; Bohart, 1958). Despite that M. 

sativa lives for 4 – 8 years, it may even  survive for more than 20 years depending on climate 

(Al-Kahtani et al., 2017; Latrach et al., 2014; Lei et al., 2018).  

Generally, these test plant species demonstrate three essential characteristics: soil improver, 

weed competitor, and dense cover crop, which make them possibly appropriate for 
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management of P. hysterophorus in rangelands and protected areas (Kariuki et al., 1999; Lei 

et al., 2018; Maina et al., 2006).  

3.5.2  Competition Experiments  

Parthenium hysterophorus seeds were obtained from the Agricultural Division at TPRI in 

Arusha. Desmodium intortum and M. sativa seeds were purchased from Kibo Seed Company 

Ltd. in Arusha. Lablab purpureus seeds were obtained from the Department of Sustainable 

Agriculture, Biodiversity and Ecosystem Management at NM–AIST. Suppressive effects of 

D. intortum, M. sativa and L. purpureus on P. hysterophorus seedling growth was 

investigated in field plots (1 m2) and plastic pots (763.8 cm2 surface area) at NM–AIST from 

10th January to 28th February 2019. Pots were equally filled with black clay soil from 

uninvaded field plots. Twenty–five seeds of P. hysterophorus and test plant species each (D. 

intortum, M. sativa and L. purpureus) were sown in 5 pots and 5 plots at varying 

combinations in monoculture as a control, and mixtures. Plant seedlings were allowed to 

grow at a constant density of 4 P. hysterophorus / 6 test plants per pot, and 6 P. 

hysterophorus / 10 test plants per plots (Table 2).  

Table 2: Pot and Plot Experimental Planting Design Diagram with P. hysterophorus and 

Suppressive Plant Species. Respectively P, M, D and L Stand for P. 

hysterophorus, M. sativa, D. intortum and L. purpureus.  S0, S1, S2 and S3 Refer 

to Levels of Suppressive Species Richness Respectively  

 

The total of 11 planting combinations was replicated five times to make 55 planting plots and 

55 pots (Table 2). Pots were kept in a naturally illuminated screen–house at NM–AIST. Each 

Parthenium hysterophorus grown with and without 

suppressive plant species 

 

Suppressive plant species 

grown alone 

PS0 PS1 PS2 PS3 
 

Pot experiment  

4P 4P/6M 4P/6M/6D 4P/6M/6D/6L 6M 

 

4P/6D 4P/6M/6L 

 

6L 

 

4P/6L 4P/6L/6D 

 

6D 

Plot experiment  

6P 6P/10M 6P/10M/10D 6P/10M/10D/10L 10M 

 

6P/10D 6P/10M/10L 

 

10L 

 

6P/10L 6P/10L/10D 

 

10D 
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pot and plot was irrigated daily in the morning with 0.5 l and 4 l of water respectively. 

Positions of pots were randomised twice per week to ensure uniform distribution of sunlight.    

 Fifty–day–old seedlings of P. hysterophorus were harvested from each pot and plot without 

destroying the roots to assess suppressive effects of test plants on invasive growth. This was 

assessed by measuring P. hysterophorus growth parameters such as stem height, shoot 

diameter, root length, above– and belowground fresh biomass (AFB and BFB respectively), 

above– and belowground dry biomass (ADB and BDB respectively) and total fresh biomass. 

Total leaf chlorophyll content (total Chl) was also determined. Above– and below ground 

biomass components were measured as an index of plant productivity (Ammondt & Litton, 

2012). Seedlings were washed in water to remove dirt prior to separate them into below–and 

aboveground biomass components. Each component in separate paper bags was dried in an 

oven at 70ºC for 12 h. Stem height (from soil level to the tip of tallest plant part) and root 

length were measured using a meter ruler. The shoot diameter (above the first two seedling 

leaves) and biomass were measured using a digital callipers and an analytical balance 

respectively.    

Competition intensity indices i.e. relative competition intensity (RCI, eqn. 1) and relative 

interaction intensity (RII, eqn. 2) were determined to assess performance of P. hysterophorus 

seedlings grown with suppressive species at different diversity levels (Armas et al., 2004; 

Grace, 1995; Weigelt & Jolliffe, 2003). If RCI = 0 there is no competition (neutral), RCI < 0 

indicates that the performance of P. hysterophorus is better with the presence of suppressive 

plants (facilitation) and RCI > 0 indicates that suppressive plants have a negative effect on P. 

hysterophorus or competition in the general sense (Armas et al., 2004; Vilà et al., 2004; 

Weigelt & Jolliffe, 2003). If RII < 0 competition prevails, RII > 0 facilitation prevails and RII 

= 0 the outcome is neutral or no interaction. The range of two indices is 1 ≥ RCI ≥ ∞-  and 1 ≥ 

RII ≥ 1˗ (Armas et al., 2004; Grace, 1995).   
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Where: B0 and Bw are P. hysterophorus biomass grown in monoculture and in mixture, 

respectively. The biomass averages of overall replications of each planting combination were 

used. 

3.6  Desmodium uncinatum Leaf (DuL) Extract against P. hysterophorus Seed 

Germination and Seedling Growth 

3.6.1  Preparation of DuL Leaf Crude Extract 

Desmodium uncinatum fresh leaves were collected from five villages (Nkwaranga, Ngiresi, 

Sokoni one, Sura and Urisho) in Meru district between June and August, 2018. During this 

time period the plants were abundant, and weather conditions were suitable (i.e. little rainfall) 

for collecting leaf samples. The leaves were collected early in the morning before sunrise to 

avoid possible degradation of any non–photostable allelochemicals. About 10 to 20 leaves 

were collected randomly from different individual plants occurring on non–agriculture areas, 

and free from pesticide contamination (Isman & Grieneisen, 2014). Voucher specimens were 

taken to TPRI for identification.   

The leaves were air dried for 30 days under room temperature in indoors to avoid ultraviolet 

(UV) light to degrade some compounds. Dried leaves were ground into fine powder and 

stored in porous paper envelopes. Preparation of D. uncinatum leaf (DuL) crude extract 

concentrations followed procedures described by Ngondya et al. (2016a), whereby 100 g 

powder was soaked in 1 l of distilled water to form crude extract. Crude extract was stored in 

a 4 l plastic container for 72 h in a dark room. The extract was filtered using Muslin cloth and 

filtrates were diluted with distilled water to obtain different aqueous concentrations of DuL 

(100 ml each) termed 0 %, 25 %, 50 %, 75 %, and 100 % relative to the original extract.   

3.6.2  Parthenium hysterophorus Seed Germination Experiments under Dul Extract 

Treatment 

To investigate the allelopathic effect of DuL crude extract on P. hysterophorus seed 

germination, experiments were conducted at NM–AIST, in the lab (for petri dishes) and field 

(for pots and plots). Five glass petri dishes (each of 70.8 cm2 surface area), five plastic pots 

(763.8 cm2 surface area), and five plots (1 m2) per treatment were used, and then replicated 

five times. Petri dishes lined with absorbent cotton wool were rinsed with distilled water 

before 25 seeds of P. hysterophorus were sown in each dish. The same number of seeds were 

sown in pots and plots. The seeds were kept moist (irrigated ad libitum) with five different 
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DuL crude extract concentration treatments (0 %, 25 %, 50 %, 75 % and 100 %). Plots were 

equally spaced 0.5 m apart. The position of petri dishes and pots was randomised weekly 

throughout the experiment in order to ensure equal distribution of sunlight and more 

consistent coverage of water. The number of seeds that germinated were recorded daily for 20 

days, and the percentage of seeds germinated was calculated. Germination inhibition 

percentage (IP) of treatments over the control germination were also calculated (eqn. 3). 

 

 

3.6.3  Parthenium hysterophorus Seedling Growth Experiments under Dul Extract 

Treatment 

Twenty–five field plots of 1 m2 were planted with 40 seeds each. At the same time, the same 

number of seeds was planted in each 25 pots using soil from the uninvaded field plots. Plots 

and pots were watered thoroughly at the time of sowing (0.5 l and 4 l per pot and plot, 

respectively). Following a week of germination, plots and pots were irrigated twice per week. 

Seedlings were thinned to three per pot to prevent overcrowding. Twenty–day–old seedlings 

in plots and pots were sprayed ad libitum using a hand sprayer with five different 

concentrations of DuL crude extract (0 %, 25 %, 50 %, 75 %, and 100 %) daily for 25 days (2 

August to 19 September, 2018). The allelopathic effects of DuL crude extract on seedling 

growth at different concentrations were investigated by measuring P. hysterophorus growth 

parameters.  At the end of the experiments, ten P. hysterophorus seedlings per treatment were 

randomly harvested from each field plot and three from each pot without destroying the roots. 

Growth parameters i.e. stem height, stem diameter, root length, total Chl, AFB, ADB, BFB 

and BDB were measured using similar procedures and methods described in section 3.2.2 

above.     

3.6.4  Parthenium hysterophorus Leaf Chlorophyll Content under Dul Extract 

Treatment and Suppressive Plants Experiments 

Five young fresh leaves of 50–day–old P. hysterophorus seedlings from competition 

experiments were selected randomly per field plot and pot to determine total Chl. Also, the 

same number of leaves were randomly selected from ten P. hysterophorus seedlings per field 

plot and three seedlings per pot sprayed with five different DuL crude extract concentrations. 

In both experiments, total Chl contents of P. hysterophorus seedlings was extracted and 
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measured as an index of plant health in response to suppressive effects of the competitive 

forage plants or DuL crude extract treatments. The leaf chlorophyll was extracted according 

to Hiscox and Israelstam (1979) and Ngondya et al. (2016b) with some modification. About 

70 mg of P. hysterophorus leaves was immersed in 6 ml of dimethyl sulfoxide (DMSO) in a 

test–tube and incubated at 65°C for 12 h. Afterwards, the extract was made up to a total 

volume of 10 ml with DMSO, thereafter, transferred to vials for storage (0–4ºC) waiting for 

analysis.   

Three millilitres (3 ml) of P. hysterophorus leaf chlorophyll extract was transferred into a 

microplate to determine absorbance or optical density (OD) of the samples. The OD of the 

blank liquid (DMSO) and samples was determined under Synergy HTX Multi–Mode 

Microplate Reader at 663 nm and 645 nm (Hiscox & Israelstam, 1979). Prior to calculating 

the total Chl, the OD of the blank was deducted from the OD readings of every sample. The 

equation (eqn. 4) was used to calculate the total Chl contents (Hiscox & Israelstam, 1979; 

Ngondya et al., 2016b) respectively, A663 and A645 are absorbance readings at 663 nm and 645 

nm.    

