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ABSTRACT 

The stock price is characterized by several features which can only be captured by the best 

model. To investigate this the Merton's jump-diffusion model was developed and applied to 

the selected stocks of three East African community countries’ stock markets. The daily 

closing stock prices of the Nairobi Securities Exchange, the Dar es Salaam Stock Exchange 

and Uganda Securities Exchange over a period of five (5) years from 1st July, 2013 to 1st July, 

2018 were analyzed. The objective of this analysis was to investigate how best the developed 

model do price options when the stock price features of three East African stock markets are 

incorporated into the model. The Merton's jump-diffusion model was employed as a 

stochastic differential equation. While the Maximum Likelihood Estimation method was used 

to estimate the optimal model parameters and implemented with MATLAB. For comparison 

purpose, the researcher estimated the parameters of the Black- Scholes model. The empirical 

results show that the Merton Jump Diffusion gives realistic option price values for the 

selected stocks due to the incorporation of the compound Poison process.  On the other hand, 

the selected stocks from all three markets exhibit several jumps as it was evidenced from 

non-zero values of jump intensities (lambda). Also, the log-returns density of Merton reveals 

the presence of volatility and leptokurtic features due to the presence of both negative and 

positive skewness and excessive kurtosis values.  

Keywords: Kurtosis, Options, Leptokurtic. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the problem 

Recently, several empirical studies have pointed out that financial returns exhibit volatility 

with a stochastic pattern and fatter tails than the standard normal model, which is not suitable 

for capturing the asset price dynamics (Scoot, 1997 ; Costabile, Leccadito, Massabó & Russo, 

2014). Models such as the Black-Scholes model have been used in option valuation as a basis 

for nearly four decades (Yi, 2010). The Black-Scholes method is based on assumption that 

the asset’s price, in this regard that is the underlying asset of the option follows a geometrical 

Brownian motion. Nevertheless a geometrical Brownian motion cannot accommodate most 

of features of a stock price (Burger & Kliaras, 2013). Despite, the usefulness of the BS model 

as the basic model for pricing option, it fails to capture stock price features such as the 

leptokurtic and empirical abnormity called volatility smile (Kou, 2008). 

However, several models have been proposed to accommodate such properties, particularly 

the leptokurtic and volatility smile (Toivanen, 2008; Lin, Chao & Miao, 2017). These include 

the Model based on exponential L vy processes (Cont &Tankov, 2004) such as Merton Jump 

diffusion model (Merton, 1976), the Kou’s jump-diffusion model (Kou, 2008) and Variance 

Gamma Model (Matsuda, 2004).  

Additionally, the financial derivatives in particular the options are traded both on stock 

exchanges markets and over the counter. The main two kinds of options styles are European 

options and American options, European options can only be exercised at the expiration time 

but American options can be exercised at any time up to expiration. Furthermore options are 

categorized into Call options and Put options. Call options give the buyer the right but not the 

obligation to buy a particular asset, and the seller has to provide it. A put option gives the 

buyer the right but not the obligation to sell the asset (Hull, 2015).  

Moreover, price of options is determined by the forces of supply and demand in the markets 

but likewise it is done by mathematical models. Since the market is characterized with 

imbalances in supply and demand then the mathematical models are fair good in options 

valuations (Burger & Kliaras, 2013). 
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As discussed before the Black-Scholes model (BS) which is based on the Brownian motion 

and normal distribution is not suitable for option valuation because of failure to accommodate 

the leptokurtic features  and the empirical abnormity called volatility smile. Thus, the jumps 

model with added compound poison process remidies these weaknesses in the Black-Scholes 

approach.  

This study concentrated on extending the Black-Scholes model by adding a Compound 

Poison Process and using the daily closing prices data from stock exchange markets of Dar es 

Salaam Stock Exchange (DSE), Nairobi Securities Exchange (NSE) and Ugandan Securities 

Exchange (USE) to compute options and test whether the model captures most of the stock 

price features or not. 

1.2 Statement of the problem 

The government of Tanzania ordered all telecommunications companies in the country to sell 

at least 25% stake at DSE market to increase domestic ownership (URT, 2016). The first 

telecommunication company to implement this was Vodacom-Tanzania. Initially, it offered 

560 million ordinary shares at 850/- per share. The response was that  60% of investors were 

Tanzanians and the remaining 40% were non-Tanzanians (Daily News Tanzania, 2017). 

Also, Tanzania mining companies registered at DSE following the mining regulation of 2017 

(TanzaniaInvest.com, 2018) and many other companies registered to make a total of 28 

(DSE, 2018) from 4 companies since its establishment in 1998 (Ziorklui, 2001). In Kenya 

and Uganda, the registered companies at Nairobi Securities Exchange (NSE) and Ugandan 

Securities Exchange (USE) are 64 and 18 respectively (African Markets, 2018).  

Though many companies are registering and trading at the stock markets to raise their capital 

investment, stock trading is associated with high risk. To mitigate the risk exposure which 

arises from the unpredictability of stock prices the companies can hedge by investing in 

financial derivatives such as options which give the holder the right but not the obligation to 

buy or sell an asset at or before a future date for the predetermined price (DSE, 2018; Hull, 

2015). 

Moreover, to be able to exercise the financial derivatives (options) needs to have the best 

model which can predict in advance when and how to exercise the options and the one which 

accommodates most of the stock features. In many works in literature, the available models 

have been applied to other stock markets rather than East African stock markets. Example the 



3 
 

study on the Japanese stock market using Kou Jump model (Maekawa, Lee, Morimoto & 

Kawai, 2008), the pricing options in jump-diffusion using Mellin transform at an American 

stock index of S&P 500 (Frontczak, 2013) and the study on Egypt, Nigeria and South Africa 

stock markets using Autoregressive Jump Intensity-Generalized Autoregressive Conditional 

Heteroscedastic (ARJI-EGARCH) model (Kuttu, 2017) just to mention a few. Therefore, this 

study intends to do option modeling using the Merton’s jump-diffusion model (Merton, 1976) 

to investigate if the model captures most of the stock features basing on the data from East 

African stock markets.  

