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We consider an insurance company whose reserves dynamics follow a diffusion-perturbed risk model. To reduce its risk,
the company chooses to reinsure using proportional or excess-of-loss reinsurance. Using the Hamilton-Jacobi-Bellman (HJB)
approach, we derive a second-order Volterra integrodifferential equation (VIDE) which we transform into a linear Volterra integral
equation (VIE) of the second kind. We then proceed to solve this linear VIE numerically using the block-by-block method for
the optimal reinsurance policy that minimizes the ultimate ruin probability for the chosen parameters. Numerical examples with
both light- and heavy-tailed distributions are given. The results show that proportional reinsurance increases the survival of the
company in both light- and heavy-tailed distributions for the Cramér-Lundberg and diffusion-perturbed models.

1. Introduction

When the surplus process of an insurance company falls
below zero, the company is said to have experienced ruin.
Insurance companies customarily take precautions to avoid
ruin. These precautions are referred to as control variables
and include investments, capital injections or refinancing,
portfolio selection, and reinsurance arrangements, to men-
tion but a few. This study focuses on reinsurance as a control
measure. Reinsurance, sometimes referred to as “insurance
for insurers,” is the transfer of risk from a direct insurer
(the cedent) to a second insurance carrier (the reinsurer).
With reinsurance, the cedent passes on some of its premium
income to a reinsurer who, in turn, covers a certain pro-
portion of the claims that occur. It has been argued in the
literature that reinsurance plays an important role in risk
reduction for cedents in that it offers additional underwriting
capacity for them and reduces the probability of a direct
insurer’s ruin. Apart from helping the cedent to manage
financial risk, increase capacity, and achieve marketing goals,
reinsurance also benefits policyholders by ensuring availabil-
ity and affordability of necessary coverage.

Of interest in this paper are those studies which investi-
gate more directly the effect of reinsurance on the ultimate
ruin probability. The minimization of the probability of ruin
for a company whose claim process evolves according to
a Brownian motion with drift and is allowed to invest in
a risky asset and to purchase quota-share reinsurance was
considered in [1]. In this study, an analytical expression
for the minimum ruin probability and the corresponding
optimal controls were obtained. Kasozi et al. [2] studied the
problem of controlling ultimate ruin probability by quota-
share (QS) reinsurance arrangements. Under the assumption
that the insurer could invest part of the surplus in a risk-
free and risky asset, [2] found that quota-share reinsurance
does reduce the probability of ruin and that for chosen
parameter values the optimal QS retention 𝑏∗ ∈ (0.2, 0.4).
This study also concluded that investment helps insurance
companies to reduce their ruin probabilities but that the
ruin probabilities increase when stock prices become more
volatile. However, while Kasozi et al. [2] considered only
quota-share reinsurance, this paper seeks to combine quota-
share and excess-of-loss (XL) reinsurance for one and the
same insurance portfolio, but in the absence of investment.
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Liu and Yang [3] reconsidered themodel in [4] and incor-
porated a risk-free interest rate. Since closed-form solutions
could not be obtained in this case, they provided numerical
results for optimal strategies for maximizing the survival
probability under different claim-size distribution assump-
tions. Also using the results in [4], the problem of choosing
a combination of investments and optimal dynamic propor-
tional reinsurance tominimize ruin probabilities for an insur-
ance company was investigated in [5] based on a controlled
surplus process satisfying the stochastic differential equation𝑑𝑋𝐴𝑏𝑡 = (𝑐 − 𝑐(𝑏𝑡) + 𝜇𝐴 𝑡)𝑑𝑡 + 𝜎𝐴 𝑡𝑑𝑊𝑡 − 𝑏𝑡𝑑𝑆𝑡, where 𝑏𝑡 ∈[0, 1] is a proportional reinsurance retention at time 𝑡, 𝑐(𝑏𝑡) is
the dynamic reinsurance premium rate, {𝐴 𝑡} is the amount
invested in a risky asset at time 𝑡, and 𝑆𝑡 is the aggregate
claims process. But while [5] uses proportional reinsurance
in minimizing ruin probabilities in the Cramér-Lundberg
model, this paper considers proportional and excess-of-loss
reinsurance in the diffusion-perturbed model.

More recently, taking ruin probability as a risk measure
for the insurer, [6] investigated a dynamic optimal reinsur-
ance problem with both fixed and proportional transaction
costs for an insurer whose surplus process is modelled by a
Brownian motion with positive drift. Under the assumption
that the insurer takes noncheap proportional reinsurance,
they formulated the problem as a mixed regular control and
optimal stopping problem and established that the optimal
reinsurance strategy was to never take reinsurance if propor-
tional costs were high and to wait to take the reinsurance
when the surplus hits a level. Additionally, they obtained
an explicit expression for the survival probability under the
optimal reinsurance strategy and found it to be larger than
that with the aforementioned strategies. Hu and Zhang [7]
introduced a general risk model involving dependence struc-
ture with common Poisson shocks. Under a combined quota-
share and excess-of-loss reinsurance arrangements, they
studied the optimal reinsurance strategy for maximizing the
insurer’s adjustment coefficient and established that excess-
of-loss reinsurance was optimal from the insurer’s point of
view. Zhang and Liang [8] studied the optimal retentions for
an insurance company that intends to transfer risk by means
of a layer reinsurance treaty. Under the criterion of maxi-
mizing the adjustment coefficient, they obtained the closed-
form expressions of the optimal results for the Brownian
motion as well as the compound Poisson risk models and
concluded that under the expected value principle excess-of-
loss reinsurance is better than any other layer reinsurance
strategies while under the variance premium principle pure
excess-of-loss reinsurance is no longer the optimal layer
reinsurance strategy. Both of these studies, however, used
the criterion of maximizing the adjustment coefficient rather
than minimizing the insurer’s ruin probability.