 

3.7  Statistical Data Analysis 

Parthenium hysterophorus seedling stem height, shoot diameter, root length, total fresh 

biomass, above–ground fresh biomass (AFB), above–ground dry biomass (ADB), below–

ground fresh biomass (BFB), below–ground dry biomass (BDB) and total Chl content were 

compared across suppressive species planting mixtures using one–way ANOVA with the 

number of pots or plots per treatment as the unit of replication. Relationship between P. 

hysterophorus Chl content and total fresh biomass was performed using a Pearson's product–

moment correlation analysis. A one–way ANOVA was also carried out to test for differences 

in P. hysterophorus seedlings’ growth parameters in various concentrations of DuL crude 

extract.   

The impact of P. hysterophorus on visitation (the number of arriving flower visitors and 

visitation rate) and foraging behaviour (duration of visits) of insect flower visitors to target 

plants O. gratissimum and A. conyzoides was analysed using one–way ANOVA (general 

linear model procedure) with the number of quadrats as the unit of replication and invasion 

status as categorical predictor. Flower visitor taxonomic groups were compared between the 
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invaded and uninvaded quadrats. Soil chemical properties were compared between invaded 

and uninvaded quadrats using t–test.    

Prior to data analysis, normality and homogeneity of variance were verified using a Shapiro–

Wilk test and Levene’s test respectively. Whenever parametric assumptions were not 

confirmed after transformations using box–cox or log transformation, the non–parametric 

Kruskal–Wallis test was used. Hemiptera were not compared between sites because their 

sample size was very small and therefore, they were considered as minor flower insect 

visitors. The post–hoc Tukey–Kramer HSD (honest significant difference) test was used to 

compare the significant differences across different planting combinations, as well as 

foraging and visitation among flower visitors. The results of Kruskal–Wallis i.e. the 

significant differences in flower visitation and foraging behaviour between flower visitors 

was separated using a Mann–Whitney Pairwise comparison test. Moreover, the Fisher LSD 

(least square difference) was used to separate the mean difference across different DuL crude 

extract concentrations.  The statistical software used for all tests was Origin (2013) version 

9.0 SR1 at a significance level of 5%, while R version 3.5.1 (2018) was used to construct 

pollinator visitation network and calculate network level metrics.   
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CHAPTER FOUR 

RESULTS AND DICUSSION   

4.1  Results 

4.1.1  Distribution of P. hysterophorus Within and Outside Arusha National Park   

The field survey indicated that P. hysterophorus has not yet invaded the ANP. However, the 

invasion was recorded in some villages (i.e. King’ori, Maleu, Napoco, Ngongongare, 

Ngurdoto, Oligilai and Sakila) neighbouring the park (Fig. 4). The closest invaded areas to 

ANP were found in King’ori and nearby Ngurdoto forest reserve (ca. 0.7 km and 0.6 km to 

the border zone respectively), around Meru view hotel and Migombani (ca.1.0 km and 2.7 km 

from Ngongongare gate of ANP respectively) and Maleu (ca.1.0 km close to the forest 

reserve bordering the ANP). Invasion point recorded in Napoco was approximately 3.3 km 

from Ngongongare gate. Respectively, invaded areas in Sakila, Napoco and Ngurdoto were 

around 2.5 km, 3.1 km and 3.6 km from Arusha–Moshi road which is highly invaded by P. 

hysterophorus. These distances were estimated in Earth google map. 

 

 

Figure 4: Current spread of P. hysterophorus outside the Arusha National Park 
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Parthenium hysterophorus was observed growing in grazing areas, maize and banana fields. 

Also, it was observed growing along the Momela road, which enters the ANP through the 

Ngongongare gate. High density of P. hysterophorus was recorded in maize fields, along 

roadsides, and at lower elevations (Fig. 5). Furthermore, it was observed growing in landfills 

or dumping ground found near settlements in villages and roadsides. 

 

 

Figure 5: Frequency of P. hysterophorus Occurrence in Different Land use Types (A)  

and Elevation in  m.a.s.l (B) 

4.1.2  Impact of P. hysterophorus on Soil Chemical Properties  

Most of the soil chemical properties analysed in the study did not differ significantly between 

the invaded and uninvaded quadrats (p > 0.05, Table 3). A significant difference was 

observed between the invaded and uninvaded quadrats for pH (p = 0.013), P (p = 0.003), EC 

(p = 0.046) and Ca (p = 0.043) (Table 3). Phosphorus was higher and CEC was lower in 

uninvaded quadrats compared to invaded ones (p = 0.003, p = 0.015; Table 3). In this study, it 

was found that invaded site has high CEC, more acidic soil with lower EC, less calcium and 

phosphorus.  
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Table 3: T-test Statistics of the Mean (± SE) Soil Properties in Areas with (invaded) and 

without (uninvaded) Invasion of P. hysterophorus  

Soil properties Uninvaded Invaded T    df p-value 

Ph  6.54 ± 0.06  6.36 ± 0.03  2.74 18 0.013 

EC (mS/cm) 0.58 ± 0.08  0.44 ± 0.03  2.14 18 0.046 

OC (%) 1.79 ± 0.15 1.43 ± 0.22 1.59 18 0.129 

Organic Matter (%) 3.09 ± 0.25 2.47 ± 0.38 1.60 18 0.128 

Total N (%) 0.11 ± 0.01 0.12 ± 0.02 -0.65 18 0.526 

P (mg/kg) 68.62 ± 4.65 48.07 ± 3.69 3.46 18 0.003 

Ca (Cmol/kg) 19.37 ± 0.35 18.11 ± 0.46 2.18 18 0.043 

Mg (Cmol/kg) 2.22 ± 0.01 2.21 ± 0.11 0.44 18 0.668 

K (Cmol/kg) 3.68 ± 0.26 2.79 ± 0.37 1.98 18 0.063 

Mn (ppm) 49.8 ± 7.01 64 ± 3.23 -1.65 18 0.116 

CEC (Cmol/kg) 34.4 ± 1.64 43.2 ± 1.83 -2.69 18 0.015 

   Bold p-values are significant at p < 0.05 

4.1.3  Impact of P. hysterophorus on Flower Visitation to Co–flowering Plants 

The flower visitors on P. hysterophorus, O. gratissimum, and A. conyzoides comprised a 

diversity of insect species (Table 4). The number of visits was twice to flowers of O. 

gratissimum and A. conyzoides in the uninvaded quadrats compared to invaded quadrats 

(Table 5). In the invaded quadrats, P. hysterophorus received 1209 visits also about twice as 

many visits compared to the other two indicator plant species (Table 5). Hymenoptera and 

Diptera were the dominant taxa recorded with greater than 50% of all recorded visits (Table 

5). Apis mellifera was the most frequent visitor to target species in both invaded and 

uninvaded quadrats as well as to flowers of both O. gratissimum (55%) and A. conyzoides 

(51%) in the uninvaded quadrats (Table 5). Apis mellifera also made about 54% of visits to 

flowers of P. hysterophorus compared to O. gratissimum and A. conyzoides in the invaded 

quadrats (Table 5). Note that the data of flower visitors are summed over the study period. 
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Table 4: Flower Visitor Guild of P. hysterophorus, O. gratissimum and A. conyzoides 

Order Common name Species name or family 

Hymenoptera 

Honey bees Apis mellifera  

Wasps Vespidae 

Ants Formicidae 

Other bees  Xylocopa  

Coleoptera 

Lunate blister beetles Hycleus lugens 

Black blister beetles Epicauta spp. 

Blister beetles Meloidae 

Chafer beetles Rhabdotis spp.  

Chafer beetles Pchnoda spp 

Groove-winged flower beetles Melyris spp. 

Lunate ladybird beetles Cheilomenes spp. 

Potato ladybird beetles Epilachna spp. 

Ladybird beetles Coccinellidae  

Lepidoptera 

Brown-veined white Balenois  aurota 

African monarch Danaus chrysippus 

Tiny acraea Acraea uvui 

Dancing acraea Acraea eponina 

Encedon acraea Acraea encedon 

Butterflies  Vanessa virginiensis 

Flower moths Scythrididae 

Orange tiger moths Secusio spp 

Chief butterflies Amauris spp 

Diptera 

Hoverflies Syrphidae 

Soldier flies Stratiomyiidae 

Bee flies Bombyliidae 

Flies Stomorhina lunata 

Flies Calliphoridae  

Flies Muscidae 

Drone flies Eristalis spp 

Blowflies Chrysomya spp 

Green bottles Calliphoridae 

Fruit flies Didacus spp 

 Housefly Musca domestica L. 
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Table 5: Flower Visitors, Number of Insects Observed (N) and Percentage of Frequency (%) of Total Visits that each Pollinator Made to 

P. hysterophorus, O. gratissimum and A. conyzoides 

Flower visitors Order 

Invaded site Uninvaded site 

P. hysterophorus O. gratissimum A. conyzoides O. gratissimum A. conyzoides 

N % N % N % N % N % 

A. mellifera Hymenoptera 652 54 325 50 226 38 649 55 525 51 

Other bees Hymenoptera 82 7 76 12 108 18 112 10 142 14 

Wasps Hymenoptera 38 3 22 3 34 6 43 4 63 6 

Ants Hymenoptera 0 0 17 3 25 4 8 1 8 1 

B. aurota Lepidoptera 18 1 20 3 9 2 24 2 6 1 

Acraea butterflies Lepidoptera 5 0 7 1 5 1 1 0 5 0 

Monarch butterflies Lepidoptera 13 1 5 1 7 1 9 1 26 3 

Other butterflies Lepidoptera 24 2 18 3 23 4 32 3 23 2 

Blister beetles Coleoptera 52 4 28 4 32 5 43 4 44 4 

Ladybird beetles Coleoptera 57 5 19 3 6 1 42 4 27 3 

Other beetles Coleoptera 23 2 7 1 5 1 24 2 2 0 

Hoverflies Diptera 130 11 47 7 19 3 86 7 74 7 

Other flies Diptera 99 8 48 7 72 12 72 6 43 4 

Bugs Hemiptera 16 1 17 3 17 3 28 2 40 4 

Total visits 1209 100 656 100 588 100 1173 100 1028 100 
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The relative proportion of visits to O. gratissimum and A. conyzoides by different visitor taxa 

changed significantly in the presence of P. hysterophorus. Both target plants experienced a 

significant reduction in visits by Hymenoptera (A. mellifera, ants, and wasps), most beetles, 

butterflies, and flies on the invaded quadrats (Table 6). Post hoc tests revealed that the 

number of visits of A. mellifera to target plants was significantly higher on the uninvaded 

quadrats, about twice the number of visits on the invaded quadrats (O. gratissimum: p = 

0.0122; A. conyzoides: p < 0.0001, Fig. 6). The number of arriving blister beetles (p = 

0.0117), and ladybird beetles (p = 0.0157) to O. gratissimum, and ladybird beetles to A. 

conyzoides (p = 0.0013) on the uninvaded quadrats was twice as high compared to that on the 

invaded quadrats (Fig. 7).  