1.3 Rationale of the study 

This study provides useful information on the valuation of options at stock markets. The 

stock markets are characterized with fluctuation of prices due to many factors such as 

economic, political, social and technological changes. Due to these factors, determining the 

prices of underlying becomes problematic. Therefore due to these challenges in the stock 

markets, the model developed in this study will have great contribution in curbing these 

challenges of market failure.  

1.4 Objectives of the study 

1.4.1 General objective 

To develop the jump-diffusion model and using data from East African countries’ stock 

markets to investigate the best option pricing model.  

1.4.2 Specific objectives 

The specific objectives of this study are: 

(i) To develop the jump-diffusion model which captures most of the stock features. 

(ii) To compare the Jump diffusion model with the Black-Scholes model based on data 

gathered from the NSE, DSE, and USE. 

(iii)  To establish whether the log return distribution of the developed model incorporates 

the leptokurtic and asymmetric features. 
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1.5 Research questions 

The study intends to address the following questions; 

(i) What are the assumptions and procedures in the development of a jump-diffusion 

model? 

(ii) What are the differences and similarities between the jump-diffusion model and the 

BS model based on data from East African stock markets? 

(iii)  Are leptokurtic and asymmetric features in the log return distribution of a jump-

diffusion model incorporated? 

1.6 Significance of the study 

The results can help the stock exchange markets to address the challenges of market failure in 

determining the best option. Also, the results will help people to understand the importance of 

holding their money in financial assets rather than cash and other forms and last but not least 

the study will provide the platform for further research. 

1.7 Delineation of the study 

The study focused on option pricing using jump diffusion model. Only three stock markets of 

the selected East African countries were considered. The markets were Nairobi Securities 

Exchange (NSE) of Kenya, Dar es Salaam Stock Exchange (DSE) of Tanzania and Ugandan 

Securities Exchange (USE) of Uganda. The five stocks from each market were chosen 

randomly to make a total of fifteen stocks at all three stock markets. The study also, 

concentrated on martingale approach in option valuation. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Definition of terms 

2.1.1 Option 

An option is a financial security that gives the holder the right but not an obligation to buy or 

sell a specified quantity of a specified asset at a specified price on or before a specified date 

(Hull, 2015). 

2.1.2 Types of option  

(i) A call option gives the holder the right but not the obligation to buy the underlying 

asset by a certain date for a certain price.  

(ii) A put option gives the holder the right but not the obligation to sell the underlying 

asset by a certain date for a certain price. 

2.1.3 Option styles 

(i) A European Call (Put) Option gives the right but not the obligation to purchase (sell) 

a stock at a specific time called maturity T for a specific amount K called the strike 

price. 

(ii) An American Call (Put) Option gives the right but not the obligation to purchase (sell) 

stock for a specific strike price K, at any time up to maturity T.  

2.2 Assumptions of Merton jump diffusion model 

Merton (1975) (see pages 1, 2, 4 and 5) as cited by Burger and  Kliaras (2013), provided the 

following assumptions which must be made in the process of developing the MJD model 

regarding the market situation. 

(i) Frictionless markets, this means there are no transaction costs of differential taxes. 

(ii) No dividend payments. The risk-free interest rate is available and constant over time. 

(iii) No restrictions regarding the value of transaction and price development of the asset. 

(iv) Short trading is not prohibited. 
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(v) Stocks are randomly divisible. 

(vi) All information is available to all market participants. 

(vii) No arbitrage possibilities. 

(viii) The option is a European style option. 

2.3 Literature review of empirical studies 

Kuttu (2017), used ARJI-EGARCH model to examine the time-varying conditional discrete 

jump dynamics in thinly-traded adjusted equity returns of Egypt, Nigeria and South Africa. 

The results show that conditional discrete jump sensitivity is determined in all considered 

three markets and only South Africa is more probable to show asymmetric conditional jump 

volatility. These three markets are the largest stock markets in Africa. The study concentrated 

only on determining discrete jump dynamics but did not extend to options valuation and 

examine other stock features like leptokurtic. 

Mwaniki (2015), on the study using log-ARCH –Levy type model to study daily asset return, 

the empirical analyses of the Standard and Poor (S & P 500) index and NSE 20 index shows 

that in both markets features such as volatility and leptokurtic (features of financial time 

series data) were captured. This study focused much on the correlation and autoregression 

between these financial features (volatility and leptokurtic) rather than showing how they can 

be captured in financial derivatives markets.  

 Mayanja, Mataramvura and Charles (2013) on their study of a mathematical approach that 

dwelled much on stocks portfolio selection. They established that Uganda brokers use the 

qualitative approach and speculation because models available have not been customized to 

suit their situation. However, this study emphasis on the use of models based on optimization 

in stocks portfolio selection rather than option pricing.  

 Namugaya, Patrick and Charles (2014) used Generalized Autoregressive Conditional 

Heteroscedastic (GARCH) models to study stock return volatility on USE. The study 

established that, the USE returns are non-normal and heteroscedasticity was existing. Also 

the USE return series exhibited volatility clustering and leptokurtosis as evidenced from the 

high kurtosis values. Likewise the study did not show how the jumps in the log return can be 

determined. 
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Urama and Ezepue (2018) on their work of “Stochastic Ito-Calculus and Numerical 

Approximation for Asset Price Forecasting in the Nigerian Stock Market” emphasis on the 

need of a mathematical model for modeling financial derivatives. Their work based much on 

the estimation of parameters of the BS model using the Euler-Maruyama method rather than 

possible extension to incorporate the compound jump process.  