This paper aims at combining proportional and excess-
of-loss reinsurance for one and the same insurance portfolio.
In proportional or “pro rata” reinsurance, the reinsurer
indemnifies the cedent for a predetermined portion of the
claims or losses, while in excess-of-loss (XL) reinsurance,
which is nonproportional, the reinsurer indemnifies the
cedent for all claims or losses or for a specified portion of

them, but only if the claim sizes fall within a prespecified
band. Excess-of-loss reinsurance has been defined in [9] as
“a form of nonproportional reinsurance contract in which
an insurer pays insurance claims up to a prefixed retention
level and the rest are paid by a reinsurer.” Mathematically,
given retention level 𝑎, a claim of size 𝑋 is divided into the
cedent’s payment 𝑋 ∧ 𝑎 and the reinsurer’s payment 𝑋 −𝑋 ∧ 𝑎. The combination of proportional and excess-of-loss
reinsurance has been in fact widely used in the construction
of reinsurance models (see, e.g., [10]).

The models in this paper result in Volterra integral
equations (VIEs) of the second kind which are solved using
the block-by-block method, generally considered as the best
of the higher order methods for solving Volterra integral
equations of the second kind. The block-by-block methods
are essentially extrapolation procedures which produce a
block of values at a time.These methods can be of high order
and still be self-starting. They do not require special starting
procedures, are simple to use, and allow for easy switching of
step-size [11].

The rest of the paper is organized as follows. Section 2
presents the formulation of the model and assumptions,
followed, in Section 3, by a derivation of the HJB, integrod-
ifferential, and integral equations. In Section 4, we present
numerical results for some ruin probabilitymodels with rein-
surance, using the exponential distribution for small˜claims
and the Pareto distribution for large ones. Some conclusions
and possible extensions of this study are given in Section 5.

2. Model Formulation

Let (Ω,F, {F𝑡}𝑡∈R+ ,P) be a filtered probability space con-
taining all stochastic objects encountered in this paper and
satisfying the usual conditions; that is, {F𝑡}𝑡∈R+ is right-
continuous and P-complete. In the absence of reinsurance,
the surplus of an insurance company is governed by the
diffusion-perturbed classical risk process:

𝑈𝑡 = 𝑢 + 𝑐𝑡 + 𝜎𝑊𝑡 −
𝑁𝑡∑
𝑖=1

𝑋𝑖, 𝑡 ≥ 0, (1)

where 𝑢 = 𝑈0 ≥ 0 is the initial reserve, 𝑐 = (1 + 𝜃)𝜆𝜇 >0 is the premium rate, 𝜃 is the safety loading, {𝑁𝑡} is a
homogeneous Poisson process with intensity 𝜆 > 0, and {𝑋𝑖}
is an i.i.d. sequence of strictly positive random variables with
distribution function 𝐹. 𝑆𝑡 = ∑𝑁𝑡𝑖=1𝑋𝑖 is a compound Poisson
process representing the cumulative amount of claims paid
in the time interval [0, 𝑡]. The claim arrival process {𝑁𝑡} and
claim sizes {𝑋𝑖} are assumed to be independent. Here {𝑊𝑡} is a
standard one-dimensional Brownian motion independent of
the compound Poisson process 𝑆𝑡. We assume that E[𝑋𝑖] =𝜇 < ∞ and 𝐹(0) = 0. The diffusion term 𝜎𝑊𝑡 denotes
the fluctuations associated with the surplus of the insurance
company at time 𝑡.Without volatility in the surplus and claim
amounts, (1) becomes the well-known Cramér-Lundberg
model or the classical risk process.

We proceed as in [12] where the insurer took a com-
bination of quota-share and excess-of-loss reinsurance
arrangements. Most of the actuarial literature dealing with
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reinsurance as a risk control mechanism only considers pure
quota-share or excess-of-loss reinsurance. However, in reality
the insurer has the choice of a combination of the two
and hence the use of a combination of quota-share and XL
reinsurance in this paper. We assume that the reinsurance
is cheap, meaning that the reinsurer uses the same safety
loading as the insurer. Let the quota-share retention level
be 𝑘 ∈ [0, 1]. Then the insurer’s aggregate claims, net of
quota-share reinsurance, are 𝑘𝑋. If the company also buys
excess-of-loss reinsurance with a retention level 𝑎 ∈ [0,∞),
then the insurer’s aggregate claims, net of quota-share and
excess-of-loss reinsurance, are given by 𝑘𝑋 ∧ 𝑎. Given that 𝑅
is a reinsurance strategy combining quota-share and excess-
of-loss reinsurance, the insurer’s controlled surplus process
becomes

𝑈𝑅𝑡 = 𝑢 + 𝑐𝑅𝑡 + 𝜎𝑊𝑡 −
𝑁𝑡∑
𝑖=1

𝑘𝑋𝑖 ∧ 𝑎, (2)

where the insurance premium 𝑐𝑅 = 𝑐− (1+𝜃)𝜆E[(𝑘𝑋𝑖 −𝑎)+].
The controlled surplus process (2) has dynamics

𝑑𝑈𝑅𝑡 = 𝑐𝑅𝑑𝑡 + 𝜎𝑑𝑊𝑡 − 𝑑(𝑁𝑡∑
𝑖=1

𝑘𝑋𝑖 ∧ 𝑎) . (3)

The time of ruin is defined as 𝜏𝑅 = inf{𝑡 ≥ 0 | 𝑈𝑅𝑡 < 0} and
the probability of ultimate ruin is defined as 𝜓𝑅 = P(𝑈𝑅𝑡 <0 for some 𝑡 > 0). A reinsurance strategy 𝑅 is said to be
admissible if 𝑘 ∈ [0, 1] and 𝑎 ∈ [0,∞). The objective is to
find the quota-share level 𝑘 and the excess-of-loss retention
limit 𝑎 to minimize the insurer’s risk or to maximize the
insurer’s survival probability. It should be noted that when the
retention limit 𝑎 of the excess-of-loss reinsurance is infinite,
then the treaty becomes a pure quota-share reinsurance, while
when the quota-share level 𝑘 = 1, it becomes a pure excess-of-
loss reinsurance treaty.The premium income of the insurance
company is nonnegative if 𝑐 ≥ (1+𝜃)𝜆E[(𝑘𝑋−𝑎)+].Therefore,
we will let 𝑎 be the XL retention level at which equality 𝑐 =(1 + 𝜃)𝜆E[(𝑘𝑋 − 𝑎)+] holds.

