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Abstract: In this paper, a mathematical model for the transmission dynamics of Trypanosoma brucei
rhodesiense that incorporates three species—namely, human, animal and vector—is formulated and
analyzed. Two controls representing awareness campaigns and insecticide use are investigated in
order to minimize the number of infected hosts in the population and the cost of implementation.
Qualitative analysis of the model showed that it exhibited backward bifurcation generated by
awareness campaigns. From the optimal control analysis we observed that optimal awareness and
insecticide use could lead to effective control of the disease even when they were implemented at low
intensities. In addition, it was noted that insecticide control had a greater impact on minimizing the
spread of the disease compared to awareness campaigns.
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1. Introduction

Human African trypanosomiasis (HAT) is one of the neglected tropical diseases (NTDs) that
affect humans and animals in sub-Saharan Africa [1]. More than 20 species of Glossina tsetse flies
are responsible for the transmission of the two parasites associated with the disease: Trypanosoma
brucei rhodesienseand Trypanosoma brucei gambiense [1]. Although these two parasites represent different
pathological entities, they are both classified under the term HAT [2]. T.b. gambiense is found in West
and Central Africa, while T.b. rhodesiense occurs only in the East and South of the African continent [1].
Global estimates report 70,000 HAT cases (range: 50,000–70,000) based on a total number of 17,500 new
cases reported per year worldwide [3]. With more than 60 million in sub-Saharan Africa considered to
be at risk of infection, how to prevent, control and possibly eradicate this disease remains one of the
important topics from many points of view, including medical science and mathematics.

Since the pioneering work of Kermack and McKendrick [4] on compartment modeling, numerous
mathematical models have been proposed to investigate the transmission dynamics of several
infectious diseases (e.g., [5–11] and references therein). These studies and several other models have
certainly produced many useful results and improved the existing knowledge on several infectious
diseases, such that mathematical modeling has become an important tool in analyzing the spread and
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control of infectious diseases. In particular, several mathematical models have already been proposed
to investigate the complex epidemic and endemic behavior of human African trypanosomiasis [12–27].
For example, Hargrove et al. [12] modeled the control of trypanosomiasis caused by Trypanosoma
brucei rhodesiense in multiple hosts. Their model predicted that treating cattle with insecticide would
be generally more effective than treating cattle with drugs. In addition, Moore et al. [14] utilized a
system of ordinary differential equations to explore the impact of climate change on Trypanosoma brucei
rhodesiense dynamics. Results from their framework suggested that climate change could lead to 46–77
million additional people being at risk of exposure to HAT infection by 2090. These studies and those
cited therein have undeniably produced many useful results and improved the existing knowledge on
HAT dynamics.

Despite these efforts in the modeling and analysis of Trypanosoma brucei rhodesiense dynamics,
several important questions regarding the transmission and control of the disease remain to be
answered. For example, to what extent will awareness and insecticide use combined alter short- and
long-term transmission and control of HAT? Thanks to Hargrove and co-workers [12], we are now
aware that insecticide use has a greater impact on controlling the disease compared with the treatment
of cattle with drugs. The key question is, if this intervention were to be combined with awareness
campaigns, would this approach yield a significant change in Trypanosoma brucei rhodesiense? This is
the key question that this study aimed to explore. There is no doubt that continuous advancement
in information and communication technology (ICT) in recent years has greatly improved the level
of information dissemination. In addition, media campaigns are known to be useful public health
tools globally [28,29]. In particular, mass media campaigns have the potential to alter people’s health
behavior in the absence of multiple channels of communication [29,30]. Therefore, as suggested by
Leak [31], understanding the impact of these intervention strategies on disease and vector population
dynamics is a potential area for modeling and further development of existing models. Motivated
by the discussion above, in this paper we seek to use optimal control theory to investigate the
effects of awareness campaigns and insecticide use on the spread and control of Trypanosoma brucei
rhodesiense. Stone and Chitnis’ [16] model of HAT transmission, which does not incorporate an
animal reservoir, does not effectively capture the dynamics of the disease. Hence, we propose a
framework that demonstrates interplay between the vectors and multiple host species (human and
animals). By incorporating the vectors and multiple hosts, our framework will be isomorphic to some
of the earlier studies [12,14,16,23,27].

This paper is organized as follows. In Section 2, the methods and results of the study are presented.
in particular, the Trypanosoma brucei rhodesiense model is formulated and analyzed. The analysis
included the computation of the basic reproduction number and the existence of model steady
states. The impact of two controls—awareness campaigns and insecticide use—as disease control
measures against Trypanosoma brucei rhodesiense infection was also investigated. In addition, numerical
simulations were conducted to support analytical findings. Finally, discussion and conclusions round
up the paper.