Kou ( 2008), cited by (Yi, 2010) the distribution of the standard and poor (S & P 500) index 

daily log return was plotted and it was found that the jump was significantly higher and the 

tails were fatter than a normal distribution. The Black-Scholes model could not be suitable 

for modeling the option price. This is because the jump component could not be captured as 

the Black Scholes model base on the geometric brown motion. It is proposed that an extra 

jump part must be added to the model to give a response to the under reaction and the 

overreaction to the external news.  

Burger and Kliaras (2013) on the study which involved comparing the jump-diffusion model 

and Black Scholes model concluded that the stock price exhibit the jumps and the standard 

BS model is not suitable for option pricing. They suggested extra assumptions to be made 

regarding the BS model in order to a good result when valuing options. For instance, the 

assumption on jump intensity and how jumps are determined could be anticipated. They 

further emphasized that the jump-diffusion models like that of double exponential which does 

not rely on  normal distribution of the stock returns but a distribution which has got a higher 

peak and two heavier tails fit stock data better (Kou, 2002). 

 Lin, Chao and Miao (2017) emphases that the suitable model for modeling the price of the 

underlying asset must include the jump component and according to their study on “analysis 

of jump-diffusion option pricing model with serially correlated jump size”, establish that the 

jump size is serially correlated with the return of the underlying stock price.  Friesen,  Weller 

and Dunham (2009) as cited by (Lin et al., 2017) conveyed that positive jump size correlation 

was present in the prices of stocks constituting the Standard and Poor (S & P 100) index. 

Xu and Jia (2019), their study on the calibration of parameters of jump-diffusion models 

establishes that the jump-diffusion models generate several volatility smiles and skews when 

the parameters of the jump-diffusion process are chosen properly. It was investigated that the 

jump component is very important especially when the derivative (option) is nearby 
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expiration date. This shows that a good model for options pricing should incorporate the 

jump component. 

Therefore, these literatures provide information on how the stock price features can be 

determined using various models. Some literatures suggest the need to add the jump 

component when valuing options which is the focus of this study. Since the capital markets 

especially the markets for financial derivatives are characterized with fluctuations such as 

sudden upsurges and crashes (jumps). To model these fluctuations of stocks this study came 

up with Merton’s Jump Diffusion model (MJD) model which accommodates most of stock 

price features.  

2.4 Research framework 

The relationship of the variables in the jump model which will be the basis in this study is 

given by the equation. 

                                                                                        (2.1)                                                                     

where  is the stock price at time t,  is the Brownian motion,  is a Poisson 

process with an intensity ,  is the drift coefficient ,   is volatility and  is an impulse 

function which causes a jump of  to   (Kou, 2008;  Xu & Jia, 2019) . 

The stock price,  is generally described by a continuous diffusion part and a 

discontinuous jump part. The typical fluctuation in the stock price is accounted for by the 

continuous diffusion part (determine by Brownian motion). The discontinuous jump part is 

responsible for the extreme (rare) events and is determined by η.  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study design 

The cross-sectional design was used, whereby the DSE, NSE and USE were examined 

simultaneously. 

3.2 Data types and collection methods 

Secondary data from DSE, NSE and USE of the daily closing stock prices for the period of 5 

years from 1 July, 2013 to 1 July, 2018 were used. The only five (5) actively trading 

companies from each stock market were randomly chosen making a total of fifteen (15) 

companies from all the three stock markets. The trading days per year in all the three markets 

were assumed to be 252 days. 

3.3 Model development and estimation 

3.3.1 Development of jump diffusion model  

Merton Jump Diffusion model is the new version which extend BS model in the way that it 

enables to incorporate the stock price features such as skewness and kurtosis of the log stock 

price density  by adding a compound Poisson jump process (Matsuda, 2004). 

This compound Poison jump process leads to additional of new more parameters , and  

to the basic model called BS model. 

Merton Jump Diffusion model is one of an exponential L vy model of the form. 

                                                                                                                  (3.1) 

For which,  is treated as the exponential of a L vy process. The L vy 

process is chosen because it consists of two parts which are a continuous diffusion process 

(Brownian motion with drift) and a discontinuous jump process determined by compound 

Poisson process as: 

                                               (3.2)                                               

where  is a standard Brownian motion. The term  
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is a continuous diffusion process or Brownian motion with drift process and on the other 

hand  is a compound Poisson jump process (Matsuda, 2004). According to Merton 

(1976), the jump part enables to model sudden and unexpected price jumps of the underlying 

asset. The compound Poisson jump process encompasses two sources of randomness. 

(i) Poisson process  with intensity  which cause the asset price to jump randomly. 

(ii) Random jump size i.e. how much it jumps. It is assumed that 

 where  is log stock price jump size. 

                                                                                           (3.3) 

The assumption is that, the two sources of randomness are independent of each other. The 

L vy measure  of a compound Poisson process is given as a product of the intensity 

and the jump size density as:  

                                                                                                               (3.4) 

Considering equation (3.1) then, the log-return  is now modeled as a L vy process 

such that 

                                                  (3.5) 
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3.3.2 Model derivation 

For the case of MJD model the changes in the asset price is determined by two components 

which are a continuous diffusion component that is modeled by a Brownian motion with drift 

process and a discontinuous component that is modeled by a compound Poisson process 

(Matsuda, 2004). It should be noted that, the asset’s price jumps are assumed to occur 

independently and identically. The probability when the asset price jumps in a very small 

time interval  can easily be stated using a Poisson process  as: 

 

 

 

Where the parameter  is the intensity of the jump process which is independent of 

time t.  

