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ABSTRACT 
 

Rabies is one of the neglected tropical diseases that has persisted for centuries in Ethiopia, and 

it is endemic within and around Addis Ababa. In this dissertation, we propose a deterministic 

mathematical model with vaccination to study the dynamics of rabies transmission within and 

around Addis Ababa. The model comprises human, dog and livestock populations and 

formulated as a system of ordinary differential equations. 

Basic reproduction number 0R  and effective reproduction number eR  are computed using next 

generation operator. For specified values of parameters 0R  and eR  work out to be 2 and 1.6 

respectively, which indicate the disease will be endemic. When 1eR   the disease-free 

equilibrium 0  is globally asymptotically stable in a feasible region  . When 1eR   there 

exists one endemic equilibrium point which is locally asymptotically stable.   

According to sensitivity analysis, the natural death rate of dogs  𝜇𝑑 , the annual birth rate of 

dogs 𝜗𝑑, dog-to-dog transmission rate 𝛽𝑑, and disease induced death rate of dogs 𝜎𝑑  are found 

to be the most sensitive parameters of eR . Numerical simulations of our system show that 

rabies transmission will increase within and around Addis Ababa, and will peak in 2026 and 

2033 in human and livestock populations respectively. Applying 25% vaccination coverage for 

livestock population will reduce the future infection by half. This study suggests that a 

combination of interventions consisting of 60% of vaccination coverage in dog population, 

15% culling of stray dogs, and reducing the annual crop of newborn puppies by 25% will 

reduce the number of human and livestock infections by 70%, and the disease will be eradicated 

from the community.  
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CHAPTER ONE 

Introduction 

This chapter describes the general introduction of the study. It mainly focuses on the 

background information about rabies virus and its burden in developing nations, the problem 

statement and justification, objectives, research questions and structure of the dissertation. 

1.1 Background Information 

Rabies is a zoonotic viral disease that causes an acute inflammation of brain in human and 

other warm blooded animals. It is transmitted by saliva of infected animal via bites or scratch. 

Once the virus enters the body through a skin opening, it travels via nerve tissues to the brain 

where the virus duplicates itself. During this time the host experiences a range of symptoms 

from fever to hallucinations, paralysis, and eventually death (Addo, 2012; Khan, 2012). 

Salivary glands are attacked after the virus duplicate in the brain, then the saliva becomes the 

main instrument for infecting other animals. 

Rabies occurs in more than 150 countries and territories around the world, and it is very high 

in developing continents like Africa and Asia. Poor rural communities are highly vulnerable to 

rabies due to interaction with domestic animals like dogs.  Globally 55 000 people die due to 

rabies per annum. The figure is estimated to be more due to lack of enough surveillance and 

under reporting in developing countries (Knobel et al., 2005). More than 40% of the people 

who are bitten by infected (rabid) animals are children, which is explained by the higher 

tendency of children to play with animals. More than 15 million people receive post exposure 

vaccination worldwide (WHO, 2013).   

Besides its effect on humans, rabies also puts significant burden on the livestock populations 

in Africa and Asia. This can be directly reflected by its economic effect in rabies endemic areas. 

Africa and Asia lose US$12.3 million annually because of death of livestock due to rabies 

(Jemberu et al., 2010). 

Domestic dogs are highly affected by rabies and they are the source for almost all types of 

human and livestock infection (Deressa et al., 2010). The main terrestrial reservoirs of rabies 

are domestic dog populations of the developing world (Nel, 2013). Classical rabies virus is 

mainly found in dogs worldwide and more than 3 billion people in developing countries are 

exposed to dog rabies. In India for example about 15 million people are bitten by dogs annually 

(Khan, 2012). 
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Rabies cases are reported from all regions of Ethiopia, and it has persisted for centuries (Reta 

et al., 2014). Addis Ababa and its surroundings are the endemic parts of the country (Ali et al., 

2010). More than 2000 people were bitten by dog annually in and around Addis Ababa. A 

retrospective record review from 2001 to 2009 shows that 386 deaths in humans were reported 

with an annual range of 35 to 58. From this 42.72% were children under the age of 14 (Deressa 

et al., 2010). Livestock are also highly affected by rabies due to dog bites within and around 

Addis Ababa (Reta et al., 2014). 