2. Methods and Results

2.1. Model Formulation

The proposed model considers two hosts (i.e., animals and humans), subdivided into: susceptible
Si(t), clinically infected Ii(t) and removed Ri(t), for i = a and h - representing the animal and human,
respectively. Thus the host population at time t is given by Ni = Si(t) + Ii(t) + Ri(t). Furthermore,
the total tsetse vector population at time, denoted by Nv(t), constitutes the susceptible Sv(t) and
infectious Iv(t) populations. Once infected, vectors are assumed to remain infectious for their entire
lifetime. Through mass media campaigns humans are assumed to become aware of the disease and
those who become aware are assumed to have negligible chances of being infected. Hence, in our
framework we introduced a constant rate θh to account for the transition of individuals from the
susceptible compartment to the removed class. Thus, the removed compartment for humans comprises
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individuals who were successfully treated and those who have become aware of the disease. With
the passage of time these individuals may lose their awareness and become susceptible to infection
again. In order to model disease transmission from the host to the vector and vice versa, we propose
the following forces of infection:

λh(t) =
βvh Iv(t)

Nv(t)
, λa(t) =

βva Iv(t)
Nv(t)

, λv(t) =
βhv Ih(t)

Nh(t)
+

βav Ia(t)
Na(t)

,

where parameter βvi (i = a, h) denotes the transmission rate of HAT disease from an infected tsetse
vector to a susceptible host i given that effective contact between the two occurs; βiv represents disease
transmission from infected host i to a susceptible vector given that effective contact between the
two occurs. In addition, parameters µa, µh and µv represent the inflow of new individuals into the
susceptible animal, human and vector populations, respectively, through birth, and are assumed to be
equal to the natural mortality rates for each population. There is no vertical transmission of the disease
in either the host or vector. Infected animals and humans recover at rates αa and αh, respectively, and
they become susceptible to infection at rates γa and γh, respectively.

The proposed model is summarized by the following equations, where the prime (′) denotes the
derivative of the component with respect to time:

S′h(t) = µhNh(t)− λh(t)Sh(t)− (µh + θh)Sh(t) + γhRh(t),
I′h(t) = λh(t)Sh(t)− (µh + αh)Ih(t),
R′h(t) = θhSh(t) + αh Ih(t)− (µh + γh)Rh(t),
S′a(t) = µaNa(t)− λa(t)Sa(t)− µaSa(t) + γaRa(t),
I′a(t) = λa(t)Sa(t)− (µa + αa)Ia(t),
R′a(t) = αa Ia(t)− (µa + γa)Ra(t),
S′v(t) = µvNv(t)− λv(t)Sv(t)− µvSv(t),
I′v(t) = λv(t)Sv(t)− µv Iv(t).

(1)

Table 1 presents the model parameters and their baseline values. The baseline values for these
parameters were adopted from the work of Moore et al. [14] and Ndondo et al. [23]. In their studies,
Moore et al. [14] and Ndondo et al. [23] proposed mathematical models with interplay between the
vectors and multiple host species. In particular, the host species considered were humans and animals
(cattle), hence the parameter values from these studies can also be used in this study.

Table 1. Description of parameters used in system (1). HAT: human African trypanosomiasis.

Symbol Description Value Units

βhv Transmission rate of HAT disease from infected human to susceptible vector 0.011715 day−1 [14]
βav Transmission rate of HAT disease from infected animal to susceptible vector 0.011715 day−1 [14]
βvh Transmission rate of HAT disease from infected vector to susceptible human 0.002739 day−1 [14]
βva Transmission rate of HAT disease from infected vector to susceptible animal 0.002739 day−1 [14]

γh Progression rate of human population from recovered to susceptible class
1
90

day−1 [23]

γa Progression rate of animal population from recovered to susceptible class
1

75
day−1 [23]

θh Rate at which humans become aware of the disease 0.2 day−1

µh Natural mortality rate of human population
1

365× 50
day−1 [23]

µa Natural mortality rate of animal population
1

365× 15
day−1 [23]

µv Natural mortality rate of vector population
1
33

day−1 [23]

αh Recovery rate of infected human
1
30

day−1 [23]

αa Recovery rate of infected animal
1
25

day−1 [23]
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From (1) we have N′i (t) = 0 for i = a, h, v, hence without loss of generality we can use
a dimensionless system to explore the dynamics of the disease. Now, to normalize the populations, let

sh(t) =
Sh(t)

Nh
, ih(t) =

Ih(t)
Nh

, rh(t) =
Rh(t)

Nh
, sa(t) =

Sa(t)
Na

,

ia(t) =
Ia(t)
Na

, ra(t) =
Ra(t)

Na
, sv(t) =

Sv(t)
Nv

, iv(t) =
Iv(t)
Nv

.