Define the value function of this problem as

𝜓𝑅 (𝑢) = P (𝑈𝑡 ≤ 0 for some 𝑡 ≥ 0 | 𝑈𝑅0 = 𝑢)
= P (𝜏𝑅 < ∞ | 𝑈𝑅0 = 𝑢) , (4)

where 𝜓𝑅(𝑢) is the probability of ultimate ruin under the
policy 𝑅 when the initial surplus is 𝑢. Then the objective is
to find the optimal value function, that is, the minimal ruin
probability

𝜓 (𝑢) = inf
(𝑘,𝑎)∈R

𝜓𝑅 (𝑢) (5)

and optimal policy (𝑅)∗ = (𝑘∗, 𝑎∗) s.t. 𝜓𝑅∗(𝑢) = 𝜓(𝑢). Alter-
natively, we can find the values of 𝑘∗ and 𝑎∗ which maximize

the probability of ultimate survival 𝜙(𝑢) = 1 − 𝜓(𝑢), so that
the optimal value function becomes

𝜙 (𝑢) = sup
(𝑘,𝑎)∈R

𝜙𝑅 (𝑢) , (6)

whereR is the set of all reinsurance policies.

3. HJB, Integrodifferential,
and Integral Equations

Lemma 1. Assume that the survival probability 𝜙(𝑢) defined
by (6) is twice continuously differentiable on (0,∞). Then 𝜙(𝑢)
satisfies the HJB equation

sup
(𝑘,𝑎)∈R

{12𝜎2𝜙 (𝑢) + 𝑐𝑅𝜙 (𝑢)
+ 𝜆∫𝑢
0
[𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) − 𝜙 (𝑢)] 𝑑𝐹 (𝑥)} = 0,

𝑢 > 0,
(7)

whereR is the set of all reinsurance policies.

Proof. See [13].

We now present the verification theorem which is essen-
tial for solving the associated stochastic control problem.

Theorem 2. Suppose Φ ∈ 𝐶2 is an increasing strictly concave
function satisfying HJB equation (7) subject to the boundary
conditions

Φ (𝑢) = 0 on 𝑢 < 0
Φ (0) = 0 if 𝜎2 > 0

lim
𝑢→∞

Φ (𝑢) = 1
(8)

for 0 ≤ 𝑢 < ∞. Then the maximal survival probability 𝜙(𝑢)
given by (6) coincides with Φ. Furthermore, if (𝑅)∗ = (𝑘∗, 𝑎∗)
satisfies

12𝜎2Φ (𝑢) + 𝑐𝑅∗Φ (𝑢)
+ 𝜆∫𝑢
0
[Φ (𝑢 − 𝑘∗𝑥 ∧ 𝑎∗) − Φ (𝑢)] 𝑑𝐹 (𝑥) = 0

𝑤ℎ𝑒𝑛 0 ≤ 𝑢 < ∞
(9)

then the policy (𝑅)∗ is an optimal policy; that is,Φ(𝑢) = 𝜙(𝑢) =
𝜙𝑅∗(𝑢).
Proof. Let𝑅 be an arbitrary reinsurance strategy and let𝑈∗ be
the surplus process when 𝑅 = 𝑅∗. Choose 𝑛 > 𝑢 and define
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𝑇 = T𝑛 = inf{𝑡 | 𝑈𝑡 ∉ [0, 𝑛]}. Note that 𝑈𝑇∧𝑡 ∈ (−∞, 𝑛]
because the jumps are downwards. The process

𝑀1𝑡 =
𝑁𝑇∧𝑡∑
𝑖=1

[Φ (𝑈𝑇𝑖) − Φ (𝑈𝑇
𝑖
−
)]

− 𝜆∫𝑇∧𝑡
0

[∫𝑈𝑠
0

Φ(𝑈𝑠 − 𝑘𝑥 ∧ 𝑎) 𝑑𝐹 (𝑥)
− Φ (𝑈𝑠)] 𝑑𝑠

(10)

is a martingale. We write

Φ(𝑈𝑇∧𝑡) = Φ (𝑢) + Φ (𝑈𝑇∧𝑡) − Φ(𝑈𝑇𝑁𝑇∧𝑡)
+ 𝑁𝑇∧𝑡∑
𝑖=1

[Φ (𝑈𝑇
𝑖
−
) − Φ (𝑈𝑇𝑖−1)] +𝑀1𝑡

+ 𝜆∫𝑇∧𝑡
0

[∫𝑈𝑠
0

Φ(𝑈𝑠 − 𝑘𝑥 ∧ 𝑎) 𝑑𝐹 (𝑥)
− Φ (𝑈𝑠)] 𝑑𝑠.