For a small  the asset price is expected to change (jump) from  to  , where  is 

absolute price jump size. Therefore the percentage change in the asset price triggered by 

jump (i.e. the relative price jump size) is given as:  

                                                                                                  

Where (Merton, 1976), assumes that  is a nonnegative random variable drawn from a 

lognormal distribution, i.e. . The implication of this is that: 

                                                                                                                     (3.7) 

 .                                                              (3.8) 

This is because if  then 

                                                                      (3.9) 

Incorporating the above properties into the MJD dynamics of the asset price, we obtain an 

SDE of the form; 
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.                                                              (3.10) 

It is assumed that the processes ,  and  are independent of each other. Hence,  

 is log-normally distributed with a mean  

                                                                                              (3.11) 

and the variance. 

                                                                  (3.12) 

It is assumed that, the log-return jump size  is a normal random variable such that 

                                                                         (3.13) 

If we consider the jump part   , the expected relative price change  in the time 

interval  is  since  which is the 

predictable part of the jump. To ensure that the jump part is unpredictable  is adjusted by 

 in the drift term as; 

 

 

                                                                                                                               (3.14) 

When  means that, there is no jump in the asset price in a small time interval , 

then equation (3.10) becomes a SDE for Brownian motion; 

                                                                                            (3.15) 

However, when the asset price jumps in small time interval   , then the 

JDM for the relative price jump of  is given by; 

                                                               (3.16) 
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3.3.3 Solution to Merton’s jump diffusion model 

Consider SDE in equation (3.15) and multiply by  on both sides then 

                                       (3.17) 

From It  formula for the jump-diffusion process (Cont &Tankov, 2004) given as: 

                                                                                                                                            (3.18) 

Where,  and  correspond to the drift term and volatility term of a jump-diffusion process 

respectively, also the function is considered as  

Let                                                                                                    (3.19) 

                                                                                                                                 (3.20) 

                                                                                                                              (3.21) 

                                                                                                                        (3.22) 

                                                                                                             (3.23) 

                                                                                                                          (3.24) 

Substituting results from equation (3.20) to (3.24) into equation (3.18) then, 

                                                                                                                                           (3.25) 

                          (3.26) 

                                                         (3.27) 

Integrating equation (3.27) over the time interval   , we get 

                                   (3.28) 
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                                              (3.29) 

Substituting the limits then; 

                                                         (3.30) 

By the assumption in equation (3.13) that log price (return) jump size , then 

                                                             (3.31) 

                                                  (3.32) 

From equation (3.1) then, stock price process  is modeled as: 

                                                                                                                (3.33) 

In which  is a L vy process of finite jumps such that; 

                                                 (3.34) 

It should be noted that for the case of Black-Scholes: 

                                                                                          (3.35) 

However, due to the presence of the term  makes log return not normal for the case 

of MJD model. The assumption on the log return jump size  enables to obtain 

the probability density of the log return   as a converging series of the form: 

                                                                       (3.36) 

.                                      (3.37) 

Where  

                                                                 (3.38) 
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The term   represents the probability that the asset price jumps  times 

in the time interval of length and  

is the Black-Scholes normal density of log return under the assumption that the asset price 

jumps  times in the interval of t.  

3.3.4 Maximum likelihood estimation method 

To estimate the five parameters α, σ, λ, µ and   the maximum likelihood estimation (MLE) 

method (Tang, 2018) was used. Meanwhile, there are no analytic expressions of the optimal 

parameter values, the MATLAB code fminsearch was used to estimate optimal parameters 

(Honoré , 1998). 

3.4 Option pricing: Martingale approach 

If we let  which is a standard Brownian motion process be on a 

space . The stock price process under actual probability measure , is given by 

equation (3.39) in the form of: 

                                                  (3.39) 

It should be noted that, MJD model is one of an incomplete model with the reason that there 

are many equivalent martingale risk-neutral measures  under which 

 i.e., the discounted asset price process becomes a martingale 

(Matsuda, 2004). Merton comes up with an equivalent martingale risk-neutral measure 

 by changing   while keeping the other parts unchanged. The equation (3.39) 

under  becomes: 

                                             (3.40) 

Note that  is on space  and the process  is a 

martingale under . Then a European option price  with payoff function 

 is computed as: 

                                                               (3.41) 

The standard assumption is  thus; 
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                                                                                                                                            (3.42) 

.                                                                                                                                           (3.43) 

Using the index for the number of jumps: 

.                                                                                                    (3.44) 

And the compound Poisson process is distributed as: 

                                                                                          (3.45) 

Consequently,  can be expressed as: 

 

                                                                                                                                            (3.46) 

Using equation (3.47). 

                                                                                                                            (3.47) 

 

 

                                                                                                                                            (3.48) 

It should be noted from equation (3.48) that: 
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                                           (3.49) 

Rewriting equation (3.50) without changing its distribution then: 

 

                                           (3.50) 

Since a normal density is uniquely determined by mean and variance, now we can rewrite 

equation (3.36) as: 

 

                                                                                                                                            (3.51) 

Adding   inside the exponential function in equation (3.38) then: 

 

                                                                                                                                            (3.52) 

                                                                                                                                            (3.53) 
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Let  and rearrange: 

                                                                                                                                            (3.54) 

                                                                                                                                            (3.55) 

BS price can be expressed as: 

           (3.56) 

Lastly, when BS price is conditioned on the number of jumps  as weighted average, then 

MJD pricing formula can be found as: 

 

         

                                                                                                                                            (3.57) 

Alternatively: 

                                                                                                                                            (3.58) 

                                                                      (3.59) 

Where; 

                                                                                                    (3.60) 
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                                                                                                                   (3.61) 

                                                      (3.62) 

                                                                   (3.63) 

Where,  is cumulative normal distribution and  

                                                                                                              (3.64) 

                                                                                                                 (3.65) 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Parameter estimates for BS-model 

The following tables summarizes the parameter estimates for BS-model and were obtained 

using MATLAB. The code for parameter estimates is included in the appendix. 