Therefore, the dimensionless system has the form:

s′h(t) = µh − βvhiv(t)sh(t)− (µh + θh)sh(t) + γhrh(t),
i′h(t) = βvhiv(t)sh(t)− (µh + αh)ih(t),
r′h(t) = θhsh(t) + αhih(t)− (µh + γh)rh(t),
s′a(t) = µa − βvaiv(t)sa(t)− µasa(t) + γara(t),
i′a(t) = βvaiv(t)sa(t)− (µa + αa)ia(t),
r′a(t) = αaia(t)− (µa + γa)ra(t),
s′v(t) = µv − (βhvih(t) + βavia(t)) sv(t)− µvsv(t),
i′v(t) = (βhvih(t) + βavia(t)) sv(t)− µviv(t).

(2)

Furthermore, by using the relations rh(t) = 1 − sh(t) − ih(t), sa = 1 − ia(t) − ra(t) and
sv = 1 − iv(t), system (2) reduces to

s′(t) = µh − βvhiv(t)sh(t)− (µh + θh)sh(t) + γh(1− sh(t)− ih(t)),
i′h(t) = βvhiv(t)sh(t)− (µh + αh)ih(t),
i′a(t) = βvaiv(1− ia(t)− ra(t))− (µa + αa)ia(t),
r′a(t) = αaia(t)− (µa + γa)ra(t),
i′v(t) = (βhvih(t) + βavia(t)) (1− iv(t))− µviv(t).

(3)

2.2. Positivity and Boundedness of Solutions

Model (3) is epidemiologically and mathematically well-posed in the domain:

Ω =

{ (
sh, ih, ia, ra, iv

)
∈ R5

+

∣∣∣∣∣sh, ih ≥ 0, sh + ih ≤ 1, ia, ra ≥ 0, ia + ra ≤ 1, 0 ≤ iv ≤ 1

}
.

The domain, Ω, is valid epidemiologically as the normalized populations, sh, ih, ia, ra and iv, are
all non-negative and have sums over their species type that are less than or equal to unity.

Theorem 1. Assuming that the initial conditions lie in Ω, the system of equations for the HAT model (3) has a
unique solution that exists and remains in Ω for all time t ≥ 0.

Proof. The right-hand side of model (3) is continuous with continuous partial derivatives in Ω,
so system (3) has a unique solution. In what follows we demonstrate that Ω is forward-invariant.
It can easily be observed from (3) that if sh = 0, then s′h(t) = µh + γh(1− ih(t)) ≥ 0; if ih = 0, then
i′h(t) = βvhiv(t)sh(t) ≥ 0; if ia = 0, then i′a(t) = βvaiv(t)(1 − ra(t)) ≥ 0; if ra = 0, then r′a(t) =

αaia(t) ≥ 0; and if iv = 0, then i′v = (βhvih(t) + βavia(t)) ≥ 0. It is also true that if sh(t) + ih(t) = 1 then
s′h(t) + i′h(t) < 0, if ia(t) + ra(t) = 1 then i′a(t) + r′a(t) < 0 and if iv(t) = 1 then i′v(t) < 0. Therefore,
none of the orbits can leave Ω and a unique solution exists for all time.
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2.3. The Basic Reproduction Number

In the absence of the disease in the community, model (3) admits a trivial equilibrium also known
as the disease-free equilibrium (DFE), denoted by E0 and given by

E0 =

(
s0

h, i0h, i0a , r0
a , i0v

)
=

(
(µh + γh)

(µh + θh + γh)
, 0, 0, 0, 0

)
.

Next, we determine the power of the disease to invade the population by computing the
reproduction number R0. Here, the basic reproduction number R0 is defined as the expected
number of secondary cases (vector, animal or humans) produced in a completely susceptible
population, by one infectious individual (tsetse, animal or human, respectively) during its lifetime
as infectious. To determine R0, we follow the next-generation matrix approach and notations
in [32]. Thus, the non-negative matrix F that denotes the generation of new infection and the
non-singular matrix V that denotes the disease transfer among compartments evaluated at E0 are
respectively given by:

F =

 0 0
βvh(µh + γh)

(µh + γh + θh)
0 0 βva

βhv βav 0

 and V =

µh + αh 0 0
0 µa + αa 0
0 0 µv

 .

It follows that the basic reproductive number is the spectral radius of the next-generation matrix
(i.e., ρ(FV−1)), and is given by

R0 =

√(
βvhβvh(µh + γh)

µv(µh + αh)(µh + γh + θh)

)
+

(
βavβva

µv(µa + αa)

)
=

√
R0h +R0a,

where R0h represents the basic reproduction number of the human–vector infection and R0a is the
basic reproduction number of animal–vector infection.