(11)

By Itô’s formula,

Φ(𝑈𝑇
𝑖
−
) − Φ (𝑈𝑇𝑖−1)

= ∫𝑇𝑖
𝑇𝑖−1

[12𝜎2Φ (𝑈𝑠) + 𝑐𝑅Φ (𝑈𝑠)] 𝑑𝑠
+ ∫𝑇𝑖
𝑇𝑖−1

𝜎Φ (𝑈𝑠) 𝑑𝑊𝑠.
(12)

The corresponding result holds forΦ(𝑈𝑇∧𝑡)−Φ(𝑈𝑇𝑁𝑇∧𝑡 ).Thus,

Φ(𝑈𝑇∧𝑡) = Φ (𝑢) + ∫𝑇∧𝑡
0

[12𝜎2Φ (𝑈𝑠) + 𝑐𝑅Φ (𝑈𝑠)
+ 𝜆(∫𝑈𝑠

0
Φ(𝑈𝑠 − 𝑘𝑥 ∧ 𝑎) 𝑑𝐹 (𝑥) − Φ (𝑈𝑠))] 𝑑𝑠

+ ∫𝑇∧𝑡
0

𝜎Φ (𝑈𝑠) 𝑑𝑊𝑠 +𝑀1𝑡 .
(13)

Using HJB equation (7), we find that

Φ(𝑈𝑇∧𝑡) ≤ Φ (𝑢) + ∫𝑇∧𝑡
0

𝜎Φ (𝑈𝑠) 𝑑𝑊𝑠 +𝑀1𝑡 (14)

and equality holds for𝑈∗. Let {S𝑚} be a localization sequence
of the stochastic integral, and set T𝑚𝑛 = T𝑛 ∧ S𝑚. Taking
expectations yields

E [Φ (𝑈T𝑚
𝑛
∧𝑡)] ≤ Φ (𝑢) . (15)

By bounded convergence, letting 𝑚 → ∞ and then 𝑡 → ∞,
we have E[Φ(𝑈T𝑛

)] ≤ Φ(𝑢). It turns out that, for Φ(0) = 0,
P (𝜏 < T𝑛, 𝑈𝜏 = 0) + Φ (𝑛)P (T𝑛 < 𝜏)

= E [Φ (𝑈T𝑛
)] ≤ Φ (𝑢) . (16)

Note thatP(T𝑛 < 𝜏) ≥ 𝜙𝑅(𝑢). Because there is a strategywith
𝜙𝑅(𝑢) > 0, it follows that Φ(𝑢) is bounded. We therefore let𝑛 → ∞, yielding E[Φ(𝑈𝜏)] ≤ Φ(𝑢). In particular, we obtain

𝜙𝑅 (𝑢)Φ (∞) ≤ 𝜙𝑅 (𝑢)Φ (∞) + P (𝜏 < ∞,𝑈𝜏 = 0)
≤ Φ (𝑢) (17)

which simplifies to

𝜙𝑅 (𝑢) ≤ 𝜙𝑅 (𝑢) + P (𝜏 < ∞,𝑈𝜏 = 0) ≤ Φ (𝑢) (18)

since Φ(∞) = 1. For 𝑈∗ we obtain an equality. In particular,{Φ(𝑈∗𝑡 )} is a martingale. It remains to show that P(𝑈∗𝜏 ̸=0) = 1. Note first from HJB equation (7) that 𝐹(𝑥) must
be continuous; if not, the integral in (7) is not continuous.
Choose 𝜀 > 0 and consider the strategy 𝑅 = 𝑅∗1𝑢≥𝜀. Let𝑇𝜀 = inf{𝑡 | 𝑈∗𝑡 < 𝜀}. By the martingale property, Φ(𝑢) =Φ(∞)P(𝑇𝜀 = ∞) + E[Φ(𝑇𝜀), 𝑇𝜀 < 𝜏 < ∞] which reduces to

Φ (𝑢) = P (𝑇𝜀 = ∞) + E [Φ (𝑇𝜀) , 𝑇𝜀 < 𝜏 < ∞] (19)

the last term of which is bounded by Φ(𝜀)P(𝑇𝜀 < 𝜏 <∞). Since 𝐹(𝑥) is continuous, it must converge to zero as𝜀 → 0. Because P(𝑇𝜀 = ∞) → 𝜙∗(𝑢), it follows thatΦ(𝑢) = 𝜙∗(𝑢)Φ(∞) or Φ(𝑢) = 𝜙∗(𝑢) = 𝜙(𝑢). That is, Φ(𝑢)
is the optimal value function and 𝑅∗ = (𝑅)∗ is an optimal
policy.

The integrodifferential equation corresponding to opti-
mization problem (6) immediately follows from Theorem 2
as

12𝜎2𝜙 (𝑢) + 𝑐𝑅𝜙 (𝑢)
+ 𝜆∫𝑢
0
[𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) − 𝜙 (𝑢)] 𝑑𝐹 (𝑥) = 0

for 0 ≤ 𝑢 < ∞.
(20)

This is an integrodifferential equation of Volterra type
(VIDE). Solution of this equation will require that it is trans-
formed into a Volterra integral equation (VIE) of the second
kind using successive integration by parts. Hence the follow-
ing theorem is obtained.

Theorem 3. Integrodifferential equation (20) can be repre-
sented as a Volterra integral equation of the second kind:

𝜙 (𝑢) + ∫𝑢
0
𝐾 (𝑢, 𝑥) 𝜙 (𝑥) 𝑑𝑥 = ℎ (𝑢) , (21)

where

(1) If 𝑢 ≤ 𝑎 < 𝑎, one has
𝐾 (𝑢, 𝑥) = −𝜆𝐹 (𝑢 − 𝑘𝑥)

𝑐𝑅
ℎ (𝑢) = 𝜙 (0)

(22)
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with 𝐹(𝑥) = 1 − 𝐹(𝑥), when there is no diffusion (i.e.,
when 𝜎2 = 0), and

𝐾 (𝑢, 𝑥) = 2 (𝑐𝑅 + 𝜆𝐺 (𝑢 − 𝑘𝑥) − 𝜆 (𝑢 − 𝑘𝑥))
𝜎2

ℎ (𝑢) = 𝑢𝜙 (0) if 𝜎2 > 0
(23)

when there is diffusion.
(2) If 𝑎 < 𝑎 < 𝑢, one has

𝐾 (𝑢, 𝑥) = −𝜆𝐻1 (𝑥, 𝑢)𝑐𝑅
ℎ (𝑢) = 𝜙 (0)

(24)

with

𝐻1 (𝑥, 𝑢) = {{{
𝐹 (𝑢 − 𝑘𝑥) 𝑘𝑥 < 𝑎
1 − (𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)) 𝑘𝑥 ≥ 𝑎 (25)

when there is no diffusion, and

𝐾 (𝑢, 𝑥) = 2 (𝑐𝑅 + 𝜆𝐻2 (𝑥, 𝑢) − 𝜆 (𝑢 − 𝑘𝑥))
𝜎2

ℎ (𝑢) = 𝑢𝜙 (0) if 𝜎2 > 0
(26)

with

𝐻2 (𝑥, 𝑢) = {{{
𝐺 (𝑢 − 𝑘𝑥) 𝑘𝑥 < 𝑎
(𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)) (𝑢 − 𝑘𝑥) 𝑘𝑥 ≥ 𝑎 (27)

and 𝐺(𝑥) = ∫𝑥
0
𝐹(V)𝑑V when there is diffusion.