Table 1: Estimation results of BS model for USE 

STOCK   

BATU 0.5315 0.2884 

BOBU 0.0787 0.3102 

NIC -0.0202 0.4961 

UMEM 0.0219 0.2457 

SBU 0.1551 0.5247 

 

Table 1 shows that the instantaneous returns for all stocks except National Insurance 

Corporation (NIC) are positive. The British American Tobacco Uganda (BATU) has high log 

return of about 53.2%. The returns for National Insurance Corporation (NIC) and UMEME 

LIMITED (UMEM) are nearly equal about 2% but with opposite signs. On the other hand, 

the Stanbic Bank Uganda (SBU) has a high value of diffusion coefficient (standard deviation) 

of about 52.5% compared to other stocks. Therefore it can be seen that with the absence of 

sudden events in the market, the stock price of Stanbic Bank Uganda (SBU) is more variant. 

Table 2: Estimation results of BS for NSE 

STOCK   

C&G 0.1496 0.7396 

KCB 0.0757 0.2433 

KQ 0.1364 0.5184 

LIMT 0.5148 0.9731 

SCOM 0.3181 0.2316 
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Table 2 shows that the expected instantaneous returns for all stocks of NSE are positively 

indicating that they all have increasing returns. The Limuru Tea Co. Plc Ord 20.00AIMS 

(LIMT) has a high return of about 51.5% among all stocks but it has a high coefficient of 

diffusion (standard deviation) of about 97.3% which makes it more variant. 

 

Figure 1: Comparison of empirical and BS model for LIMT  

Figure 1 shows the simulated empirical log return for LIMT and BS models. The empirical 

LIMT in blue shows high sparks compared to the BS model in red.  

Table 3: Estimation results of BS for DSE 

STOCK   

TBL 0.3755 0.1380 

SWIS 0.1473 0.2331 

NMB 0.1379 0.2411 

TCC 0.3167 0.4342 

VODA -0.1153 0.2103 

 

Table 3 shows that the expected instantaneous returns for all stocks of DSE are positive 

except Vodacom Tanzania (VODA) with a decreasing expected instantaneous rate of return 

of about 11.5%. The Tanzania Breweries Limited (TBL) has a low diffusion coefficient 

(standard deviation) value of about 13.8% but its expected rate of return is high about 37.6%. 
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When I consider only the rate of return under the BS model, then TBL seems to be the best 

stock to invest among other stocks.  

4.2 Parameter estimates for MJD-model 

Table 4 summarizes the parameter estimates for MJD-model; they were simulated using 

MATLAB code which is hereby appended. 

Table 4: Estimation results of MJD model for NSE, USE and DSE 

 

Table 4 shows, the instantaneous returns for Kenya Airways Ltd Ord 5.00 (KQ), VODA, 

BATU and UMEM are negative indicating that they have a decreasing return. On the other 

hand, the rest of the stocks are positive indicating that they have an increasing return. The 

Safaricom Plc Ord 0.05 (SCOM) has the highest jump among all stocks while VODA has the 

smallest jump (lambda) compared to the rest of stocks. The expected jump sizes for LIMT, 

Car & General (K) Ltd Ord 5.00 (C&G), VODA and NIC are all negative compared to the 

rest whose expected jump sizes are positive. The sign of expected jump size  determines the 

skewness of the stocks. Although the moments of the log return of stocks will be discussed in 

the next sections but in a nutshell those whose values of expected jump size are positive have 

STOCK      
KCB 0.0442 0.1260 108.0856 0.0001 0.0193 

KQ -0.6293 0.1692 135.8863 0.0048 0.0355 

LIMT 1.3715 0.8509 4.2835 -0.2260 0.000002 

SCOM 0.1584 0.0884 236.4803 0.0006 0.0138 

C&G 0.1491 0.7388 50.3132 -0.0156 0.1101 

TBL 0.1555 0.0333 14.9270 0.0187 0.0213 

SWIS 0.0641 0.0560 53.8672 0.0011 0.1284 

NMB 0.0853 0.2171 31.4789 0.0039 0.0125 

TCC 0.1941 0.1983 9.7657 0.0047 0.4353 

VODA -0.1154 0.2098 1.1156 -0.0251 0.0991 

BATU 0.0094 0.0181 16.0868 0.1314 0.1396 

BOBU -0.0275 0.0506 11.0200 0.0054 0.0516 

NIC 0.0219 0.0215 71.1078 -0.0054 0.1900 

UMEM -0.0108 0.0725 55.1214 0.0004 0.0774 

SBU 0.0106 0.0390 84.6321 0.0002 0.2570 



23 
 

positive skewness and those with negative values have negative skewness. The presence of 

skewness in the stock price has significant implications as it will be discussed in the next 

sections. 

Moreover, looking at the diffusion coefficients (standard deviation), LIMT has about 85.1% 

which is the highest among other stocks. BATU has a very small diffusion coefficient of 

about 1.8%. It should be noted that the diffusion coefficient measures the variability of a 

stock price. The BS model, is always assumed to be constant. 

Figure 2 illustrates how the stock of LIMT moves by considering the daily price movement 

and the daily log return. The Fig. 2 (a) is the daily price movement and Fig. 2 (b) is the daily 

log return. It is observed that the price movement in both figures is random and as per Table 

4 LIMT shows a very small jump intensity value. This implies that its daily ups and downs 

(jumps) are relatively small. 