2.4. Existence and Uniqueness of the Endemic Equilibria

Let E∗ = (s∗h, i∗h , i∗a , r∗a , i∗v) be any endemic equilibrium of model (3). Solving the first four equations
of system (3) in terms of i∗v one gets the following results:

s∗h =
m2m3

m2(m1 + γh) + βvhi∗v(m2 + γh)
, i∗h =

βvhi∗vm3

m2(m1 + γh) + βvhi∗v(m2 + γh)
,

i∗a =
βvai∗vm5

m4m5 + βvai∗v(αa + m5)
, r∗a =

βvai∗vαa

m4m5 + βvai∗v(αa + m5)
,

with

m1 = (µh + θh), m2 = (µ + αh), m3 = (µh + γh),
m4 = (µa + αa), m5 = (µa + γa).

Substituting i∗h and i∗a into the last equation of (3) yields

g(i∗v) = A(i∗v)
2 + Bi∗v + C = 0, (4)
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where

A = βvhβva[m2(αaµv + m5(µv + βav)) + βhvm3(αa + m5) + γh(αaµv + m5(µv + βav))],
B = βva(m1m2(µvαa + m5(µv + βav))− βvhβhvm3(βva(αa + m5)−m4m5)

−βvhm5γh(βavβva −m4µv) + m2(m4m5µvβvh + βva(µvαaγh + m5(µvγh + βav(γh − βvh)))),
−βvh(βhv + βav)))] + αhm4βvh(m3(µv + δv)− βvaβav),

C = m2m4m5µv(m1 + γh)(1−R2
0).

Based on the fact that all parameters in (3) are positive for t ≥ 0, it follows from (4) that
A > 0. Furthermore, C > 0 when R0 < 1. Therefore the number of possible positive real roots
the polynomial (4) hinges on the signs of B and C. By applying the Descartes rule of signs on the
quadratic equation g(i∗v) = 0, given in (4), we list the various possibilities for the roots of g(i∗v)
in Table 2.

Table 2. Number of possible positive real roots of g(i∗v) given in (4) forR0 < 1 andR0 > 1.

Case A B C Reproduction Number No. of Sign Changes No. of Possible Positive Real Roots

1 + + + R0 < 1 0 0
2 + + - R0 > 1 1 1
3 + - + R0 < 1 2 0,2
4 + - - R0 > 1 1 1

Based on the different possibilities presented in Table 2, we have the following results:

Theorem 2. The model (3) admits:

(i) A unique endemic equilibrium E∗ ifR0 > 1 and cases 2 and 4 are satisfied;

(ii) More than one endemic equilibrium ifR0 < 1 and part of case 3 holds;

(iii) No endemic equilibrium ifR0 < 1, and cases 1 and part of case 3 are satisfied.

The occurrence of a backward bifurcation, where a stable disease-free equilibrium coexists with
a stable endemic equilibrium, is a common phenomenon in vector-borne disease models—more often
for model that incorporates disease-related death for the host [33]. Since model (3) has disease-related
death for both animals and humans, in what follows we check if the model does indeed have a
backward bifurcation. To investigate the possibility of this phenomenon, the discriminant of Equation
(4) is set to zero (B2 − 4AC = 0) and solved to determine the critical value ofR0, denoted byR0c, as
follows:

R0c =

√
1− B2

4Am2m4m5m6(m1 + γh)
. (5)

Numerical illustration in Figure 1 were performed using data in Table 1 in order to demonstrate that
if R0 < 1 model (3) exhibits a backward bifurcation and for R0 > 1 the model admits a forward
bifurcation. We have also noted that the switch occurs when θh = 0.764, thus,R0c = 0.139 < 1. Overall,
we conclude that the model has two endemic equilibria—one stable and the other unstable. As R0

approaches one, the unstable endemic equilibrium loses its nature and coalesces with the disease-free
equilibrium atR0 = 1.
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(a) (b)

Figure 1. Graphical results illustrating the possible bifurcations for model (3) for different values
of awareness campaigns θh. The figures were generated with parameter values taken from Table 1.
Parameters different from those listed in Table 1 are βhv = βav = 0.65, βvh = βva = 0.4. In (a) we set
θh = 0.764 and in (b) θh = 0.857. ForR0 < 1, the model has two endemic equilibria: one stable and the
other unstable. AsR0 approaches one the unstable endemic equilibrium loses its nature and coalesces
with the disease-free equilibrium atR0 = 1. Therefore, we conclude that the model admits a backward
bifurcation wheneverR0 < 1 and a forward bifurcation forR0 > 1.