Proof. The proof for the case 𝑢 ≤ 𝑎 < 𝑎 is similar to the proof
ofTheorem 2.2 in [14] but with 𝑟 = 𝜎2𝑅 = 0, 𝑘 = 1, and 𝑝 = 𝑐𝑅.
Here, we present the proof for the case 𝑎 < 𝑎 < 𝑢.

Integrating (20) on [0, 𝑧] with respect to 𝑢 gives

0 = 12𝜎2 [𝜙 (𝑧) − 𝜙 (0)] + 𝑐𝑅 [𝜙 (𝑧) − 𝜙 (0)]
− 𝜆∫𝑧
0
𝜙 (𝑢) 𝑑𝑢

+ 𝜆∫𝑧
0
∫𝑢
0
𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) 𝑓 (𝑥) 𝑑𝑥 𝑑𝑢.

(28)

To simplify the double integral in (28), we again use inte-
gration by parts and Fubini’s Theorem (see [13]) to switch
the order of integration and change the properties of the
convolution integral. Thus,

∫𝑧
0
∫𝑢
0
𝜙 (𝑢 − 𝑘𝑥 ∧ 𝑎) 𝑓 (𝑥) 𝑑𝑥 𝑑𝑢

= ∫𝑎
0
𝐹 (𝑧 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ ∫𝑧
𝑎
𝜙 (]) [𝐹 (] + 𝑎) − 𝐹 (𝑎)] 𝑑],

(29)

where ] = 𝑢 − 𝑘𝑥. Substituting into (28) gives
12𝜎2𝜙 (𝑧) − 12𝜎2𝜙 (0) + 𝑐𝑅𝜙 (𝑧) − 𝑐𝑅𝜙 (0)

− 𝜆∫𝑧
0
𝜙 (𝑢) 𝑑𝑢 + 𝜆 [∫𝑎

0
𝐹 (𝑧 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ ∫𝑧
𝑎
𝜙 (]) [𝐹 (] + 𝑎) − 𝐹 (𝑎)] 𝑑]] = 0.

(30)

Replacing 𝑧with 𝑢, ] and 𝑢with 𝑥, and𝐹(]+𝑎)with𝐹(𝑘𝑥+𝑎)
gives

12𝜎2𝜙 (𝑢) − 12𝜎2𝜙 (0) + 𝑐𝑅𝜙 (𝑢) − 𝑐𝑅𝜙 (0)
− 𝜆∫𝑢
0
𝜙 (𝑥) 𝑑𝑥 + 𝜆∫𝑎

0
𝐹 (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ 𝜆∫𝑢
𝑎
[𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)] 𝜙 (𝑥) 𝑑𝑥 = 0.

(31)

Setting 𝜎2 = 0 in (31) yields the case without diffusion

𝜙 (𝑢) − 𝜆
𝑐𝑅 ∫
𝑎

0
𝐹 (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

− 𝜆
𝑐𝑅 ∫
𝑢

𝑎
[1 − (𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎))] 𝜙 (𝑥) 𝑑𝑥

= 𝜙 (0)
(32)

from which the kernel is clearly 𝐾(𝑢, 𝑥) = −𝜆𝐻1(𝑥, 𝑢)/𝑐𝑅
with

𝐻1 (𝑥, 𝑢) = {{{
𝐹 (𝑢 − 𝑘𝑥) 𝑘𝑥 < 𝑎
1 − (𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)) 𝑘𝑥 ≥ 𝑎 (33)

and the forcing function is ℎ(𝑢) = 𝜙(0) as given by (24).
For the case with diffusion, repeated integration by parts

of (30) on [0, 𝑢] with respect to 𝑧 yields the desired result.

𝜙 (𝑢) + 2𝜎2 ∫
𝑢

0
(𝑐𝑅 − 𝜆 (𝑢 − 𝑘𝑥)) 𝜙 (𝑥) 𝑑𝑥

+ 2𝜆𝜎2 [∫
𝑎

0
𝐺 (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥

+ ∫𝑢
𝑎
[𝐹 (𝑘𝑥 + 𝑎) − 𝐹 (𝑎)] (𝑢 − 𝑘𝑥) 𝜙 (𝑥) 𝑑𝑥]

= 𝜎2 (𝜙 (0) + 𝑢𝜙 (0)) + 2𝑐𝑅𝑢𝜙 (0)
𝜎2

(34)
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Figure 1: Ultimate ruin probabilities at different proportional retention levels in the Cramér-Lundberg model: 𝜆 = 2, 𝑐 = 6.

which is a linear VIE of the second kindwith𝐾(𝑢, 𝑥) and ℎ(𝑢)
as given in (26).