1.2  Problem Statement 

Few studies have been conducted on the transmission of rabies within and around Addis Ababa, 

but the disease has been prevalent in human and animal for a century. Addis Ababa and its 

surroundings are rabies endemic part of the country. Retrospective record review shows that 

rabies cases have been increasing in and around Addis Ababa. From the total human death due 

to rabies recorded for nine years, more than 42% of them were children. It is likely that some 

deaths are unreported. Livestock are also victims of rabies virus, but are not considered in many 

mathematical epidemiology studies. Therefore, there is a need for more studies to analyze the 

parameters which have been driving the transmission of the diseases.  

1.3 Justification 

Many societies especially poor rural communities have traditional beliefs towards rabies. For 

instance, in many areas inhalation is taken as a means of rabies transmission and traditional 

healers are believed to be the best solution for treatment. Awareness should be created about 

the transmission and control of rabies since misconception is very common in these areas. It is 

believed that this study will motivate governments and stakeholders to sensitize the societies 

in creating the right perception of the virus transmission and control. In addition to that, the 

result of this study will create awareness on how rabid domestic dogs affect poor rural 

community people and their livestock. It will also contribute to the national rabies surveillance 

system. Government, policy makers and all sectors involved in this campaign will benefit from 

a new approach to combating rabies transmission.  

The few studies like Zhang et al., (2011), Hou et al., (2012) and Addo (2012) have formulated 

SEIR mathematical model to show the spread of rabies among dogs and from dogs to human, 

but none of them have tried to show how the disease is spreading in livestock population which 

are the livelihood of poor communities.  
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1.4 Objectives 

The general and specific objectives of the study are as follows: 

1.4.1 General Objective 

The general objective of this study is to develop and analyze a mathematical model for the 

dynamics of rabies transmission among dogs and to human and livestock populations. 

1.4.2 Specific Objectives 

i. To formulate a model for the interaction that enhances the transmission of rabies 

among dogs and to human and livestock. 

ii. To determine the disease free and endemic equilibrium points and their stability. 

iii. To determine the sensitivity of the dynamics of the diseases with respect to 

embedded parameters of the model, and to come up with numerical solutions of 

the model.  

1.4.3 Research Questions 

i. What type of interactions between dogs, humans and livestock enhance the 

transmission of rabies? 

ii. What are the conditions for existence and stability of equilibrium points? 

iii. To which parameters is the dynamics of the disease more sensitive? 

1.4.4 Dissertation Outline  

This dissertation consists of four chapters.  

Chapter 1: This chapter focuses on the general introduction of the problem and reviews 

literature related to the study.  

Chapter 2: This chapter is based on the first paper titled Modeling the Dynamics of Rabies 

Transmission with Vaccination and Stability Analysis. Formulation of the mathematical model, 

derivation of the effective and the basic reproduction numbers by using next generation 

operator and conditions for stability of disease free and endemic equilibrium points of the 

model are presented.   

Chapter 3: In this chapter we present the second paper, Sensitivity Analysis and Numerical 

Simulations for the Mathematical Model of Rabies in Human and Animal Within and Around 
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Addis Ababa. Sensitivity analysis of the effective reproduction number and numerical 

simulations of system 2.1 are presented.   

Chapter 4: In chapter four general discussion, conclusion and recommendations are presented.  
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CHAPTER TWO 

Modelling the Dynamics of Rabies Transmission with Vaccination and Stability 

Analysis1 

 

Abstract: We propose a deterministic mathematical model which comprises human, dog and 

livestock populations, and formulated as a system of ordinary differential equations. The basic 

reproduction number 
0R  and effective reproduction number 

eR  are computed using the next 

generation operator. The results are entirely dependent on the parameters of dog populations, 

which shows that dog populations are the source of rabies infection for both human and 

livestock populations. The disease-free equilibrium 0  is computed, when 1eR   it is proven 

to be globally asymptotically stable in the feasible region . When 1eR   there exist one 

endemic equilibrium point which is locally asymptotically stable. For a specified set of values 

of parameters 0R  and eR  are 2 and 1.6 respectively, which indicates that the disease is endemic 

within and around Addis Ababa. 