 

Similarly, the number of acraea butterflies visiting O. gratissimum (p = 0.0026) and other 

butterflies visiting A. conyzoides (p = 0.0283) on the uninvaded quadrats was about twice the 

number of visits on the invaded quadrats (Fig. 8). Moreover, the number of visits of 

hoverflies (p = 0.0001), and other flies (p = 0.0001) to flowers of O. gratissimum and other 

flies (p = 0.0013) to A. conyzoides on the uninvaded quadrats was about three times the 

number of visits on the invaded quadrats (Fig. 9). Furthermore, the number of arriving chafer 

beetles, monarch butterflies, ants, other bees and wasps were not negatively affected by P. 

hysterophorus.  
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Table 6: Kruskal-Wallis and One-Way ANOVA Test Statistics of the Number of Arriving Flower Visitors, Duration of Visits and 

Visitation Rate of Flower Visitor Functional Groups to Flowers of O. gratissimum and A. conyzoides on the Invaded and 

Uninvaded Quadrats 

Values differ significantly at p < 0.05, * indicates significant difference 

 

             

 

 

 

  

 

 

Flower visitor groups 
Ocimum gratissimum  Ageratum conyzoides 

Number of visits Visitation rate Duration of visits  Number of visits Visitation rate Duration of visits 

Ants, bees, and wasps F(7, 32) = 155.75* H(7, 32) = 35.53* H(7, 32) = 34.98*   F(7, 32) = 204.03*  H(7, 32) = 34.23*  H(7, 32) = 33.22*  

Beetles F(7, 32) = 29.79* H(7, 32) = 18* H(7, 32) = 37.52*   F (7, 32) = 19.56*  H(7, 32) = 31.70*  H(7, 32) = 34.14* 

Butterflies F(7, 32) = 4.98* H(7, 32) = 11.89* H(7, 32) = 30.35*   F(7, 32) = 6.74*  H(7, 32) = 16.13 H(7, 32) = 28.40* 

Flies F(3, 16) = 34.28* H(3, 16) = 14.79* H(3, 16) = 15.61*   F(3, 16) = 31.00*   H(3, 16) =   6.91 H(3, 16) = 16.14* 
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Figure 6: The number of Arriving Hymenoptera to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) 

and Uninvaded (grey) Sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by 

Tukey’s HSD test at p = 0.05. Boxplots show the Mean (Square within Boxes), 25% and 75% Quartile Ranges and Whiskers 

show the 5th and 95th Percentiles 
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Figure 7: The Number of Arriving Beetles to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) and 

Uninvaded (grey) Sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by Tukey’s 

HSD Test at p = 0.05. Boxplots Show the Mean (Square within Boxes), 25% and 75% Quartile Ranges and Whiskers show the 

5th and 95th Percentiles 
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Figure 8: The Number of Arriving Butterflies to Flowers of O. gratissimum (left panels) and A. conyzoides (right panels) on the Invaded 

(light grey) and Uninvaded (grey) Sites per 15-min observation period. Different Letters on Bars Indicate Significant 

Differences by Tukey’s HSD Test at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile Ranges 

and Whiskers Show the 5th and 95th Percentiles 
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Figure 9: The Number of Arriving Flies to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) and 

Uninvaded (grey) sites per 15-min Observation Period. Different Letters on bars Indicate Significant Differences by Tukey’s 

HSD Test at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile Ranges and Whiskers Show the 

5th and 95th Percentiles 
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4.1.4  Duration of Visits and Flower Visitation Rate in Invaded and Uninvaded Sites  

Duration of visits and visitation rate of insect taxonomic groups, the bees, ants and wasps, 

beetles, butterflies and flies to flowers of target plants was significant different between the 

invaded and uninvaded quadrats but not the visitation rate of butterflies and flies to flowers of 

A. conyzoides (Table 6). In general, insects spent longer time interacting with individual 

flowers of both target species on the uninvaded quadrats, the duration of visits of A. mellifera 

to flowers of O. gratissimum (p = 0.0216) and A. conyzoides (p = 0.0122) on the uninvaded 

quadrats was about two and three times the duration of visits on the invaded quadrats, 

respectively (Fig. 10). The duration of visits of ladybird beetles (p = 0.0122, Fig. 11), other 

beetles (p = 0.0119, Fig. 11), acraea butterflies (p = 0.0117, Fig. 12), other butterflies (p = 

0.0022, Fig. 12) and hoverflies (p = 0.0122, Fig. 13) to flowers of O. gratissimum on the 

uninvaded quadrats was about twice the duration of visits on the invaded quadrats.  

Also, other flies (O. gratissimum: p = 0.0119, Fig. 13), ladybird beetles (A. conyzoides: p = 

0.0122, Fig. 11), and other butterflies (A. conyzoides: p = 0.0122, Fig. 12) had longer 

duration of visits to flowers of target plants on the uninvaded quadrats, about three times the 

duration of visits on the invaded quadrats. Moreover, the duration of visits of blister beetles 

(p = 0.0122, Fig. 11) and other flies (p = 0.0122, Fig. 13) to flowers of A. conyzoides on the 

uninvaded quadrats was twice the duration of visits on the invaded quadrats, and that of 

hoverflies (p = 0.0121, Fig. 13) on the uninvaded quadrats was four times the duration of 

visits on the invaded quadrats.  

The visitation rate by A. mellifera to the flowers of O. gratissimum (p = 0.0012) and A. 

conyzoides (p = 0.0001) on the uninvaded quadrats was about twice the visitation rate of A. 

mellifera on the invaded quadrats (Fig. 14). Also, the visitation rate of blister beetles (p = 

0.0119), ladybird beetles (p = 0.0032) and acraea butterflies (p = 0.0432) to flowers of O. 

gratissimum, and lady beetles (p = 0.0367) to flowers of A. conyzoides on the uninvaded 

quadrats was about twice as high compared to that on the invaded quadrats (Fig. 15 and Fig. 

16). Moreover, the visitation of rate of hoverflies (p = 0.0178) to flowers of O. gratissimum 

on the uninvaded quadrats was three times the visitation rate on the invaded quadrats (Fig. 

17). In contrast, the visitation rate of flies (H = 6.91, df = 3, p > 0.05) and butterflies (H = 

16.13, df = 7, p < 0.05) to flowers of A. conyzoides did not differ statistically between the 

invaded and uninvaded quadrats (Table 6).  
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Figure 10: Duration of Visits (in second) of Hymenoptera to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded 

(light grey) and Uninvaded (grey) Sites per 15-min observation period. Different letters on bars indicate significant 

differences by Mann–Whitney pairwise test at p = 0.05. Boxplots show the Median (horizontal line within boxes), 25% and 

75% Quartile Ranges and Whiskers Indicate the 5th and 95th Percentiles  
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Figure 11: Duration of Visits (in second) of Beetles to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light 

grey) and Uninvaded (grey) sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences 

by Mann–Whitney Pairwise Test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% 

Quartile Ranges and Whiskers Indicate the 5th and 95th Percentiles  
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Figure 12: Duration of Visits (in second) of Butterflies to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light 

grey) and Uninvaded (grey) Sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences 

by Mann–Whitney Pairwise Test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% 

Quartile Ranges and Whiskers Indicate the 5th and 95th Percentiles  
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Figure 13: Duration of Visits (in second) of Flies to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) 

and Uninvaded (grey) sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by 

Mann–Whitney Pairwise Test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% Quartile 

Ranges and Whiskers Indicate the 5th and 95th Percentiles  
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Figure 14: Visitation rate of Hymenoptera to flowers of O. gratissimum (left) and A. conyzoides (right) on the invaded (light grey) and 

Uninvaded (grey) Sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by Mann–

Whitney Pairwise Test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% Quartile Ranges 

and Whiskers Indicate the 5th and 95th Percentiles  
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Figure 15: Visitation Rate of Beetles to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) and 

Uninvaded (grey) Sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by Mann–

Whitney Pairwise Test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% Quartile Ranges 

and Whiskers Indicate the 5th and 95th Percentiles 
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Figure 16: Visitation Rate of Butterflies to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) and 

Uninvaded (grey) sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by Mann–

Whitney Pairwise test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% Quartile Ranges 

and Whiskers Indicate the 5th and 95th Percentiles 
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Figure 17: Visitation Rate of Flies to Flowers of O. gratissimum (left) and A. conyzoides (right) on the Invaded (light grey) and 

Uninvaded (grey) Sites per 15-min Observation Period. Different Letters on Bars Indicate Significant Differences by Mann–

Whitney Pairwise Test at p = 0.05. Boxplots Show the Median (horizontal line within boxes), 25% and 75% Qartile Ranges 

and Whiskers Indicate the 5th and 95th Percentiles 
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4.1.5  Visitation Network of Plant–Flower Visitors  

A total of 1103 and 987 interactions between co-flowering plant species and flower visiting-

insects on the invaded sites and 429 and 555 interactions on the uninvaded sites were 

recorded at Tengeru and Mikuuni respectively. The mean number of interactions per site was 

similar between invaded and uninvaded sites (766 and 771 respectively). P. hysterophorus 

interacted with 27% and 63% of co-flowering invasive (i.e. P. hysterophorus, A. conyzoides, 

Bidens pilosa and Nicandra physaloides) and native plant species respectively via the flower 

visitors. Plant species shared A. mellifera as the main flower visitor, which also was the most 

frequent visitor to P. hysterophorus in both sites with a total of 60% of visits. Flower insect 

visitors visited more than one plant species, however, no plant species seemed to be pushed 

out of the network in the invaded sites (Fig. 18a, b).  

Insect taxa did not differ significantly between the two sites. Although some taxa appeared to 

alter their visitation patterns subtly in the presence of P. hysterophorus – for instance, 

hoverflies seem to stop visiting other plants and mostly go to P. hysterophorus (Fig. 18a, b). 