 

 

 

 

 

 

 

 

 

 

Furthermore, Fig. 3 shows the movement of price for SCOM, whereby Fig. 3 (a) shows the 

daily price level while Fig. 3 (b) shows the daily log return movement. It is observed that 

there are very high jumps in both figures contrary to Fig. 2 and the subsequent Figs. 4 and 5. 

When looking at the log return in Fig. 3 (b) the jumps are very close. A very interesting 

property is that SCOM is having high jump intensity not only at NSE but also for the rest of 

the stocks at USE and DSE. 

 

  

(a) The LIMT daily price level                                              (b) The LIMT log return 

 

 

Figure 1                                                                                                                                Figure 2 
Figure 2: The LIMT daily price level and log return (July, 2013 to July, 2018) 
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Figure 4 and Fig. 5 illustrate the situation of price movement at DSE and USE, respectively. 

From Table 4 it is observed that Swissport Tanzania plc (SWIS) at DSE is having a high 

value of jump intensity of about 53.9 compared to the rest. As illustrated in Fig. 4 and Fig. 5, 

at USE, the stock of SBU is having a high value of jump amplitude of about 84.6.  

 

 

 

 

 

 

 

 

 

 

 

(a) The SCOM daily price level                                              (b) The SCOM log return 

 

 

 

 

 

 

 

 

 

 

(a) The SWIS daily stock price level                                              (b) The SWIS log return 

 

 

 

(a)The SWIS daily stock price level                                                   (b) The SWIS log return 

 

Figure 3: The SCOM daily price level and log return (July, 2013 to July, 2018) 

Figure 4: The SWIS daily price level and log return (July, 2013 to July, 2018) 
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4.3 Option pricing 

In this work, we have considered the European call option which is only exercised at the 

expiration time. To do this we needed to make some assumptions because none of the 

considered East African stock market trades financial derivatives (option). Closing prices 

have been used as the initial price  for each stock. Also we assumed that the riskless 

interest rate, r, is a constant over the period 1st July, 2013 to 1st July, 2018. In this study the 

respective country's fixed-rate were used (benchmark interest rate as at 2019) i.e. 7% for 

Tanzania, 9% for Kenya and 10% for Uganda. The currencies are in TZS for Tanzania, KES 

for Kenya and UGX for Uganda. 

 

(a) The SBU daily stock price level                                  (b) The SBU log return 

Figure 5: The SBU daily price level and log return (July, 2013 to July, 2018) 



26 
 

Table 5: European Call option prices from MJD and BS Models for NSE, DSE, and USE 

 

Table 5 shows the comparison of prices of European Call option for MJD and BS models. 

The MJD model gives relative small prices compared to the BS model for KCB Group Plc 

Ord 1.00 (KCB), KQ, LIMT and SCOM for the case of NSE. At DSE, MJD gives small 

prices for the stocks of TBL, NMB Bank plc. (NMB) and VODA. Moreover MJD model 

gives small prices for the stocks of the Bank of Baroda Uganda (BOBU) and UMEM at USE.  

On the other hand, the BS model gives small prices for C&G, SWIS, the Tanzania Cigarette 

Company (TCC), BATU, NIC and SBU compared to MJD model. The MJD prices for most 

stocks are small due to the presence of the expected jump amplitude. Therefore, it can be said 

that incorporation of the compound jump for the case of MJD model has made the prices to 

be more realistic than for the case of the BS model which ignores the jump component.  

STOCK   MJD BS 

KCB 37.25 30 7.2393 7.2607 

KQ 10 8 1.9971 2.0029 

LIMT 490 400 88.1440 90.1461 

SCOM 6.45 5 1.4482 1.4518 

C&G 23 20 3.0197 3.0075 

TBL 3220 3000 219.1667 220.8332 

SWIS 2040 2000 58.0677 41.7231 

NMB 1620 1600 22.0809 23.2003 

TCC 6500 6000 539.8199 501.7480 

VODA 900 800 99.7858 100.2222 

BATU 2540 2500 47.1271 45.6261 

BOBU 120 100 19.9603 20.0397 

NIC 35 30 5.2145 5.0119 

SBU 30 25 5.3715 5.0099 

UMEM 344 300 43.9989 44.1190 
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4.4 The moments of Merton’s log return density 

Table 6: The mean, variance, skewness and kurtosis of Merton’s log return density for all 

selected stocks 

Stock Mean Variance Skewness Kurtosis 

KCB -0.0003 0.0002 0.0144 6.5977 

KQ -0.0006 0.0008 0.4306 7.1041 

LIMT -0.0018 0.0037 -0.8574 6.1680 

SCOM 0.0008 0.0002 0.1057 5.3227 

C&G -0.0055 0.0046 -0.3614 7.2623 

TBL 0.0016 0.00005 5.0553 40.0757 

SWIS 0.00030 0.0035 0.0553 16.9359 

NMB -0.00004 0.0002 0.0783 3.2522 

TCC 0.0002 0.0075 0.1594 77.2260 

VODA -0.0014 0.0002 -1.0182 32.6454 

BATU 0.0084 0.0023 5.5848 43.0367 

NIC -0.0015 0.0102 -0.1603 13.6279 

UMEM -0.0002 0.0013 0.0324 16.2888 

BOBU -0.0007 0.0001 1.3093 61.1292 

SBU -0.00005 0.0222 0.0040 11.9279 

Table 6 shows that, with exception of C & G, VODA) and NIC, the LIMT which are 

negatively skewed the rest of stocks are positively skewed. The presence of skewness 

indicates that the stock prices have non-symmetric return and exhibit empirical abnormity 

called volatility smile. The volatility measures the degree of variation of a trading price series 

over time as it is measured by the standard deviation of log returns. Also in a Table 6, NMB  

has very small kurtosis value of about 3.2 among all selected stocks at all three markets, 

likewise TCC has a very high kurtosis value of about 77 compared to other stocks. Kurtosis 

signifies the presence of the leptokurtic features (fatter tails and high pick than normal 

curves).  
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Figure 6: The comparison of kurtosis for empirical TCC and standard normal 