2.5. Optimal Control

Although there is no vaccine or drug for prophylaxis against African trypanosomiasis, there
are other preventative and treatment options. HAT preventative strategies aim to minimize contact
between the hosts and vectors. Humans can minimize contact with the tsetse vector by: using insect
repellents, avoiding bushy areas, and wearing long-sleeved garments of medium-weight material in
neutral colors that blend with the background environment. Spraying domesticated animals with
insecticides also minimizes contact between the vector and the animals. Drugs can also be used to treat
infected host species. Above all, the success of both preventative and corrective mechanisms revolves
around the level of awareness of the human population. Through awareness, humans can effectively
reduce contact between the vectors and multiple species. Thus, in this section we explore the impact
of time-dependent awareness campaigns and time-dependent insecticides use on the dynamics of
Trypanosoma brucei rhodesiense.

In order to investigate the effects of the aforementioned optimal control strategy, we
reformulate system (3) to include time-dependent media campaigns u1(t) and insecticide use u2(t).
The controls, u1(t) and u2(t), are functions of time and will be assigned reasonable upper and lower
bounds. Furthermore, we also introduce an additional constant parameter δ to account for tsetse
insecticide-induced mortality at the maximum possible rate. Using the same variable and parameter
names as in (3), the system of differential equations describing our model with controls is:

s′h(t) = µh − βvhiv(t)sh(t)− (µh + u1(t)θh)sh(t) + γh(1− sh(t)− ih(t)),
i′h(t) = βvhiv(t)sh(t)− (µh + αh + dh)ih(t),
i′a(t) = βvaiv(t)(1− ia(t)− ra(t))− (µa + αa + da)ia(t),
r′a(t) = αa(t)ia(t)− (µa + γa)ra(t),
i′v(t) = (βhvih(t) + βavia(t)) (1− iv(t))− (µv + u2(t)δv)iv(t).

(6)
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A successful control is one that minimizes the proportion of infected host (humans and animal),
while minimizing the costs associated with these efforts. Thus, our goal is to find a control pair
(u∗1 , u∗2) that minimizes the proportion of infected host over a finite time interval [0, t f ] at minimal cost.
Mathematically, the objective functional is proposed as follows:

J(u1(t), u2(t)) =
∫ t f

0

(
c1ih(t) + c2ia(t) +

w1

2
u2

1(t) +
w2

2
u2

2(t)
)

dt, (7)

subject to the constraints of the ODEs in system (6) and where c1, c2, w1 and w2 are positive constants
also known as the balancing coefficients and their goal is to transfer the integral into monetary
quantity over a finite time interval [0, t f ]. In (7) control efforts are assumed to be nonlinear-quadratic,
since a quadratic structure in the control has mathematical advantages, such as: if the control set
is compact and convex it follows that the Hamiltonian attains its minimum over the control set at
a unique point [34]. The optimal control problem becomes seeking an optimal function, (u∗1(t), u∗2(t)),
such that

J(u∗1(t), u∗2(t)) = inf
(u1,u2)∈U

J(u1(t), u2(t)) (8)

for the admissible set U = {(u1(t), u2(t)) ∈ (L∞(0, t f ))
2 : 0 ≤ ui(t) ≤ qi; qi ∈ R+, i = 1, 2}, where qi

denotes the upper bound of the controls.

2.5.1. Existence and Uniqueness Results

The following theorem proves the existence of the optimal controls.

Theorem 3. There exists an optimal control pair (u∗1 , u∗2) ∈ U with corresponding non-negative states
(s∗h, i∗h , i∗a , r∗a , i∗v) that minimizes the objective functional J(u1(t), u2(t)).

Proof. The uniform boundedness and the positivity of the controls and state variables over the finite
interval [0, t f ] imply that there exists a minimizing sequence (un

1 (t), un
2 (t)) such that

lim
n→∞

J(un
1 (t), un

2 (t)) = inf
(u1(t),u2(t))∈U

J(u1(t), u2(t)).

Let the corresponding sequence of state variables be denoted by (sh, ih, ia, ra, iv). Furthermore,
the boundedness of all the state and control variables implies that all the derivatives of the state
variables are also bounded. Hence, it follows that all state variables are Lipschitz continuous with the
same Lipschitz constant. Thus, the sequence (sh, ih, ia, ra, iv) is uniformly equicontinuous in [0, t f ]. By
the Arzela–Ascoli Theorem [35], it follows that the state sequence has a subsequence that converges
uniformly to (sh, ih, ia, ra, iv) in [0, t f ].

In addition, we can establish that the control sequence un = (un
1 (t), un

2 (t)) has a subsequence that
converges weakly in L2(0, t f ). Let (u∗1 , u∗2) ∈ U be such that un

i ⇀ u∗i weakly in L2(0, t f ) for i = 1, 2.
Applying the lower semi-continuity of norms in weak L2, one gets

‖u∗i ‖2
L2 ≤ lim

n→∞
inf ‖un

i (t)‖2
L2 , for i = 1, 2.