Network metrics were similar, regardless of whether the site was invaded or not (connectance 

and specialisation (Table 7). However, nestedness was higher at both uninvaded sites 

compared to their corresponding invaded ones, indicating a higher level of randomness in the 

interactions on the uninvaded sites (Table 7). Generality and links per species are lower on 

the uninvaded sites as all insect groups showed more generalised behaviour on the invaded 

sites (interacting with a larger number of plants) (Table 7). 
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Figure 18: Visitation Web Showing Plant-Flower Visitor Interactions in Invaded and Uninvaded Plots at Mikuuni (a) and Tengeru (b) 

Study Sites  
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Black boxes represent flower visiting-insects in the upper level, and plants in the lower level, 

the width of which indicates the number of visits recorded. Grey links indicate plant-flower 

visitor interactions, and the visitation frequency is represented by the magnitude of 

interactions (i.e., breadth of the links). Abbreviations for flower visiting-insects are AM: Apis 

mellifera, SB: Small bees, OB: Other bees, WS: Wasps, BA: Balenois aurota, ABF: Acraea 

butterflies, MBF: Monarch butterflies, OBF: Other butterflies, HP: Hemiptera, BT, Blister 

beetles, LT: Ladybird beetles, OT: Other beetles, HF: Hoverflies, BL: Blowflies, BF: Bee 

flies, OF:  Other flies, whereas plants are PH: Parthenium hysterophorus, OG: Ocimum 

gratissimum, AC: Ageratum conyzoides, GC: Gutenbergia cordifolia, IN: Ipomoea nil, LG: 

Leucas grandis, LN: Leonotis nepetifolia, LM: Leonotis molis, NP: Nicandra physaloides, 

SS: Sphaeranthus suaveolens, BP: Bidens pilosa, ES: Emilia sp, and ZS: Zehneria scabra. 

Table 7: Network‐Level Metrics for the Invaded and Uninvaded Study Sites Based on 

the Number of Visits by Flower Visitors to each Plant Species  

Network‐level metrics 
Tengeru site  Mikuuni site 

Invaded Uninvaded   Invaded Uninvaded 

Connectance  0.5 0.5  0.5 0.5 

Nestedness 25.4 31.8  29.7 41.9 

Specialization H2ꞌ index 0.2 0.2  0.2 0.2 

Generality 7.3 6.8  7.6 6.8 

Linkage density  6.1 6.5  6.0 6.1 

Links per species             3.3 3.2  3.5 3.2 

 

4.1.6  Effects of Selected Suppressive Plant Species on P. hysterophorus Growth Vigour  

Overall, P. hysterophorus growth vigour was more reduced when its seedlings were grown 

with L. purpureus in all combinations compared to other test plant species. Parthenium 

hysterophorus seedlings had lower stem height, root length, shoot diameter and biomass in 

mixtures than when grown in monoculture. The stem height (Pot: F(7, 32) = 9.41, p < 0.0001, 

Plot: F(7, 32) = 3.26, p = 0.01, Fig. 19), root length (Pot: F(7, 32) = 2.78, p = 0.0224, Plot: F(7, 32) 

= 11.77, p < 0.0001, Fig. 20) and shoot diameter (Pot: F(7, 32) = 20.01, p < 0.0001, Plot: F(7, 32) 

= 1.67, p = 0.0151, Fig. 21) of P. hysterophorus seedlings grown with suppressive plants 

differed significantly between the number of intercropped suppressive plant species. In the 

pot experiment, P. hysterophorus seedlings stem height was 77% shorter when grown with 

three suppressive species than when grown with one or two species and in monoculture.  
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Also, it was > 60% shorter when grown with one (L. purpureus) or two (L. purpureus and D. 

intortum) suppressive species than when grown alone or with M. sativa (Fig. 19). Parthenium 

hysterophorus had > 50% shorter root length when grown with L. purpureus and/ or D. 

intortum than when grown in monoculture or with M. sativa (Fig. 20). When grown with all 

three suppressive species L. purpureus, D. intortum and M. sativa together, P. hysterophorus 

root length was 64% shorter than when grown with one or two species, and in monoculture.   

Further, when P. hysterophorus seedlings were grown with L. purpureus in any combination 

the shoot diameter was reduced by > 62% compared to when grown with other suppressive 

species and in monoculture (Fig. 21). In the plot experiment, P. hysterophorus seedling stem 

height was > 40% shorter when grown with L. purpureus in any combination than when 

grown with M. sativa and/or D. intortum, and in monoculture (Fig.19). The root length of P. 

hysterophorus seedlings when grown with two or three suppressive species was > 54% 

shorter compared to when it was grown with one species or in monoculture (Fig. 20). When 

P. hysterophorus was grown with one suppressive species particularly L. purpureus, the root 

length of seedlings was 45% shorter compared to when grown alone or with either M. sativa 

or D. intortum. Moreover, P. hysterophorus shoot diameter was > 38% smaller when grown 

with two or three suppressive plant species than when grown in monoculture or with one 

suppressive species (Fig. 21).  
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Figure 19: Mean (±SD) Stem Height of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One (dark grey boxes), 

Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left panels) and Pot (right panels) Experiments. 

Boxes with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots Show the Mean (square 

within boxes), 25% and 75% Quartile Ranges and whiskers Show Standard Deviations. Parthenium hysterophorus Seedlings 

in Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus  
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Figure 20: Mean (±SD) Root Length of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One (dark grey boxes), 

two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left panels) and Pot (right panels) Experiments. 

Boxes with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots Show the Mean (square 

within boxes), 25% and 75% Quartile Ranges and Whiskers Show Standard Deviations. Parthenium hysterophorus Seedlings 

in Planting Mixture PML in pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus   
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Figure 21: Mean (±SD) Shoot Diameter of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One (dark grey 

boxes), Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left panels) and Pot (right panels) 

Experiments. Boxes with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots show the 

Mean (square within boxes), 25% and 75% Quartile Ranges and whiskers Show Standard Deviations. Parthenium 

hysterophorus Seedlings in Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. 

intortum and L = L. purpureus 
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Mean aboveground fresh biomass (AFB) (Pot: F(7, 32) = 13.99, p < 0.0001, Plot: F(7, 32) = 

11.68, p < 0.0001, Fig. 22) and aboveground dry biomass (ADB) (Pot:  F(7, 32) = 10.33, p < 

0.0001, Plot:  F(7, 32) = 9.42, p < 0.0001, Fig. 23) of P. hysterophorus seedlings differed 

significantly between planting diversity. Also, mean belowground fresh biomass (BFB) 

(Pot: F(7, 32) = 22.78, p < 0.0001, Plot: F(7, 32) = 3.23, p = 0.0105, Fig. 24) and belowground 

dry biomass (BDB) (Pot: F(7, 32) = 15.94, p < 0.0001, Plot: F(7, 32) = 3.85, p = 0.0038, Fig. 

25) differed significantly between different planting diversity. In pots, P.  hysterophorus 

AFB and ADB were > 53% lower when grown with suppressive species in either planting 

combination than when it was grown alone or with M. sativa only (Fig. 22 and 23). 

Parthenium hysterophorus BFB was > 55% lower when grown with suppressive species in 

any planting combination except when grown with M. sativa alone or in monoculture (Fig. 

24). Moreover, BDB was > 55% lower when P. hysterophorus was grown in mixture of L. 

purpureus than when it was grown in monoculture or with other species alone (Fig. 25).  

In the plot experiment, P. hysterophorus AFB and ADB were > 66% lower when grown 

with two (L. purpureus and D. intortum) or three suppressive species than when grown in 

monoculture, with one species except L. purpureus (Fig. 22 and 23). Parthenium 

hysterophorus BFB was > 55% lower when grown with two (L. purpureus and D. intortum) 

or three suppressive species than when grown either in monoculture (Fig. 24). Also, when P. 

hysterophorus was grown with two or three suppressive species, its BDB was > 50% lower 

than when grown either alone, with M. sativa or D. intortum (Fig. 25, Table 2). In general, 

stem height, root length, and shoot diameter of P. hysterophorus seedlings were more 

reduced when grown with L. purpureus than other plants species (Table 3).     
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Figure 22: Mean (±SD) Above-Ground Fresh of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One (grey 

boxes), Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left) and Pot (right) Experiments. Boxes 

with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots show the Mean (square within 

boxes), 25% and 75% Quartile Ranges and Whiskers Show Standard Deviations. Parthenium hysterophorus Seedlings in 

Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus 
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Figure 23: Mean (±SD) Above–Ground Dry Biomass of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One 

(grey boxes), Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left panels) and Pot (right panels) 

Experiments. Boxes with Dissimilar Letters are Significantly Different by Tukey’s HSD test at p ≤ 0.05. Boxplots show the 

Mean (square within boxes), 25% and 75% Quartile Ranges and Whiskers Show Standard Deviations. Parthenium 

hysterophorus Seedlings in Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. 

intortum and L = L. purpureus 
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Figure 24: Mean (±SD) Below–Ground Fresh of P. hysterophorus Seedlings When Grown Alone (light grey box), and with One (grey 

boxes), Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left) and Pot (right) Experiments. Boxes 

with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots show the Mean (square within 

boxes), 25% and 75% quartile ranges and Whiskers Show Standard Deviations. Parthenium hysterophorus Seedlings in 

Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus 
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Figure 25: Mean (±SD) Below–Ground Dry Biomass of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One 

(grey boxes), Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left) and Pot (right) Experiments. 

Boxes with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots show the Mean (square 

within boxes), 25% and 75% Quartile Ranges and Whiskers Show Standard Deviations. Parthenium hysterophorus Seedlings 

in Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus 
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In addition, the competition intensity of P. hysterophorus in both pot and plot experiments 

declined (greater and lower values of RCI and RII respectively, refer eqn 2 and 3) with 

increasing suppressive species numbers in planting combination (Table 8). Total fresh 

biomass (AFB + BFB) of P. hysterophorus seedlings was significantly different between 

suppressive species planting combination in both pot and plot experiments (Pot: F(7, 32) = 

23.00, p < 0.0001; and Plot: F(7, 32) = 12.38, p < 0.0001, Fig. 26). Parthenium hysterophorus 

total fresh biomass was > 53% lower when grown with two or three suppressive species than 

when it was grown alone or with one species except L. purpureus in pots. In plots, total fresh 

biomass was reduced by 64%, 63% and 53% when grown with three, two (only L. purpureus 

and D. intortum) and one (only L. purpureus) suppressive species compared to when it was 

grown in monoculture and in other mixtures (Fig. 26). In each planting combination with L. 

purpureus, suppressive effects on P. hysterophorus seedlings biomass was higher compared 

to when L. purpureus was absent (Fig. 27).       

Table 8: Relative Competition Intensity (RCI) and Relative Interaction Intensity (RII) 

for P. hysterophorus Seedlings According to Suppressive Plant Diversity in Pot 

and Plot Experiments  

P. hysterophorus (P) was grown in mixture with M. sativa (M), D. intortum (D) and L. 

purpureus (L).    