4. Numerical Results

We solved (21) using the fourth-order block-by-block
method, a full description of which can be found in [11, 14, 15].
Exp(𝛽) refers to the exponential density 𝑓(𝑥) = 𝛽𝑒−𝛽𝑥, so
that the distribution function for the exponential distribution
is 𝐹(𝑥) = 1 − 𝑒−𝛽𝑥 and its tail distribution is 𝐹(𝑥) = 1 −𝐹(𝑥) = 𝑒−𝛽𝑥. The mean excess function for the exponential
distribution is 𝑒𝐹(𝑥) = 1/𝛽 and 𝐺(𝑥) = 𝑥 − (1/𝛽)𝐹(𝑥). The
Pareto(𝛼, 𝜅) distribution, which is a special case of the three-
parameter Burr(𝛼, 𝜅, 𝜏) distribution, has density 𝑓(𝑥) =𝛼𝜅𝛼/(𝜅+𝑥)𝛼+1 for𝛼 > 0 and 𝜅 = 𝛼−1 > 0, and its distribution
function is 𝐹(𝑥) = 1−(𝜅/(𝜅+𝑥))𝛼.The tail distribution of the
Pareto distribution is 𝐹(𝑥) = (𝜅/(𝜅+𝑥))𝛼 and its mean excess
function is 𝑒𝐹(𝑥) = 1+𝑥/𝜅, so that𝐺(𝑥) = 𝑥− (1 +𝑥/𝜅)𝐹(𝑥).
A grid size of ℎ = 0.01 was used throughout. The data
simulations were performed using a Samsung Series 3 PC
with an Intel Celeron 847 processor at 1.10 GHz and 6.0GB
RAM. To reduce computing time, the numerical method was
implemented using the FORTRAN programming language,
taking advantage of its DOUBLE PRECISION feature which
gives a high degree of accuracy. The figures were constructed
using MATLAB R2016a.

4.1. Ultimate Ruin Probability in the Cramér-Lundberg Model
Compounded by Proportional Reinsurance. Here, the surplus
process takes the form

𝑈𝑅𝑡 = 𝑢 + 𝑘𝑐𝑡 − 𝑁𝑡∑
𝑖=1

𝑘𝑋𝑖. (35)

So, the survival probability 𝜙(𝑢) satisfies (21) and (22) with
𝑎 = ∞ and 𝑐𝑅 = 𝑘𝑐; that is, it satisfies a VIE of the second
kind with kernel and forcing function given by

𝐾 (𝑢, 𝑥) = −𝜆𝐹 (𝑢 − 𝑘𝑥)𝑘𝑐
ℎ (𝑢) = 𝜙 (0) .

(36)

Figure 1 shows the ultimate ruin probabilities in the
Cramér-Lundberg model for different proportional reinsur-
ance retention levels 𝑘 and provides validity for the assertion
that reinsurance does in fact reduce the ruin probability, thus
increasing the insurance company’s chances of survival. The
results for the case 𝑘 = 1 (no reinsurance) are the same as
those obtained in [14].

4.2. Ultimate Ruin Probability in the Cramér-Lundberg Model
Compounded by Excess-of-Loss Reinsurance. This is the case
of 𝑘 = 1 and 𝜎 = 0, so the surplus process is

𝑈𝑅𝑡 = 𝑢 + 𝑐𝑅𝑡 − 𝑁𝑡∑
𝑖=1

𝑋𝑖 ∧ 𝑎, (37)

where 𝑐𝑅 = 𝑐 − (1 + 𝜃)𝜆E[(𝑋𝑖 − 𝑎)+]. Here, for the case 𝑎 <𝑎 < 𝑢, the kernel and forcing function are given by

𝐾 (𝑢, 𝑥) = −𝜆𝐻 (𝑥, 𝑢)
𝑐𝑅

ℎ (𝑢) = 𝜙 (0)
(38)
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Table 1: Ruin probabilities for XL reins. in CLM: Exp(0.5) claims (𝜆 = 2, 𝑐 = 6).
𝑢 𝜓∞(𝑢) 𝜓35(𝑢) 𝜓30(𝑢) 𝜓25(𝑢) 𝜓20(𝑢)
0 0.6667 0.6667 0.6667 0.6667 0.6667
2 0.4777 0.4777 0.4777 0.4777 0.4777
4 0.3423 0.3423 0.3423 0.3423 0.3422
6 0.2453 0.2453 0.2453 0.2453 0.2453
8 0.1757 0.1757 0.1757 0.1757 0.1757
10 0.1259 0.1259 0.1259 0.1259 0.1258
12 0.0902 0.0902 0.0902 0.0902 0.0901
14 0.0646 0.0646 0.0646 0.0646 0.0646
16 0.0463 0.0463 0.0463 0.0463 0.0462
18 0.0332 0.0332 0.0332 0.0332 0.0331
20 0.0238 0.0238 0.0238 0.0238 0.0237

Table 2: Ruin probabilities for XL reins. in CLM: Par(3, 2) claims (𝜆 = 2, 𝑐 = 6).
𝑢 𝜓∞(𝑢) 𝜓35(𝑢) 𝜓30(𝑢) 𝜓25(𝑢) 𝜓20(𝑢)
0 0.6667 0.6667 0.6667 0.6667 0.6667
2 0.5634 0.5636 0.5637 0.5639 0.5641
4 0.5331 0.5335 0.5336 0.5338 0.5341
6 0.5198 0.5202 0.5204 0.5206 0.5210
8 0.5130 0.5134 0.5135 0.5138 0.5142
10 0.5090 0.5095 0.5096 0.5099 0.5103
12 0.5066 0.5070 0.5072 0.5074 0.5079
14 0.5050 0.5054 0.5056 0.5058 0.5063
16 0.5039 0.5043 0.5045 0.5048 0.5052
18 0.5031 0.5036 0.5037 0.5040 0.5044
20 0.5025 0.5030 0.5032 0.5034 0.5039

with

𝐻(𝑥, 𝑢) = {{{
𝐹 (𝑢 − 𝑥) 𝑥 < 𝑎
1 − (𝐹 (𝑥 + 𝑎) − 𝐹 (𝑎)) 𝑥 ≥ 𝑎. (39)

This is simply (22) and (24) with 𝑘 = 1 and 𝑐𝑅 = 𝑐 − (1 +𝜃)𝜆E[(𝑋𝑖 − 𝑎)+].
Ruin probabilities for the Cramér-Lundberg model com-

pounded by excess-of-loss (XL) reinsurance are given in
Table 1 for different values of the XL retention level 𝑎 ranging
from 20 to infinity. Clearly, for Exp(0.5) claims, the ruin
probabilities for the different retention levels reduce only very
slightly as the retention level reduces. For Pareto(3, 2) claims,
the ruin probabilities increase slightly as the retention level
reduces (as shown in Table 2), meaning that it is optimal not
to reinsure. But comparing these probabilities with Figure 1
leads to the conclusion that proportional reinsurance results
in much lower ruin probabilities for the CLM as well as the
perturbed model.