Hence,

J(u∗1 , u∗2) ≤ lim
n→∞

∫ t f

0

(
c1in

h(t) + c2in
a (t) +

w1

2
un

1 (t) +
w2

2
un

2 (t)
)

dt

= lim
n→∞

J(un
1 , un

2 ).

Therefore we conclude that there exists a pair of controls (u∗1 , u∗2) that minimizes the objective
functional J(u1(t), u2(t)).
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In what follows we characterize the optimal control pair by utilizing Pontryagin’s Maximum
Principle [36].

2.5.2. Characterization of an Optimal Control Pair

Since there exists an optimal control pair for minimizing the functional (7) subject to the constraints
of the ODEs in system (6), we now apply Pontryagin’s Maximum Principle [36] to derive the necessary
conditions for this optimal control pair. Thus, system (6) is converted into an equivalent problem,
namely, the problem of minimizing the Hamiltonian H(t) given by:

H(t) = c1ih(t) + c2ia(t) +
w1

2
u2

1(t) +
w2

2
u2

2(t)

+λ1(t)
[
µh − βvhiv(t)sh(t)− (µh + u1(t)θh)sh(t) + γh(1− sh(t)− ih(t))

]
+λ2(t)

[
βvhiv(t)sh(t)− (µh + αh + dh)ih(t)

]
+λ3(t)

[
βvaiv(t)(1− ia(t)− ra(t))− (µa + αa + da)ia(t)

]
+λ4(t)

[
αaia(t)− (µa + γa)ra(t)

]
+λ5(t)

[
(βhvih(t) + βavia(t)) (1− iv(t))− (µv + u2(t)δv)iv(t)

]
.

Given an optimal control pair (u∗1 , u∗2) and solutions (sh, ih, ia, ra, iv), of the corresponding states
system (6) there exist adjoint functions λi(t), (i = 1, 2, 3, 4, 5) [37], satisfying

λ′1(t) = λ1(t)(µh + u1(t)θh + γh + βvhiv(t))− λ2(t)βvhiv(t),
λ′2(t) = −c1 + λ1(t)γh + λ2(t)(µh + αh + dh)− λ5(t)βhv(1− ih(t)),
λ′3(t) = −c2 + λ3(t)(µa + αa + βvaiv(t))− λ4(t)αa − λ5(t)βav(1− iv(t)),
λ′4(t) = λ3(t)βvaiv(t) + λ4(t)(µa + γa),
λ′5(t) = (λ1(t)− λ2(t))βvh − λ3(t)βva(1− ia(t)− ra(t)) + λ5(t)(µv + u2(t)δ + βhvih(t) + βavia(t)),

with transversality conditions λj(t f ) = 0 for j = 1, 2, 3, 4, 5. Furthermore, the optimal solutions of the
Hamiltonian are determined by taking the partial derivatives of the function H(t) in (9) with respect
to control functions u1 and u2, followed by setting the resultant equation to zero and then solving for
u∗1 and u∗2 , as follows:

∂H
∂u1

= u∗1w1 − λ1θhsh, and
∂H
∂u2

= u∗2w2 − λ5δviv. (9)

Setting (9) to zero and solving for u∗1 and u∗2 , one gets

u∗1 =
θhshλ1

w1
, u∗2 =

δvivλ5

w2
.

Using the standard arguments and the bounds for the controls, we obtain the characterization of
this optimal pair as follows:

u1(t) = min

{
q1, max

(
0,

θhshλ1

w1

)}
, u2(t) = min

{
q2, max

(
0,

δviv(t)λ5

w2

)}
.

In what follows, we numerically investigate the impact of awareness campaigns and insecticide
use using the forward–backward sweep algorithm as outlined in [37]. We set c1 = 2c2, implying that
the minimization of the infected humans has more importance/weight compared to that of infected
animals. Furthermore, we assumed that the intensity of implementation of awareness campaigns was
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always higher than that of insecticide use since excessive insecticide use is associated with ecological
side effects, hence their usage should always be kept as low as possible [38]. Thus, u1 was assumed
to be greater than u2. It was also hypothetically assumed that the cost of insecticide use was higher
than awareness campaign costs. The initial population levels were set as follows: sh = 0.99, ih = 0.01,
rh = 0, ia = 0.01, ra = 0, iv = 0.01, that is, each species comprised 1% of the infected population and
no recoveries for the hosts. Also, we assumed that δv = 1 per day. The total number of new infections
generated within the human population in the presence and absence of optimal control is:

Th =
∫ t f

0

(
βvhiv(t)Nvsv(t)Nh

)
dt.