 

Planting combinations 
Pot experiment  Plot experiment 

RCI RII  RCI RII 

PM 0.159 -0.086  0.250 -0.143 

PD 0.479 -0.315  0.357 -0.218 

PL 0.603 -0.431  0.525 -0.356 

PMD 0.536 -0.366  0.424 -0.269 

PML - -  0.485 -0.320 

PLD 0.660 -0.493  0.632 -0.462 

PMDL 0.626 -0.455  0.642 -0.473 
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Figure 26: Mean (±SD) Total Fresh Biomass of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One (grey 

boxes), Two (dashed boxes) or Three (white box) Suppressive Plant Species in Plot (left) and Pot (right) Experiments. Boxes 

with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots show the Mean (square within 

boxes), 25% and 75% Quartile Ranges and Whiskers Show Standard Deviations. Parthenium hysterophorus Seedlings in 

Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus 
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4.1.7  Effects of Suppressive Plants on P. hysterophorus Leaf Chlorophyll Content  

Total leaf chlorophyll content (Chl) of P. hysterophorus differed significantly between 

suppressive plant species diversity in both pot and plot experiments (Pot: F(4, 20) = 26.87, p < 

0.0001 and Plot: F(4, 20) = 48.36, p < 0.0001, Fig. 27). Suppressive plants negatively affected 

P. hysterophorus Chl when grown with one (except M. sativa), two or three suppressive 

species. In pot experiment, P. hysterophorus Chl was reduced by > 75% when grown with 

three suppressive species compared to when it was grown in other planting combinations or 

monoculture. However, P. hysterophorus Chl was 84% lower when grown with L. purpureus 

alone than when it was grown with M. sativa, D. intortum or in monoculture (Fig. 27). 

Further, in plot experiment, P. hysterophorus Chl was reduced by 69% when grown with 

three suppressive plant species than when it was grown in monoculture or in other planting 

combinations (Fig. 27).  

Furthermore, when P. hysterophorus was grown with two or one suppressive species (D. 

intortum or L. purpureus), its total Chl was reduced by > 40% than when it was grown alone 

or with M. sativa. In addition, with respect to planting species diversity, P. hysterophorus 

total fresh biomass and leaf Chl were positively correlated both in pot (F = 25.76, r = 0.9151, 

n = 6, p = 0.0039) and plot (F = 51.38, r = 0.9463, n = 6, p = 0.0004) experiments (Fig. 28). 

However, Chl content and biomass decreased with increasing suppressive plant species M. 

sativa, D. intortum and L. purpureus diversity in pot and plot (Fig. 28).    
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Figure 27: Mean (±SD) Total Chlorophyll Content of P. hysterophorus Seedlings when Grown Alone (light grey box), and with One 

(grey boxes), Two (dashed boxes) or three (white box) Suppressive Plant Species in Plot (left) and pot (tight) experiments. 

Boxes with Dissimilar Letters are Significantly Different by Tukey’s HSD Test at p ≤ 0.05. Boxplots show the Mean (square 

within boxes), 25% and 75% Quartile Ranges and Whiskers Show Standard Deviations. Parthenium hysterophorus seedlings 

in Planting Mixture PML in Pot Experiment Died. P = P. hysterophorus, M = M. sativa, D = D. intortum and L = L. purpureus 
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Figure 28: Relationships between Mean Total Leaf Chlorophyll Content and Total 

Fresh Biomass of P. hysterophorus Seedlings Grown in Different Planting 

Mixtures at Increased Suppressive Plant Species Diversity in Pot (grey dots) 

and Plot (black dots) Experiments  

The numbers 1 to 8 represent the combination of P. hysterophorus with suppressive plants, 1 

= P, 2 = PM, 3 = PD, 4 = PL, 4 = PMD, 6 = PLD, 7 = PML, 8 = PMDL.  

4.1.8  Effects of Desmodium uncinatum Leaf Crude Extract on Parthenium 

hysterophorus Growth 

 

The germination of P. hysterophorus seeds was delayed at higher concentrations (> 70%) of 

DuL crude extract compared to lower concentrations (Fig. 29a-c). Under 25% DuL 

concentrations and in the control treatment, seedlings had emerged at day 3 (Fig. 29a-c). 

Under 100% DuL concentrations, P. hysterophorus seed germination was suppressed by 73% 

in petri dishes (F(4, 20) = 13.88, p < 0.0001), 60% in pots (F(4, 20) = 17.82, p < 0.0001) and 57% 

in plots (F(4, 20) = 18.73, p < 0.0001) (Table 9). In general, the seed germination inhibition 

increased with increasing DuL crude extract concentration treatment (Table 9).     
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Figure 29: The Number of P. hysterophorus Seeds that Germinated under Different 

Concentration Treatments (0%, 25%, 50%, 75%, 100%) of D. uncinatum 

Leaf Crude Extract in Petri Dishes (a), Pots (b) and Plots (c) Over the 

Experimental Period of 20 Days  
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Table 9: Mean (±SE) Germination Percentage and Germination Inhibition Percentage 

of P. hysterophorus Seeds under Different Concentrations of D. uncinatum 

Crude Extract over a 20 Days Experiment in Petri Dishes, Pots and Field Plots 

Values with different letter (s) in a row are significantly different by Fisher LSD at p = 0.05 

Stem height of P. hysterophorus seedlings sprayed with DuL concentrations differed 

significantly in both plot and pot experiments (F(4, 20) = 11.21, p = 0.0001 and F(4, 20) = 16.87, 

p < 0.0001 respectively, Fig. 30). Mean (± SE) stem height of P. hysterophorus seedlings 

sprayed with 75% and 100% concentrations of DuL crude extract in the plot experiment (21 

± 0.2 cm and 20.3 ± 0.5 cm respectively) was about 36% shorter than those sprayed with 

lower concentrations (< 70%) and control. In the pot experiment, stem height in 75% and 

100% treatments (Mean ± SE: 11.3 ± 0.4 cm, 75%; and 12.1 ± 0.5 cm, 100% respectively) 

was approximately 30% shorter than that sprayed with lower DuL concentrations (<50%). 

The root length of P. hysterophorus seedlings sprayed with DuL crude extract concentrations 

differed significantly in both plot and pot experiments (F(4, 20) = 27.80, p < 0.0001 and F(4, 20) 

= 3.83, p = 0.0181 respectively, Fig. 31).  

The root length of seedlings in 50%, 75% and 100% concentrations of DuL in plot 

experiment were about 45% shorter than those sprayed with 25% of DuL concentration and 

control. In pot experiments, the root length was about 51% shorter in plants sprayed with 

75% or higher concentrations than those sprayed with 25% and 50% concentrations (Mean ± 

SE: 7.7 ± 0.6 cm, 75%; 8.8 ± 0.6 cm, 100%).  

The stem or shoot diameter of P. hysterophorus seedlings differed significantly under 

different DuL concentrations in both plot and pot experiments (F(4, 20) = 3.19, p = 0.0351, and 

F(4, 20) = 12.26, p < 0.0001 respectively, Fig. 32). The shoot diameter of seedlings sprayed 

with 50%, 75% and 100% concentrations of DuL in plot experiments was slightly smaller 

than those sprayed with 25% concentration of DuL. In the pot experiments the shoot diameter 

DuL crude extract concentrations (%) 0 25 50 75 100 

Germination % in Petri dishes (n = 25) 86 ± 0a 65 ± 2ab 43 ± 2bc 34 ± 3c 22 ± 1c 

Germination % in Pots (n = 25) 77 ± 0a 74 ± 1ab 61 ± 2b 36 ± 1c 30 ± 2c 

Germination % in Plots (n = 25) 88 ± 0 a 70 ± 0 b   53 ± 1cd 38 ± 2d 39 ± 1d 

Seed germination inhibition percentage (%)      

Inhibition %  in Petri dishes - 21 47 58 73 

Inhibition % in Pots - 9 21 53 60 

Inhibition % in Plots - 21 40 56 57 
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was approximately 31% smaller than those sprayed with 25% and 50% concentrations (Mean 

± SE: 2.4 ± 0.1 mm, 75% and 2.2 ± 0.2 mm, 100%).    

Average AFB of P. hysterophorus seedlings differed significantly with DuL crude extract 

concentrations in both field plot (F(4, 20) = 3.31, p = 0.031) and pot (F(4, 20) = 16.16, p < 

0.0001) experiments (Fig. 33). Also, the BFB in field plots and pots experiments was 

significantly different between treatments (F(4, 20) = 51.85, p = 0.031 and F(4, 20) = 15.95, p < 

0.0001 respectively, Fig. 34). In both plot and pot experiments, the seedlings sprayed with 

100% concentration of DuL crude extract were observed to have lower AFB (Fig. 33) and 

BFB (Fig. 34). Respectively, the AFB in plots and pots (Mean ± SE: 110.1 ± 6.1 g, plots, and 

10.7 ± 0.9 g, pots) was about 33% and 30% smaller than AFB in lower concentrations. 

Similarly, the BFB (Mean ± SE: 6.2 ± 0.3 g, plots and 2.1 ± 0.3 g, pots) was about 60% and 

78% smaller than BFB in lower concentrations in plots and pots experiments respectively.   
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Figure 30: Stem height of P. hysterophorus Seedlings Treated with D. uncinatum Leaf Crude Extract for 25 Days in Field Plots (left) and 

pots (right) Experiments under Different Concentration. Boxes with Different Letter(s) are Significantly Different by Fisher 

LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile Ranges and Whiskers Show 

Standard Deviations 
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Figure 31: Root Length of P. hysterophorus Seedlings Treated with D. uncinatum Leaf Crude Extract for 25 Days in Field Plots (left 

panels) and Pots (right panels) Experiments under Different Concentration. Boxes with Different Letter(s) are Significantly 

Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile Ranges and 

Whiskers Show Standard Deviations 
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Figure 32: Shoot Diameter of P. hysterophorus Seedlings Treated with D. uncinatum Leaf Crude Extract for 25 Days in Field Plots (left 

panels) and Pots (right panels) Experiments under Different Concentration. Boxes with Different Letter(s) are Significantly 

Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile Ranges and 

Whiskers Show Standard Deviations 
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Figure 33: Above–Ground Fresh Biomass of P. hysterophorus Seedlings Sprayed with D. uncinatum Leaf Crude Extract (DuL) after 25 

Days in Field Plots (left) and Pots (right) Experiments under Different DuL Concentration. Boxes with Different Letter(s) are 

Significantly Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile 

Ranges and Whiskers Show Standard Deviations 
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Figure 34: Below–Ground Fresh Biomass of P. hysterophorus Seedlings Sprayed with D. uncinatum Leaf Crude Extract (DuL) after 25 

Days in Field Plots (left) and Pots (right) Experiments under Different DuL Concentration. Boxes with Different Letter(s) 

are Significantly Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile 

Ranges and Whiskers Show Standard Deviations 
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Average ADB of P. hysterophorus seedlings differed significantly under DuL crude extract 

concentrations in both field plots (F(4, 20) = 6.30, p = 0.0019) and pots (F(4, 20) = 42.39, p < 

0.0001) (Fig. 35). Similarly, BDB in field plots and pots experiments was significant 

different (F(4, 20) = 5.14, p = 0.0052, and F(4, 20) = 13.19, p < 0.0001 respectively, Fig. 36). The 

seedlings sprayed with 100% concentration of DuL crude extract were observed to have 

lower ADB (Fig. 34) and BDB (Fig. 35) in both experiments. Respectively, the ADB in plots 

and pots (Mean ± SE: 10.1 ± 0.8 g, plots, and 2.1± 0.1 g, pots) was 41% and 50% smaller 

than the ADB in lower concentrations. The BDB of seedling under high DuL concentration 

treatments in pots (Mean ± SE: 0.7 ± 0.5 g) was about 67% smaller than that in lower 

concentration (Fig. 35). With 75% and 100% DuL concentrations, the BDB in plots was 

considerably reduced (i.e. > 75%) compared to BDB in lower concentrations (Mean ± SE: 0.7 

± 0.0 g).   