4.3. Ultimate Ruin Probability in the Perturbed Classical
Risk Process Compounded by Proportional Reinsurance. The

survival probability 𝜙(𝑢) satisfies (21) and (26) with 𝑎 = ∞;
that is,

𝜙 (𝑢)
+ 2𝜎2 ∫

𝑢

0
[𝑘𝑐 − 𝜆 (𝑢 − 𝑘𝑥) + 𝜆𝐺 (𝑢 − 𝑘𝑥)] 𝜙 (𝑥) 𝑑𝑥

= 𝜎2 (𝜙 (0) + 𝑢𝜙 (0)) − 2𝑘𝑐𝑢𝜙 (0)
𝜎2

(40)

which is a VIE of the second kind with kernel and forcing
function given, respectively, by

𝐾 (𝑢, 𝑥) = 2 [𝑘𝑐 − 𝜆 (𝑢 − 𝑘𝑥) + 𝜆𝐺 (𝑢 − 𝑘𝑥)]𝜎2
ℎ (𝑢) = 𝑢𝜙 (0) if 𝜎2 > 0.

(41)

Figure 2 depicts the ruin probabilities for the diffusion-
perturbed model compounded by proportional reinsurance
for different retention levels ranging from 𝑘 = 1 (no
reinsurance) to 𝑘 = 0.2 (80% reinsurance). In the case
of both Exp(0.5) claims and Pareto(3, 2) claims, applying
proportional reinsurance significantly reduces the ultimate
ruin probability of an insurance company.
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Figure 2: Ultimate ruin probabilities at different proportional retention levels in the diffusion-perturbed model: 𝜆 = 2, 𝑐 = 6, 𝜎 = 0.02.

Table 3: Ruin probabilities for XL reins. in DPM: Exp(0.5) claims (𝜆 = 2, 𝑐 = 6, 𝜎 = 0.02).
𝑢 𝜓∞(𝑢) 𝜓35(𝑢) 𝜓30(𝑢) 𝜓25(𝑢) 𝜓20(𝑢)
0 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.5159 0.5159 0.5159 0.5155 0.5109
4 0.3467 0.3467 0.3466 0.3461 0.3399
6 0.2458 0.2458 0.2457 0.2451 0.2380
8 0.1759 0.1759 0.1758 0.1752 0.1674
10 0.1257 0.1258 0.1257 0.1250 0.1167
12 0.0901 0.0901 0.0901 0.0893 0.0807
14 0.0646 0.0646 0.0645 0.0638 0.0550
16 0.0463 0.0463 0.0463 0.0455 0.0365
18 0.0333 0.0333 0.0332 0.0324 0.0233
20 0.0240 0.0241 0.0240 0.0232 0.0140

4.4. Ultimate Ruin Probability in the Perturbed Classical
Risk Process Compounded by Excess-of-Loss Reinsurance. The
survival probability 𝜙(𝑢) satisfies a VIE of the second kind
with kernel 𝐾(𝑢, 𝑥) as given in (23) (for the case 𝑢 ≤ 𝑎 < 𝑎)
and (26) (for the case 𝑎 < 𝑎 < 𝑢), with 𝑘 = 1, and forcing
function ℎ(𝑢) = 𝑢𝜙(0) in both cases. That is,

for𝑢 ≤ 𝑎 < 𝑎,𝐾(𝑢, 𝑥) = 2[𝑐𝑅+𝜆𝐺(𝑢−𝑥)−𝜆(𝑢−𝑥)]/𝜎2;
for 𝑎 < 𝑎 < 𝑢,𝐾(𝑢, 𝑥) = 2[𝑐𝑅+𝜆𝐻2(𝑥, 𝑢)−𝜆(𝑢−𝑥)]/𝜎2

with

𝐻2 (𝑥, 𝑢) = {{{
𝐺 (𝑢 − 𝑥) 𝑥 < 𝑎
(𝐹 (𝑥 + 𝑎) − 𝐹 (𝑎)) (𝑢 − 𝑥) 𝑥 ≥ 𝑎. (42)

The impact of XL reinsurance on the ruin probabilities in
a diffusion-perturbed model is evident from Table 3 which
shows a reduction in the ruin probabilities for XL retentions
not exceeding 𝑎 = 30 for small claims. However, as can be
seen from Table 4, the ruin probabilities for large claims are
higher for values of 𝑎 exceeding 150 but reduce significantly
for values of 𝑎 below 150. But again, if we compare these
results with Figure 2 we see that the ruin probabilities are
much lower for proportional reinsurance.