Similarly, the total number of new infections generated within the animal population in the presence
and absence of optimal control is:

Ta =
∫ t f

0

(
βvaiv(t)Nv(1− ia(t)− ra(t))Na

)
dt,

where Nh, Na and Nv are constants and are equivalent to 100,000, 10,000 and 50,000, respectively.
Figure 2 shows the dynamics of Trypanosoma brucei rhodesiense with u1 = 0.45 and u2 = 0.3. We can
observe that in the presence of optimal intervention strategies, the proportion of infectious hosts and
vectors would never exceed the initial assumed population levels (1%). In particular, in the presence of
optimal awareness and insecticides use, the population levels for the hosts and vectors converged to the
disease-free equilibrium suggesting that the aforementioned optimal control mechanisms could lead
to disease eradication. Precisely, we noted that in the presence of optimal control, the total numbers
of new infections for the human and animal populations generated over 300 days were 2.5635× 105,
9.7× 104, respectively, and the total cost was J = 6.5028× 104. However, in the absence of optimal
controls (i.e., u1 = u2 = 0), one can observe that the disease persisted. In Figure 2d, we observe that
the control profiles of u1 and u2 started at the maximum, and they remained there for approximately
200 and 250 days, respectively, suggesting that awareness campaigns could essentially be ceased after
200 days of implementation while insecticides use needed to be maintained at maximum strength for
an additional 50 days.

Figure 3 shows the optimal control profiles for u1 and u2 when the upper bounds for these controls
were less than unity (i.e., q1 = 0.5 and q2 = 0.3), with initial guesses of the controls set to u1 = 0.45
and u2 = 0.3. We again see that both u1 and u2 started from their maxima, and they stayed at the
maximum strength for much longer periods of time than the previous case (compared to Figure 2), due
to the reduced intensity bounds. When the upper bounds of the controls were reduced, the population
levels for all the infected species would converge to zero within the defined time interval, t f = 300
(the figures were omitted since their behavior was analogous to that of Figure 2). We also note that by
reducing the bounds for the controls, the total cost J(= 5.3582× 104) was reduced 17.6%, compared to
that of Figure 2.

Numerical results in Figure 4 show the dynamics of Trypanosoma brucei rhodesiense disease when
the population of infectious vectors was 3% and the hosts’ infectious populations were 1% each,
and the controls had the following bounds set to q1 = 0.5, q2 = 0.3 and the initial guesses of the
controls were set to u1 = 0.45 and u2 = 0.3. Again, we can note that the population levels would
converge to the disease-free equilibrium in the presence of optimal control, whereas in the absence of
optimal control the disease persisted. The total numbers of new infections for the human and animal
populations generated over 300 days were 3.7167× 105 and 1.1232× 104, respectively, and the total
cost was J = 5.4726× 104. In Figure 4d, we note that the control profiles for u1 and u2 exhibited a
similar behavior to the one illustrated in Figure 3. Comparing the results in Figure 2 and Figure 4, one
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can observe that even if the total number of new infections for the hosts increased due to an increase in
the infectious vector population, the total cost would still be lower by approximately 15.8%.

(a) (b)

(c) (d)

Figure 2. Simulations of model (6) with initial guess for the controls set to u1 = 0.45, u2 = 0.3 and the
bounds of the controls were q1 = q2 = 1. The weight constants were set as w1 = 10, w2 = 100, and the
model parameter values were adopted from Table 1. The solid curves in (a–c) represent the proportion
of infectious humans, infectious animals, and infectious tsetse vectors, respectively, in the presence
of time-dependent control, and the dotted lines denote the absence of optimal control. The optimal
control rates are shown in (d).

Figure 3. Numerical results illustrating the impact of the bounds for the control rates, with the initial
guess for the controls set to u1 = 0.45 and u2 = 0.3, and the bounds for these controls fixed to q1 = 0.5
and q2 = 0.3. The remainder of the model parameter values are as in Table 1.
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(a) (b)

(c) (d)

Figure 4. Simulations of model (6) with the initial guesses for the control set to u1 = 0.45, u2 = 0.3,
and the bounds for the controls set to q1 = 0.5 and q2 = 0.3. The rest of the model parameter values
were adopted from Table 1. The solid curves in (a–c) represent the proportion of infectious humans,
infectious animals, and infectious tsetse vectors, respectively, in the presence of time-dependent control
and the dotted lines denote the absence of optimal control. The optimal control rates are shown in (d).