4.1.9  Effects of D. uncinatum Leaf Crude Extract on P. hysterophorus Leaf 

Chlorophyll Content  

Total leaf chlorophyll content of P. hysterophorus seedlings differed significantly between 

concentrations of DuL crude extract in both plots and pots experiments (F(4, 20) = 54.96, p < 

0.0001 and F(4, 20) = 6.86, p = 0.0012 respectively, Fig. 37). Seedlings sprayed with higher 

DuL concentrations (75% and 100%) had lower total Chl content (i.e. < 22% and 26% in 

plots and pots respectively) than those sprayed with lower concentrations.   
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Figure 35: Above–Ground Dry Biomass of P. hysterophorus Seedlings Sprayed with D. uncinatum Leaf Crude Extract for 25 Days in 

Field Plots (left panels) and Pots (right panels) Experiments under Different Concentration. Boxes with Different Letter(s) 

are Significantly Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile 

Ranges and Whiskers Show Standard Deviations 
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Figure 36: Below–Ground Dry Biomass of P. hysterophorus Seedlings Sprayed with D. Uncinatum Leaf Crude Extract for 25 Days in 

Field Plots (left) and Pots (right) Experiments under Different Concentration. Boxes with Different Letter(s) are 

Significantly Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile 

Ranges and Whiskers Show Standard Deviations 
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Figure 37: Total Leaf Chlorophyll Content of P. hysterophorus Seedling Sprayed with D. uncinatum Leaf Crude Extract for 25 days in 

Field plots (left) and Pots (right) and Experiments under Different Concentration. Boxes with Different Letter(s) are 

Significantly Different by Fisher LSD at p = 0.05. Boxplots Show the Mean (square within boxes), 25% and 75% Quartile 

Ranges and Whiskers Show Standard Deviation 
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4.2  Discussion  

4.2.1  Parthenium hysterophorus Distribution Within and Outside Arusha National 

Park and its Impact on Soil Chemical Properties   

This study revealed that P. hysterophorus has invaded some villages (settlements, maize and 

banana fields) neighbouring the ANP. Although the park is currently uninvaded, P. 

hysterophorus invasion in the adjacent villages and along the Momela road which enters the 

ANP shows that vehicular transportation can be the major way of dispersal into the park. The 

invasion in the villages might be due to human activities such as grazing and fodder 

collection, as well as vehicles which disperse P. hysterophorus seeds. This current invasion at 

the border zones put the park’s biodiversity and ecology under risk. Villagers’ socio–

economic activities nearby the ANP border zones can easily promote dispersal of P. 

hysterophorus seeds into the park. Besides, P. hysterophorus seeds can be transported into 

the park as a contaminant of tourists and staffs in their belongings or carry the seeds in mud 

adhered to their shoes (Gervilla et al., 2019). Vehicles from Arusha and other neighbouring 

areas invaded with P. hysterophorus may also transport the invasive seeds in mud adhered to 

tyres into the park and/or its border zones. Since P. hysterophorus invasions follow 

disturbances, any form of activities leading to environmental disturbances should be 

prohibited at the ANP border zones. As the roadsides are preferential migration corridor and 

the starting points of P. hysterophorus invasions into adjacent surroundings (Christen & 

Matlack, 2006; Johnston & Johnston, 2004; Von Der Lippe & Kowarik, 2007; Wabuyele et 

al., 2015), the invaded Momela road increases the chance of spreading its seeds into the 

ANP.  

The frequency of P. hysterophorus occurrence was high in maize field compared to banana 

and grazing fields possibly due to the fact that maize fields are tilled more often than others. 

Tillage has been reported to facilitate the spread of invasives by fragmenting and transporting 

reproductive structures (i.e. rhizomes) and seeds (DiTomaso et al., 2010). Similarly, it creates 

disturbed areas that are rapidly occupied by invasive plants such as P. hysterophorus 

(DiTomaso et al., 2010). This is the reason why it is not practiced usually on rangeland 

(DiTomaso et al., 2010). In this view, frequent tillage may have facilitated more P. 

hysterophorus invasion in maize fields. Furthermore, Vera (1997) and Gale (2004) described 

that high elevation limit or affect seed germination as well as growth characteristics of some 

plant species either due to limited temperature, high ultraviolet (UV) radiation, excessive 
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rainfall or competition with other adapted plants at higher altitude. Nevertheless, in this study 

it is unsure if these factors also limited P. hysterophorus growth, and so its invasion in ANP. 

However, it is suspected that P. hysterophorus seed being very small in size and light are 

easily washed by running water along the slope to lower elevation before reaching in the 

park. This might be a reason for the ANP which is located at higher elevation not being 

invaded currently by P. hysterophorus. A study in Arumeru area of Arusha also found that 

most areas affected by P. hysterophorus ranged in elevation >1000 m.a.s.l (Wabuyele et al., 

2015). This agrees with the findings of this study that P. hysterophorus invasion was 

recorded mostly at lower elevations in villages. Similar results by Etana et al. (2015) suggest 

that P. hysterophorus invasions in Awash National Park in Ethiopia decreased with 

increasing altitude. Despite that high elevation may delay P. hysterophorus invasion in ANP, 

environmental factors can favour its invasions into ANP and other protected areas in 

Tanzania as the invasive grows virtually on all types of soils and habitats except near the 

seashore.  

Thus, in order to prevent accidental introduction of P. hysterophorus into ANP, vehicular 

traffic in the park should be limited, and livestock movements near the park border zones 

must be banned. Similarly, construction of roads and lodges in the park should not use 

construction materials such as soil from areas invaded with P. hysterophorus. Further, the 

study findings indicate that P. hysterophorus may be associated with certain soil chemical 

properties such as N, P, Ca, Mg, K, OC and Mn, as was also found by Etana et al. (2015) and 

Osunkoya et al. (2017). Most soil chemical properties from quadrats invaded with P. 

hysterophorus in this study did not differ significantly from uninvaded quadrats. 

Nevertheless, it was found that higher soil  phosphorus in quadrats not invaded with P. 

hysterophorus, unlike the study of Timsina et al. (2011) in Nepal. This discrepancy might be 

due to the nature of soil, different vegetation growing in the two areas, collection, storage, 

and preparation of soil samples in the two countries. Further, high value of CEC in invaded 

site with decreasing organic matter, Ca, Mg and K in the invaded site could be due to 

increasing acidic cations i.e. H+ or Mn2+ in the soils. As soils become more acidic Ca, Mg and 

K are replaced by H+ or Mn2+ and this may result in CEC values much higher than expected 

(McKenzie et al., 2004). In general, this study shows that P. hysterophorus is continuing to 

spread and may eventually invade protected areas in Tanzania. It may also alter soil–chemical 

properties by utilizing available nutrients.  
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4.2.2  Impact of P. hysterophorus on Flower Visitation to Co–Flowering Plants 

It was found that P. hysterophorus receives visits from different insect flower visitors such as 

Apis mellifera, Calliphoridae, Coccinellidae, Syrphidae, B. aurota, Melyridae, Meloidae and 

Hemiptera. Parthenium hysterophorus ray florets (female part) rich in nectar and pollen may 

be attracted flower visitors and enhanced the visitors’ foraging activity on invasive flowers 

(Kaur et al., 2014; Usharani & Raju, 2018). Thus, the presence of P. hysterophorus increased 

the number of potential pollinators, specially A. mellifera, in the invaded quadrats in this 

study. Nevertheless, its presence attracted these flower visitors away from target plant species 

(O. gratissimum and A. conyzoides), which in the case of native plants implies the potential 

for a strong negative effect on wild plant reproductive success.      

Previous studies showed that flower visitors or potential pollinators to flowering plants are 

attracted by floral abundance (Ghazoul, 2004; Lopezaraiza–Mikel et al., 2007) and floral 

morphology (McKinney & Goodell, 2011). Generalised flowers with easy access to the 

nectar tend to attract a larger diversity of non–specialist visitors compared to flowers with 

specialised morphology such as long corollas or complex mechanisms (Johnson & Steiner, 

2000). Common to many Asteraceae, the non–tubular flowers of P. hysterophorus (Kaur et 

al., 2014; Usharani & Raju, 2018) likely attract predominantly generalist flower visitors such 

as A. mellifera and Syrphidae (hoverflies). These generalists visited other wild plants in the 

study area less frequently in the presence of P. hysterophorus, which agrees with other 

previous studies on IAPs (Brown et al., 2002; Jakobsson et al., 2008; Sun et al., 2013; 

Totland et al., 2006). The results are consistent with that of Stiers et al. (2014) which showed 

that invasive Ludwigia grandiflora, a plant with similar generalised floral morphology and 

accessible nectar/pollen, can reduce the number of arriving pollinators and visitation rate of 

native Lythrum salicaria. Gibson et al. (2013), Lopezaraiza–Mikel et al. (2007) and Morales 

and Traveset (2008) also found that presence of the invasive Phacelia tanacetifolia had 

strong negative effects on the visitation rate to the native Melampyrum pratense. A high 

visitation rate from pollinators enhances gene flow within plant populations and contributes 

to natural plants community stability (Gibson et al., 2013; Lopezaraiza–Mikel et al., 2007; 

Morales & Traveset, 2008).   

The findings that P. hysterophorus lowered flower visitor frequencies and visitation rates to 

wild plants suggest that P. hysterophorus has the potential to disrupt native plant–pollinator 

networks, which can have wider–reaching impacts on abundance and diversity of native 
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plants (Gibson et al., 2013; Lopezaraiza–Mikel et al., 2007; Morales & Traveset, 2008). Its 

invasions may interrupt pollen flow between native plants in invaded ecosystems and harm 

their reproduction by reducing seed set (Albano et al., 2009; Chittka & Schürkens, 2001; Sun 

et al., 2013). In the visitation networks P. hysterophorus interacted with native and 

introduced co–flowering plants by sharing a wide range of insect flower visitors like other 

alien invasive plants (Aizen et al., 2008; Albrecht et al., 2014; Bartomeus et al., 2008; 

Padrón et al., 2009). Some of these visitors are pollen vectors such as A. mellifera and 

Syrphidae. Apis mellifera played a significant role as an integrator of P. hysterophorus into 

flower visitor networks in this study (Barrios et al., 2016; Stiers et al., 2014). This generalist 

flower visitor tended to visit diverse flowers of different plant species including P. 

hysterophorus. However, A. mellifera individuals show one of the highest levels of floral 

constancy of any pollinator (Chittka et al., 1999).  