Figure 6 shows TCC in red with a high pick than the standard normal distribution which is 

drawn in cyan color. The kurtosis value for all of the stocks is greater than three compared to 

the normal distribution which is not supposed to exceed three. This shows that the underlying 

distribution of the returns are leptokurtic or heavy-tailed as it can be seen in the Fig. 6. 
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Figure 7: The histogram for SCOM with positive skewness 

From Fig. 7, the histogram of SCOM at NSE is having long right tail implying that the stock 

is positively skewed.  There are many bars with small values to the right of the mode of the 

histogram. The right skewness is due to the positive value of the expected jump size in Table 

4.  
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Figure 8: The histogram for VODA with negative skewness 

Figure 8 shows, the histogram of VODA at DSE is having long left tail implying that the 

stock is negatively skewed.  There are many bars with small values to the left of the mode of 

the histogram. The left skewness is due to the negative value of the expected jump size in 

Table 4. 
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Figure 9: The histogram for BOBU with positive skewness 

 From Fig. 9, the histogram of BOBU for the case of USE is having long right tail implying 

that the stock is positively skewed. There are many bars with small values to the right of the 

mode of the histogram. The right skewness is due to the positive value of the expected jump 

size in Table 4. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

The developed MJD model have been used to calculate European call options using the daily 

closing stock prices from NSE, DSE and USE. Also, for comparison purpose the researcher 

computed the call options using the basic model called BS model. The results shows that both 

models give different option price values but because of the addition of the compound jump 

Poisson process, the MJD model formulated in this  study seems to give more realistic option 

price values than the BS model.  

Moreover, based on the established empirical results, this study has established that the 

stocks from all three markets exhibit several jumps as it can be evidenced from non-zero 

values of jump amplitude (lambda). The graphs of the daily price movement and daily log 

returns have shown that the stock price moves randomly with ups and downs (jumps). Also, 

the log-returns density of the MJD model that has been formulated in this study exhibits 

volatility and leptokurtosis as evidenced by the presence of skewness and kurtosis values.  

Thus, it is suggested that the Merton's jump-diffusion model with added compound Poisson 

process fits well the stock prices data of NSE, DSE and USE markets by being more realistic 

in terms of price valuation and it has accommodated most of the key features of stock prices. 

5.2 Recommendations 

There are several individual investors, financial institutions and companies that are now 

trading at the NSE, DSE and USE markets. As indicated in the introduction the number of 

investors keeps on growing. These investors use brokers to trade and manage their trading 

activities at these markets. The brokers use the qualitative analyses method of market 

investigation intelligence and speculation. This is mainly because the models available have 

not been used effectively at these stock markets. It should be noted that due to the price 

movement of the stocks being random, the use of speculation is ineffective. Therefore, it is 

recommended that the NSE, DSE and USE should adapt and use the available models for 

trading activities especially when dealing with more risk underlying asset such as stocks. 

Moreover, currently NSE, DSE and USE trade in Government Bonds, Corporate Bonds, and 

Ordinary Shares thus they do not trade financial derivatives. It is recommended that to avoid 
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risk resulting from fluctuation of stocks and widening the market, these stock markets should 

start trading financial derivatives especially options. 

Lastly but not least, many people indeed have little understanding of capital markets which 

leads to the majority of them to invest their money in other assets rather than financial assets. 

It is recommended that the NSE, DSE and USE markets through various strategies should 

educate people on how to invest their money in financial assets such as stocks, bonds and 

derivatives. 
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APPENDICES 

Appendix 1: Codes for the parameters and figures 

clc 

clear all 

% estimation code of parameters of BS model 

S=csvread('C:/Users/HP/Improved/BATU.csv',1,0); %CHANGE STOCK  

dt=1/252;  

R=diff( log (S) ,1); % the return of the emprical stock price  

muhat=mean(R)/dt+var(R) /(2*dt) 

sigmahat=sqrt (var(R)/dt) 

%Code for Comparison of simulated BS-modeled log-returns with the empirical LIMT log-

returns. 

Ns=1; %number of simulation   

dt=1/252;  

t=linspace (0, (124)*dt ,124)'; 

W=cumsum([zeros(1, Ns);sqrt(dt).*normrnd(0 ,1 , length(t)-1,Ns)]) ; 

mu=0.51480; sigma=0.9731;S0=490;% estimate the parameter mu and sigma  

Ssim=S0*exp((mu-sigma^2/2)*t*ones(1 ,Ns)+sigma*W) ; %stock price of simulation  

Rsim=diff(log(Ssim) ,1) ; % return of the simulated stock price  

df=csvread('C:/Users/HP/data/NSE_2_Data.csv',1,0); 

DF=df(1:124,:); %SKIP ZERO VALUES 

S=DF(:,4); %Taking specific column values at a particular row(the emprical stock price)  

R=diff( log(S) ,1) ; % return of the real stock price figure (1) 

x=t(2: end) ;  

plot(x ,R, x ,Rsim ,': ') 

xlabel ( 'time' ) 

ylabel ( 'Log returns')  

legend ( ' Empirical ', 'BS model ' ) 

%title label('Comparison of Empirical and BS Model for LIMT') 

 

clc 

clear all 

% estimation code of MJD model 
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S=csvread ('C: /Users/HP/Improved/KCB.csv', 1, 0); 

dt=1/252;  

%m=0.186; 