Next, we determined the impact of extremely low-intensity controls on Trypanosoma brucei
rhodesiense disease dynamics (Figure 5). We set the initial guess for the controls to u1 = 0.15, u2 = 0.01,
and the upper bounds of the controls were set to q1 = 0.15 and q2 = 0.01. Furthermore, the we
set the initial population levels and the weight constants to ih = ia = 0.01, iv = 0.03, rh = ra = 0,
sh = 1− ih − rh, sa = 1− ia − ra, sv = 1− iv, w1 = 10, and w2 = 100. Although the Figures of
the population level effects are not displayed, since their behavior was similar to that of Figure 4,
we can report that in the presence of optimal control the infected population levels would converge
to the disease-free equilibrium and the reverse would occur in the absence of optimal control. The
total numbers of new infections for the human and animal populations generated over 300 days
were 4.8695× 105 and 1.2764× 104, respectively, and the total cost was J = 5.4519× 104. From these
simulation results, we see that for effective disease management the control profiles would have to
be maintained at their maximum intensity for most of the implementation period. Despite the fact
that we considered the insecticide control as more expensive than the awareness control, we note that
this control had to be maintained at its maximum intensity for a slightly more time even after the
awareness control was dropped.
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Figure 5. Numerical results illustrating the impact of the bounds for the control rates. The initial guess
for the control were u1 = 0.15 and u2 = 0.01, the upper bounds of the controls were q1 = 0.15 and
q2 = 0.01. The weights constants were set to w1 = 10 and w2 = 100 and the rest of the model parameter
values were as in Table 1.

Next, we determined the number of new infections averted by the implementation of optimal
control. This was determined by taking the difference between the total numbers of new infections
observed in the absence of optimal control and those recorded when optimal control was implemented.
The results are displayed in Table 3. The total numbers of new infections generated in the human and
animal populations in the absence of optimal control were 1.0866× 107 and 7.7237× 107, respectively.

Table 3. Infection reduction due to the implementation of optimal control.

Case Host Total Number of New Infections Infections Averted Due to
Observed with Optimal Control Implementation of Optimal Control

Figure 2 Human population 2.5635× 105 1.0097× 107

Animal population 9.7000× 104 7.7141× 107

Figure 4 Human population 3.7197× 105 1.04943× 107

Animal population 1.1232× 104 7.7226× 107

Figure 5 Human population 4.8695× 105 1.03791× 107

Animal population 1.2764× 104 7.7224× 107

From Table 3, we see that the number of infections averted was extremely high even when the
intensity of the optimal controls was low, and this clearly shows the strength of optimal control
strategies in minimizing the spread of the disease.

3. Concluding Remarks

In this paper, a mathematical model for Trypanosoma brucei rhodesiense transmission was proposed
and analyzed. The framework incorporated three species: human, animal, and vector populations. In
addition, the impact of optimal awareness campaigns and insecticides use to minimize the populations
of infected humans and animals at minimal cost was investigated. The preliminary analysis of the
proposed model revealed that the system always had a unique and positively bounded solution for all
t ≥ 0. Qualitative analysis of the model showed that it admitted a backward bifurcation generated by
awareness campaigns. In particular, the backward bifurcation occurred whenever the reproduction
number was less than unity and the awareness campaign rate, whereas forR0 > 1 the model exhibited
a forward bifurcation.
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Meanwhile, the basic Trypanosoma brucei rhodesiense model was extended to investigate the impact
of optimal awareness and insecticide use to minimize the population of infected humans and animals
at minimal cost. Analysis of the optimal model was done with the population levels for the hosts
(humans and animals) fixed at 1% while the vector population was varied from 1% to 3%. In addition,
in the entire analysis, the intensity of awareness campaigns was assumed to be higher than that of
insecticide use since the excessive use of insecticides has some residual effects. Although the insecticide
intensity was assumed to be low, the associated cost for this control was regarded to be higher than
that of awareness campaigns. Furthermore, the minimization of the infected humans was considered
to be more important than that of infected animals. Optimal control results indicate that optimal
control awareness campaigns and insecticides use have the potential to eliminate the disease in the
community, whereas in the absence of optimal control the disease may not be reduced to levels close to
zero. We observed that when the bounds of the control were high the associated costs were also high,
and the reverse was true. In particular, we observed that reducing the upper bound of u1 from 1 to 0.5
and u2 from 1 to 0.3 could lead to a reduction in costs by 17.6%. Overall, the study demonstrated that
optimal awareness and insecticide use have the potential to reduce the population levels of infected
species to levels close to zero, and for this to be attained the insecticide control has to be implemented
for a slightly longer period compared to the awareness control. In addition, the results from this study
suggest that the use of insecticides to control the spread of the disease could have more impact. The
strength of using insecticides to control the transmission dynamics of the disease was also noted in the
work of Hagrove et al. [12]. Utilizing a mathematical model, Hagrove et al. [12] demonstrated that
using insecticides to treat cattle would have a greater impact on controlling the transmission of the
disease compared treatment of cattle with drugs.

This work is not exhaustive. In future we hope to explore the dynamics of the disease by using a
model with varying total populations for the species, since the constant population approach used
in this study does not adequately capture the dynamics of the disease for long periods of time. We
will also extend this work to explore the effects of climatic conditions on the long-term dynamics of
the disease.
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