High nestedness was found in the uninvaded sites which indicates the presence of more 

interactions and generalist dominance (Blüthgen et al., 2008), and higher stability of 

networks in these sites (Dormann et al., 2009). As P. hysterophorus is a generalist plant 

(species with many links) which receives both generalist and specialist flower visitors, it 

could push out specialist plants (species with few links) from the networks by attracting 

flower visitors away from these plants (Blüthgen et al., 2008). Low linkage density in 

invaded sites infers that P. hysterophorus decreases plant–insect flower visitor interactions in 

these sites (Ferrero et al., 2013; Padrón et al., 2009). Invasive species other than P. 

hysterophorus also have shown significant consequences for the plant–pollinator network 

structure. For instance, the invasive species Carpobrotus affine acinaciformis and Opuntia 

stricta appeared to alter plant–pollinator structure, whereby the former species competed with 

native species for pollinators and so increased nestedness and the later facilitated pollinator 

visits to native plant species (Bartomeus et al., 2008). Integration of P. hysterophorus into 

networks reduced native plant–pollinator interactions and therefore lead to reduced 

robustness. The consequences of this could include the disruption of pollination networks, 

reduced native plant seed set productivity and community stability. But, in the field sites, P. 

hysterophorus did not show a large effect on the visitation network structure. Since P. 

hysterophorus is facultatively autogamous and anemophilous, it will set seed even without 

the presence of insect flower visitors (Martins, 2014; Usharani & Raju, 2018). However, it 

may be drawing pollinators away from plants that need them more than this invasive species. 

Native plants reliant on pollinators to transport pollen between individuals are more prone to 
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competition for pollination with P. hysterophorus than self–compatible plants able to carry 

out autonomous pollination (Jakobsson et al., 2008; Nielsen et al., 2008). Hence, other plant 

species, in contrast, will not be able to survive without pollinators. As visitation rate and 

number of flower visitors to native co–flowering plants are negatively affected in the 

presence of P. hysterophorus, thus, the invasive must be controlled to ameliorate negative 

impacts on native and established plant communities (Fantinato et al., 2018).  

Given the allelopathic effects of this species, it is possible that the pollen of P. hysterophorus 

may have traits to which co–flowering plants are not adapted and may hinder fertilization due 

to stigma–clogging in native flowers (Albano et al., 2009; Chittka & Schürkens, 2001; 

Flanagan et al., 2009; Kaiser-Bunbury & Müller, 2009; Nielsen et al., 2008). Such effects 

have been reported in other invasive species including Carpobrotus spp, Oxalis pes-caprae, 

Lythrum salicaria and Heracleum mantegazzianum (Jakobsson et al., 2008; Nielsen et al., 

2008). Moreover, the shorter duration of visits by A. mellifera, Syrphidae, other Diptera and 

some Lepidoptera to flowers of O. gratissimum and A. conyzoides in invaded quadrats could 

be due to competition with P. hysterophorus. As many Coleoptera (Shimamura et al., 2005) 

and Diptera (Irvin et al., 1999) are pollen feeders, it is anticipated that these taxa were 

attracted to flowers of P. hysterophorus due to volume of pollen in this study. Further, in this 

study, the visitation rate of Diptera to flowers of A. conyzoides was not strongly affected by 

P. hysterophorus which could be due to their similar flower morphology or a stronger 

preference for A. conyzoides among this taxon, perhaps because of cues such as colour or 

odour.    

Overall, these findings suggest that P. hysterophorus has potential to displace native plants 

via competition for pollinator visits as it exerted a magnet species effect on A. mellifera and 

Syrphidae (Gibson et al., 2013; Molina-Montenegro et al., 2008). By attracting flower 

visitors that could otherwise serve as pollinators of native species and crops, P. 

hysterophorus, which is rapidly spreading in Africa could have complex harmful effects on 

the wider ecosystem. As a relatively high number of generalist pollinators visit P. 

hysterophorus, it is expected to see high seed sets in its existing habitats and the potential to 

invade more areas. As it continues to spread in crop fields and natural habitats could reduce 

pollination to native flowering plants and crops, thereby threatening biodiversity and farmers’ 

livelihoods in Tanzania. Therefore, P. hysterophorus, which was previously known to exert 
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competitive effects on native plants via allelopathy, has been shown to do so also through 

competition for flower visitors. 

 

4.2.3  Effects of Selected Suppressive Plant Species on P. hysterophorus Growth Vigour 

A management trial using suppressive forage plant species revealed that P. hysterophorus 

growth was negatively affected when it was grown with the suppressive species in mixtures, 

which is in agreement with Khan et al. (2013), Shabbir et al. (2013) and Zheng et al. (2015). 

Lablab purpureus was the primary species responsible for suppression of P. hysterophorus 

growth, as all performance parameters were constantly low across planting mixtures with L. 

purpureus. In mixtures that did not contain this species, little or no significant suppressive 

effect was observed. When the numbers of D. intortum, L. purpureus and M. sativa in the pot 

or field plot was increased from one to two or three suppressive species, P. hysterophorus 

stem height, shoot diameter, root length, biomass and leaf chlorophyll content decreased 

accordingly. This decrease followed a gradient of effectiveness i.e. the most effective plant 

species were L. purpureus > D. intortum > M. sativa, with little evidence that M. sativa alone 

could exert a suppressive effect. However, it is suggested that both the more and less 

suppressive species can be used together as rehabilitative species to complement each other 

in suppressing P. hysterophorus and improving livestock or wildlife forage availability, and 

increasing ecosystem resilience against P. hysterophorus invasions (Christina et al., 2015; 

Cummings et al., 2012). The study findings suggest that high plant density in grasslands may 

reduce ecosystem invasibility (Knops et al., 1999) and highlights the importance of keeping 

rangelands from becoming dominated by few grazing–tolerant species (Connolly et al., 

2018).  

Competition intensity indices (RCI > 0 and RII < 0) revealed that suppressive plants at higher 

species numbers negatively affected P. hysterophorus total fresh biomass, as it was found for 

other invasive species (Grace, 1995; Vilà et al., 2004; Weigelt & Jolliffe, 2003). Khan et al. 

(2013) found that C. ciliaris, Setaria incrassata, Panicum maxicum and Eulalia aurea at 

higher abundance suppressed P. hysterophorus and Ammondt and Litton (2012) showed that 

the invasive grass Megathyrsus maximus stem heights and biomass were reduced when 

planted together with competitive species Myoporum sandwicense, Dodonaea viscosa, and 

Plumbago zeylanica. The study results support that of Vilà and Weiner (2004) who reported 

that resistance imposed by a single native plant species to invasive species is week compared 

to when several native species are present. This advocates that competitive plants seeded with 
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P. hysterophorus in mixture of high species density may suppress the invasive species, which 

is in accordance with studies that found high plant density suppressed invasive abundance in 

pastures (Connolly et al., 2018; Khan et al., 2013; Shabbir et al., 2013; Tracy et al., 2004).    

Since ecosystem invasibility is influenced by available resources in the habitat (Perkins et al., 

2011; Tracy et al., 2004), increasing density or diversity of effective suppressive forage 

species may reduce ecosystem vulnerability to P. hysterophorus invasion as there is a 

complete resource utilization (Connolly et al., 2018; Knops et al., 1999). Thus, this study 

suggest that high plant diversity in grassland may reduce ecosystem invasibility and 

highlights the importance of keeping rangelands from becoming impoverished (Connolly et 

al., 2018; Knops et al., 1999). Similarly, maintaining diverse forage plant communities may 

affect the amount of IAPs’ seed bank in the soil (Tracy et al., 2004). As P. hysterophorus 

seeds have a long dormancy (Brunel et al., 2014; Timsina et al., 2011), management 

techniques such as keeping high native forage species density or diversity might help to 

decrease the accumulation of the invasive seeds in soil and avoid future invasions.  

Moreover, in the competition experiments it was observed that the large ground cover of L. 

purpureus shaded the rosettes of P. hysterophorus and likely reduced their growth due to 

their structural features, similar to findings of Tamado et al. (2002) and Khan et al. (2013). 

This observation highlight that management approaches to mitigate P. hysterophorus using 

suppressive forage plant species should target its rosettes. While D. intortum has been 

recommended for conservation as ground cover and pasture (Kariuki et al., 1999; Maina et 

al., 2006), this study has shown that it can also be used to control P. hysterophorus, 

particularly when mixed with the most effective suppressive legume fodder plants or grass 

species such as L. purpureus, Digitaria eriantha, Urochloa mutica and Pennisetum 

clandestinum as it likely grows better in mixed stands (Aganga & Tshwenyane, 2003). In 

addition to its extensive ground cover, L. purpureus also exhibits high stem height, root 

length and biomass.  

Drought tolerance and nitrogen fixing traits of selected suppressive species possibly 

enhanced their competitive fitness in mixture over P. hysterophorus (Amole et al., 2013; 

Latrach et al., 2014; Lei et al., 2018; Madzonga & Mogotsi, 2014; Maina et al., 2006; 

Radovic et al., 2009). But, none of the three suppressive species facilitated the growth of P. 

hysterophorus seedlings regardless of the general assumption that most leguminous plants 

facilitate other plants’ growth. The study highlight that biological control through competitive 
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plants is an approach with further potential for managing P. hysterophorus (Pratt et al., 2017) 

while protecting the environment from the invasive (Khan et al., 2013; Van der Laan et al., 

2008). Further, despite the fact that the use of non–native plant species is not recommended 

for protected areas to control IAPs, these species were used in this study because they are of 

financial benefit to pastoralists and agro–pastoralist (Aganga & Tshwenyane, 2003; Al-

Kahtani et al., 2017; Kariuki et al., 1999; Midega et al., 2017). This management approach 

may not require touching or uprooting P. hysterophorus, and thus, reduces health risks to 

people, livestock or wildlife. For countries where people, livestock and wildlife are 

threatened by P. hysterophorus such as Ethiopia (Nigatu et al., 2010), Pakistan (Shabbir & 

Bajwa, 2006), Tanzania, Kenya and Uganda (Witt et al., 2018), this will be a low–cost and 

sustainable management method for controlling the invasive, and which might promote a 

long–term ecosystem resilience against invasions.    