4.5. Optimal Reinsurance Strategy: Asymptotic Ruin Proba-
bilities. It is known that the optimal quota-share retention𝑘∗ tends to the asymptotically optimal 𝑘𝜌 that maximizes
the adjustment coefficient 𝜌 [13]. Therefore, since it was not
possible to determine the optimal retention 𝑘∗ from the
results discussed in Sections 4.1–4.4, we will use asymptotic
ruin probabilities. For illustrative purposes, we will now find
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Table 4: Ruin probabilities for XL reins. in DPM: Par(3, 2) claims (𝜆 = 2, 𝑐 = 6, 𝜎 = 0.02).
𝑢 𝜓∞(𝑢) 𝜓200(𝑢) 𝜓150(𝑢) 𝜓100(𝑢) 𝜓50(𝑢)
0 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.2026 0.2029 0.2027 0.2022 0.1973
4 0.0744 0.0747 0.0745 0.0740 0.0683
6 0.0401 0.0405 0.0403 0.0397 0.0338
8 0.0257 0.0260 0.0258 0.0252 0.0192
10 0.0171 0.0174 0.0172 0.0167 0.0106
12 0.0124 0.0127 0.0125 0.0119 0.0058
14 0.0093 0.0096 0.0094 0.0088 0.0027
16 0.0072 0.0075 0.0073 0.0067 0.0006
18 0.0058 0.0061 0.0059 0.0054 0.0008
20 0.0050 0.0054 0.0052 0.0042 0.0015

Table 5: Asympt. ruin prob. for CLM with proportional reins. (Pareto claims) (𝑐 = 6, 𝜆 = 2, 𝜃 = 𝜂 = 1).
𝑢 𝜓1(𝑢) 𝜓0.6(𝑢) 𝜓0.2(𝑢) 𝜓0.05(𝑢) 𝜓0.0125(𝑢) 𝜓0.003125(𝑢)
0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 0.3333 0.2308 0.0909 0.0244 0.0062 0.0016
4 0.2000 0.1304 0.0476 0.0123 0.0031 0.0008
6 0.1429 0.0909 0.0323 0.0083 0.0021 0.0005
8 0.1111 0.0698 0.0244 0.0062 0.0016 0.0004
10 0.0909 0.0566 0.0196 0.0050 0.0012 0.0003
12 0.0769 0.0476 0.0164 0.0041 0.0010 0.0003
14 0.0667 0.0411 0.0141 0.0036 0.0009 0.0002
16 0.0588 0.0361 0.0123 0.0031 0.0008 0.0002
18 0.0526 0.0323 0.0110 0.0028 0.0007 0.0002
20 0.0476 0.0291 0.0099 0.0025 0.0006 0.0002

the optimal strategies only in the CLM for both the small and
large claim cases.

4.5.1. Exponential Claims. We note, as in [13], that for
exponential claims the optimal choice of the quota-share
retention 𝑘 that maximizes the adjustment coefficient 𝜌(𝑘) is
given by

𝑘𝜌 = min{(1 − 𝜂𝜃)(1 + 1√1 + 𝜃) , 1} , (43)

where 𝜃 and 𝜂 are, respectively, the safety loadings of the
reinsurer and insurer. Because maximizing the adjustment
coefficient yields the asymptotically best strategy, we expect
that the optimal retention 𝑘∗ will tend to 𝑘𝜌. Since this study
assumes cheap reinsurance (i.e., 𝜃 = 𝜂), we have the fact
that 𝑘𝜌 = 0. That is, it is optimal for the insurance company
to reinsure the entire portfolio or to take full proportional
reinsurance.

4.5.2. Pareto Claims. For a given initial surplus 𝑢 and a
retention level 𝑘 ∈ [0, 1], let the calculated ruin probability be

given by 𝜓𝑘(𝑢). Then, for large claims, the asymptotic values
of the ruin probability are given by

𝜓𝑘 (𝑢) = 1𝑘𝜃 − (𝜃 − 𝜂) 𝑘1 + 𝑢/𝑘 . (44)

This ruin probability is minimized when 𝑘𝜌 = 2(𝜃−𝜂)𝑢/(𝜃𝑢−(𝜃 − 𝜂)). Thus, for Pareto-distributed claims, assuming 𝜃 =𝜂 = 1, we find that 𝜓𝑘(𝑢) = 𝑘/(𝑘 + 𝑢) and that 𝑘𝜌 = 0 as well.
The insurance company should reinsure the entire portfolio
of risks. The results for different values of 𝑘 are summarized
in Table 5 and shown in Figure 3.

It is clear from Figure 3 that the ruin probabilities become
smaller as 𝑘 → 0, meaning that the asymptotically optimal
retention must be 𝑘𝜌 = 0. This confirms the results shown
in Figure 1. And since the optimal retention 𝑘∗ tends to the
asymptotically optimal 𝑘𝜌 that maximizes the adjustment
coefficient, it follows that 𝑘∗ = 0. This means that the
insurance company must cede the entire portfolio of risks
to a reinsurer. We can therefore conclude that the optimal
combinational quota-share and XL reinsurance strategy is(𝑘∗, 𝑎∗) = (0,∞).
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Figure 3: Asymptotic ruin probabilities for large claims in the CLM
with proportional reinsurance (𝑐 = 6, 𝜆 = 2, 𝜃 = 𝜂 = 1).

5. Conclusion

While the results presented in the previous section show that
proportional and XL reinsurance both result in a reduction in
the ruin probabilities, the reduction is more drastic for Pareto
than for exponential claims in both the Cramér-Lundberg
and diffusion-perturbed models. On the one hand, a com-
parison of the figures presented in the foregoing shows that
proportional reinsurance results in lower ruin probabilities
than XL reinsurance and is therefore optimal. The optimal
quota-share retention was found as 𝑘∗ = 0, meaning that
in both the small and large claim cases in the Cramér-
Lundberg model, it is optimal for the insurance company
to reinsure the whole portfolio using proportional reinsur-
ance. Going by the results in Figure 3, the same conclusion
can be drawn about the diffusion-perturbed model. Thus,
the optimal combinational quota-share and XL reinsurance
strategy is a pure quota-share reinsurance with 𝑘∗ = 0; that
is, (𝑘∗, 𝑎∗) = (0,∞). It should be noted that full reinsur-
ance is not ideal from the reinsurer’s standpoint and this
provides a strong argument for the use of noncheap reinsur-
ance.

On the other hand, the literature shows that the optimal
reinsurance strategy is a pure XL, that is, (1, 𝑎∗) (see, e.g.,
[7, 8, 16]). Possible extensions to the work are the inclusion
of investments and dividend payouts as well as considering
noncheap reinsurance, whereby, for a given risk, the reinsurer
requires more premium and therefore uses a higher safety
loading, than the insurer.
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