R=diff(log(S) ,1); 

epsilon =0.02; %values to verify jump 

jumpindex=find(abs(R)>epsilon );%if true then considered as jump 

lambdahat=length(jumpindex)/((length (S)-1)*dt); % jump intensity , the number of jumps in 

per? year  

Rjumps=R(jumpindex);% the data of ’jumpindex ’  

diffusionindex=find (abs(R)<=epsilon ); % without jumps , the diffusion data can be consider 

as in BS model 

Rdiffusion=R(diffusionindex) ;% the data of ’ diffusionindex ’ 

sigmahat=std( Rdiffusion )/sqrt (dt);  

muhat=((2*mean(Rdiffusion)+(sigmahat^2)*dt))/(2*dt); 

%sigma_jhat=sqrt(m)*sigmahat; 

sigma_jhat=sqrt(( var(Rjumps)-sigmahat^2*dt));  

mu_jhat=mean(Rjumps)-(muhat-sigmahat^2/2)*dt ;  

theta0=[muhat sigmahat lambdahat mu_jhat sigma_jhat];% initial value 

Logmerton=@(mu, sigma ,lambda , mu_j , sigma_j )-sum( log(logmertonpdf(R, dt ,mu, 

sigma , lambda , mu_j , sigma_j))) ;  

[theta, fval, maxiter, exitflag]=fminsearch(@( theta)Logmerton( theta(1) ,theta(2) 

,theta(3),theta(4),theta(5)),theta0) 

% Maximum likelihood method from initial value 

thetas=fminsearch(@(theta)Logmerton(theta(1) ,theta(2) , theta(3) , theta(4) , theta(5) ) ,theta 

);   

disp ([ 'mu' num2str([theta0(1) theta(1) thetas(1)])]); 

disp ([ 'sigma' num2str([theta0(2) theta(2) thetas(2)])]); 

disp (['lambda' num2str([ theta0(3) theta(3) thetas(3)])]); 

disp ([ 'mu_j' num2str([ theta0(4) theta(4) thetas(4)])]);  

disp ([ 'sigma_j' num2str([theta0(5) theta(5) thetas(5)])]); 

M1=(theta(1)-theta(2)*2/2+theta(3)*theta(4))*dt % Mean 

M2=(theta (2)^2+theta(3)*( theta(5)^2+theta(4)^2))*dt  %Variance 

M3=(3*theta(5)^2+theta(4)^2)*theta(4)*theta(3)*dt;   
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M4=(3*theta(5)^4+6*theta(4)^2*theta(5)^2+theta(4)^4)*theta(3)*dt+(3*theta(3)^(2)*(theta(

5)^2+theta(4)^2)^(2)+6*theta(3)*theta(2)^(2)*(theta(5)^2+theta(4)^2)+3*theta(2)^(4))*(dt^2

); 

Beta3=M3/(M2^(1.5))%Skewness coefficient 

Beta4=M4/(M2^(2))%Kurtosis coefficient 

Beta5=sqrt(M2) %std 

  

function pdflog=logmertonpdf(r , dt ,mu, sigma , lambda , mu_j , sigma_j ) % build a density 

function of MJD model 

if lambda>0  

nterm=100;  

term=zeros(length(r) ,nterm);% return a matrix length(r)*100 

for i=1:nterm 

    poisson=(lambda*dt)^i/prod(1:i)*exp(-lambda*dt) ; 

    normal=1/sqrt (2*pi*(sigma^2*dt+sigma_j^2*i))*exp(-(r-((mu-sigma^2/2)*dt+mu_j*i) 

).^2/(2*(sigma^2*dt+sigma_j^2*i)));  

    term (: ,i) =poisson*normal; 

end 

pdflog=sum([1/sqrt(2*pi*sigma^2*dt)*exp(-(r-(mu- 

sigma^2/2)*dt).^2/(2*sigma^2*dt))*exp(-lambda*dt) term], 2); 

else % lambda <=0  

    pdflog=1/sqrt(2*pi*sigma^2)*exp(-(r-(mu-sigma^2/2)*dt).^2/(2*(sigma^2*dt))); 

end  

end 

  

 

 

%MJD CALL OPTION CODE 

c = 0; 

S0 = 30;%stock price at time 0 

K =25; %strike price 

tau=1/252  

r = 0.1; %risk-free interest rate 

lambda = 84.6321; 
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delta =0.2570; 

mu = 0.0002; 

sigma =0.0390; 

k = exp(mu + 0.5 * delta ^ 2) - 1; 

N = 100; %number of terms 

for i = 0 : N 

    r_i = r - lambda * k + i * log(1 + k)/tau; 

    sigma_i = sqrt(sigma ^ 2 + i * delta ^ 2 / tau); 

    d1 = (log(S0/K) + (r_i + 0.5 * sigma_i ^ 2) * tau) /(sigma_i * sqrt(tau)); 

    d2 = d1 - sigma_i * sqrt(tau); 

    p1 = S0 * normcdf (d1,0,1) - (K * exp(r_i *tau) * normcdf(d2,0,1)); 

    p2 = (exp(-lambda * tau)* ((lambda * tau) ^ i))/factorial(i); 

    c = c + (p1 * p2); 

     

end 

disp (c)  

 

 

%BS-option pricing matlab-code 

S=30; 

K=25; 

tau=1/252; 

sigma=0.5247; 

r=0.1; 

D=0; 

d1=(log(S./K)+(r+0.5*sigma^2)*tau)/(sigma*sqrt(tau)); 

d2=d1-sigma.*sqrt(tau); 

Call=S.*exp(-D.*tau).*normcdf(d1,0,1)-K.*exp (-r.*tau).*normcdf(d2,0,1) 

 

 

 

 

 