While control of IAPs using suppressive forage plants have been used in other countries 

(Adkins & Shabbir, 2014; Khan et al., 2013; O’Donnell & Adkins, 2005; Shabbir et al., 

2013), it was never tested in Tanzania. The selected species that are readily available in the 

country can be used in mixture to control P. hysterophorus and improving otherwise unusable 

rangelands. This control method represents a nature–friendly and effective management 

approach (Connolly et al., 2018; Knops et al., 1999; Ngondya et al., 2016a; Perkins et al., 

2011; Schuster et al., 2018). If L. purpureus and other effective suppressive fodder species 

are grown together in invaded pastures this may, in addition to suppressing invasives, even 

promote wildlife and livestock health and production (Khan et al., 2013; Li et al., 2015; 

O’Donnell & Adkins, 2005; Shabbir et al., 2013). To effectively control P. hysterophorus, 

seeding suppressive plants must be done early before the emergence of rosettes and 

immediately following pulling (uprooting and burning) of mature P. hysterophorus seedlings 

prior to flowering or releasing seeds to create appropriate conditions (e.g. enough space, 

nutrients, water and light) for quick establishment (e.g. increase in abundance and biomass) 

of suppressive species. Nonetheless, selection of suppressive plants should consider native 

species with traits which enhance their competitive ability.   

4.2.4  Effects of Desmodium uncinatum Leaf Crude Extract on Parthenium 

hysterophorus Growth  

Another management trial to control the invasive using D. uncinatum leaf crude extract 

showed that the plant crude extract suppressed P. hysterophorus at various phenological 
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stages i.e. both seedling germination and growth, mainly under high concentrations of 75% 

and above. The efficient of D. uncinatum leaf crude extract at high concentration agrees with 

studies claiming that the effectiveness of bio–herbicide is dose dependent (Khaliq et al., 

2011; Ngondya et al., 2016a). Interaction of natives with IAPs is affected by their non co–

evolutionary background (Christina et al., 2015). Based on the ‘novel weapon’ hypothesis, 

most native species are not adapted to the biochemical traits of invasive species (Callaway et 

al., 2008). The flipside of the ‘novel weapon’ hypothesis or ‘homeland security’ hypothesis is 

that within the invasive range, the plant chemistry of native or naturalized plants may be able 

to suppress the growth of invasive species in turn (Cummings et al., 2012). Since D. 

uncinatum and P. hysterophorus may not have co–evolved, the latter may be poorly adapted 

to the bio–herbicide of the former species (Christina et al., 2015). The study supports this 

‘homeland security’ hypothesis by showing that D. uncinatum allelochemicals exert 

resistance against P. hysterophorus seed germination and seedling growth. The results in 

general indicate that P. hysterophorus might not be adapted to the biochemical traits of D. 

uncinatum (Callaway et al., 2008), which makes the latter species a powerful natural tool to 

suppress P. hysterophorus.     

The results show that D. uncinatum leaf crude extract high concentrations delayed P. 

hysterophorus seed germination. This reveals the potential to interfere early in the 

germination stage of P. hysterophorus and suppress its seeds in the soil, preventing further 

invasions. In addition, the growth parameters and total leaf chlorophyll content of P. 

hysterophorus seedlings were suppressed slightly under low concentrations but more strongly 

under high concentration treatments, which agrees with findings by Cipollini and Flint 

(2013), Khaliq et al. (2011), Namkeleja et al. (2013) and Ngondya et al. (2016b). This was 

likely due to D. uncinatum leaf extract, which has active bio–herbicidal properties as 

previously reported in other studies (Hooper et al., 2010; Khan et al., 2008; Ngondya et al., 

2016b). Hooper et al. (2010) reported that the genus Desmodium can suppress Striga 

hermonthica through allelopathy when intercropped with cereals like sorghum, maize and 

millet. Allelochemicals of D. uncinatum root extract effective against the development of S. 

hermonthica include isoschaftoside, a C-glycosylflavonoid (Hooper et al., 2010), and 

uncinanone (4",5"-dihydro-2‘-methoxy-5,4‘-dihydroxy-5"-isopropenylfurano-(2",3";7,6)-

isoflavanone) (Tsanuo et al., 2003). These may also be present in leaf extract and responsible 

for inhibition of germination and growth of P. hysterophorus in this study, which can help to 

control the invasive.  
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However, further studies are required to identify natural products, in particular the active 

components of D. uncinatum leaf exudate, which are suitable for large scale, low-impact 

deployment in P. hysterophorus control. The negative effect of D. uncinatum leaf crude 

extract on leaf chlorophyll content, stem height and biomass which determine seedling 

growth vigour suggests that the crude extract can reduce the invasive seedling’s ability to 

photosynthesize and weakens its fitness to compete for light, nutrients, water, or other 

resources with resident plants (Ngondya et al., 2016b; Nickerson & Flory, 2015). Thus, the 

study results show that D. uncinatum leaf crude extract had the ability to weaken P. 

hysterophorus seedlings’ growth. But, P. hysterophorus like many other IAPs may not be 

eradicated by using a single method, it therefore requires an integrated management approach 

(Khan et al., 2013; Shabbir et al., 2013; Terblanche et al., 2016).   

Owing to its ability to regrow from broken or cut parts, and being resistant to some chemical 

control method, Adkins and Shabbir (2014) and Nyasembe et al. (2015) advised that 

traditional weeding and bio–herbicide approaches need to be combined with a wider strategy. 

For instance, management of P. hysterophorus using D. uncinatum bio–herbicide could be 

complemented with biological control agents such as Mexican beetle Z. bicolorata and 

suppressive plants (Shabbir et al., 2013), metabolites of fungal species (Javaid, 2010), or bio-

herbicides from other native or naturalised allelopathic plants (Javaid, 2010; Tanveer et al., 

2015). Feasibility of these techniques highly depend on the involvement of local communities 

to achieve long–term management sustainability. Also, there is a need for a coordinated 

national strategy for controlling biological invasions linking all management approaches 

(Crall et al., 2013). Moreover, timely detection and control of P. hysterophorus before it 

invades other habitats are essential for preventing its spreads and reducing management cost 

(Crall et al., 2013; Maistrello et al., 2016).     

Therefore, D. uncinatum bio–herbicide might be utilized in sub-Saharan Africa to control P. 

hysterophorus invasion which is threatening natural and agricultural ecosystems, biodiversity 

management, and smallholders’ livelihood. Further studies also must be carried out to 

confirm the safety of its leaf crude extract on native flora and fauna species to avoid 

suppressing beneficial plants and other living organisms.    

These management approaches put forward that suppressor plants and bio–herbicide might be 

feasible and sustainable way of managing biological invasions of particular IAPs. 

Nevertheless, their management using alien species as suppressive plants may cause 
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significant or potentially harmful effects on the environments. This is because when alien 

species establish in new site tends to expands and proliferates from its original location of 

arrival and become invasive due to lack of or lower levels of leaf herbivory (Lake & 

Leishman, 2004). Their crude extracts can be used if they pose less or non-negative effects on 

the environment i.e. they neither kill nor suppress native flora and fauna species. People are 

therefore advised to avoid planting novel plants in natural areas to depress invasive plants. 

However, if ecologists or invasion biologists need to control the invasive species using alien 

plants, they must first assess and quantify their impacts at various levels of ecological 

complexity. They should also note that not always native species can successful suppress 

invasives as their competitive strength depend on abundances, and vary with life stages and 

along environmental gradients (Čuda et al., 2015). So, in order to ensure that natural areas 

carry out their role of biodiversity conservation and revenue creation successful, sustainable 

management of IAPs is inevitable. 
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CHAPTER FIVE 

CONCLUSION AND RECOMENDATIONS 

5.1  Conclusion  

The study has shown that P. hysterophorus has invaded some villages nearby the park border 

zones which threaten ANP’s biodiversity and ecosystem health. Parthenium hysterophorus 

invaded site had high value of CEC despite that value of Ca, Mg, K and Organic matter was 

lower. Control techniques used in this study suppressed seed germination and growth vigour 

of P. hysterophorus. But, these management techniques require involvement of local 

communities through citizen science approach to monitor P. hysterophorus invasion within 

their premises. Early detection, prompt response and eradication are considered as the most 

important defence in managing IAPs, and are regarded feasible in the context of protected 

areas species. Thus, early detection of P. hysterophorus within and outside ANP is significant 

because it can help to mitigate the invasions and reduces management cost (Crall et al., 2013; 

Maistrello et al., 2016). Furthermore, P. hysterophorus was attractive to insect flower 

visitors, and shares flower visitors with co–flowering plants in Northern Tanzanian semi–

natural grassland habitats. Parthenium hysterophorus has been integrated into the plant–

pollinator network, and competes for pollinators with co–flowering plant species. The results 

show that P. hysterophorus–pollinator interactions can significantly affect pollinator 

visitation and foraging behaviour in a recipient ecosystem and consequently affect natural 

plant communities. This study highlights the significance of using suppressive plant species 

and bio–herbicides of controlling IAPs in natural and semi–natural areas. It further supports 

the use of native plant species with bio–herbicide potential to reduce dependency of chemical 

herbicides, and promoting the use of biological herbicides.         

5.2  Recommendations 

The study recommends that with increasing invasion of P. hysterophorus in Tanzania, 

detailed field surveys within and outsides the border zones of protected areas and in 

rangelands must be conducted regularly. This could enable to identify invasion hotspots and 

prevent the spread of the invasive. Mechanisms and national strategies for preventing P. 

hysterophorus seed dispersal into protected areas also should be developed. Further, the study 

recommends that more study should be done in the following areas: modelling potential 

distribution of P. hysterophorus within and outside the border zones of ANP to help in 
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planning management strategies; assess whether D. uncinatum leaf crude can negatively 

impact beneficial insects i.e. decomposers, pollinators and other organisms, or suppresses 

native vegetation when applied in the field; and establish the shelf life and longevity of the D. 

uncinatum leaf crude extract. Furthermore, studies are required to investigate the impact of P. 

hysterophorus on wild plants’ seed sets and development of co–flowering natives, and 

whether flower visitors transfer alien pollen of the invasive to native flowering species. Due 

to its complex defensive chemistry, its allelopathic effects on pollinator activity should be 

investigated as well.  

For the countries invaded by P. hysterophorus, landowners may be sensitized to plant 

suppressive fodder species in their private lands to prevent P. hysterophorus invasion. In 

addition to deploying control measures via a community approach, the study recommends 

that awareness of the effects and dispersal mechanisms of P. hysterophorus should be raised 

to local communities. This might avoid accidental dispersal of P. hysterophorus seeds. Non–

native plants were used in this study as suppressive test plant species to control P. 

hysterophorus because they can be used as forage for livestock and controlling weeds in 

agroecosystems. While their extracts can be considered for suppressing the invasive, one 

must be cautious of planting non–native plants in protected areas to control P. hysterophorus 

because they may become invasive in future. So, the study recommends the use of native 

plant species to suppress P. hysterophorus. It also advises the use of bio–herbicide because 

synthetic herbicides are seldom allowed in natural areas or protected rangelands for 

controlling IAPs.      
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