Key Words: Rabies, Addis Ababa, Endemic, Reproduction number, Equilibrium points  

2.1 Introduction 

Rabies is a zoonotic viral disease that causes an acute inflammation of brain in human and 

other warm blooded animals. It is transmitted by saliva of an infected animal via bites or 

scratches. Once the virus enters the body through a skin opening, it travels via nerve tissues to 

the brain where the virus duplicates itself. During this time the host experiences a range of 

symptoms from fever to hallucinations, paralysis, and eventually death (Addo, 2012; Khan, 

2012). Salivary glands are attacked after the virus duplicates in the brain, then the saliva 

becomes the main instrument for infecting other animals.  

Rabies occurs in more than 150 countries and territories around the world, and it is very high 

in developing continents like Africa and Asia. Poor rural communities are highly vulnerable to 

rabies due to interaction with domestic animals like dogs. Globally 55 000 people die due to 

                                                           
1 This chapter is based on published research paper: 

Tesfaye Tadesse Ega, Livingstone S. Luboobi, Dmitry Kuznetsov. ‘Modeling the Dynamics of Rabies 

Transmission with Vaccination and Stability Analysis’, Applied and Computational Mathematics, Vol. 4, No. 6, 

2015, pp. 409-419. doi: 10.11648/j.acm.20150406.13 
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rabies per annum. The figure is estimated to be more due to lack of enough surveillance and 

under reporting in developing countries (Knobel et al, 2005). More than 40% of the people 

who are bitten by infected (rabid) animals are children, which are explained by the higher 

tendency of children to play with animals. More than 15 million people receive post exposure 

vaccination worldwide (WHO, 2013).   

Besides its effects on humans, rabies also puts a significant burden on the livestock population 

in Africa and Asia. This can be directly reflected by its economic effect on rabies endemic 

areas. Africa and Asia lose US$12.3 million annually because of deaths of livestock due to 

rabies (Jemberu et al., 2014). 

Domestic dogs are highly affected by rabies and they are the source for almost all types of 

human and livestock infection (Deressa et al., 2010). The main terrestrial reservoirs of rabies 

are domestic dog populations of the developing world (Nel, 2013). Classical rabies virus is 

mainly found in dogs worldwide and more than 3 billion people in developing countries are 

exposed to dog rabies. In India for example about 15 million people are bitten by dogs annually 

(Khan, 2012). 

Rabies cases are reported from all regions of Ethiopia, and it has persisted for centuries (Reta 

et al., 2014). Addis Ababa and its surroundings are the endemic parts of the country (Ali et al., 

2010). More than 2000 people are bitten by dog annually within and around Addis Ababa. A 

retrospective record review from 2001 to 2009 shows that 386 deaths in humans due to rabies 

were reported with an annual range of 35 to 58. From this 42.72% were children under the age 

of 14 (Deressa et al., 2010). Livestock are also highly affected by rabies due to dog bites within 

and around Addis Ababa (Reta et al., 2014). 

Mathematics has played an important role in understanding and controlling the spread of 

infectious diseases, and it is a powerful tool for analyzing and predicting the dynamics of 

phenomena. It also helps medical professionals to organize their thinking (Hethcote, 2000; 

Lloyd & Valeika, 2007).   

In all few studies like Zhang et al., (2011), Hou et al., (2012) and Addo (2012) they formulated 

SEIR mathematical model to analyze the dynamics of rabies transmission among dogs and 

from dogs to human, but none of them incorporate livestock populations which are the 

livelihood of poor communities. In addition to that there is no strong mathematical model 
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which analyses and predicts the dynamics of rabies transmission within and around Addis 

Ababa. 

An SEIR (Susceptible-Exposed-Infected-Removed) standard model was developed by Addo 

(2012) to determine and predict the spread of rabies among dogs in Bongo District Ghana. Both 

SEIR model with vaccination and SEIR model without vaccination were formulated with 

ordinary differential equations. The reproductive ratio without vaccination was determined to 

be greater than one which showed the virus would be endemic, and less than one with 

vaccination, which showed that the disease dies out. The study also applied sensitivity analysis 

to the model by using different numbers of infectious dogs and vaccinated dogs. The study 

determined the reproductive number, 0R of rabies transmission decrease as vaccination is 

introduce in to the model. In addition, the model showed that rabies transmission can be 

decreased by the strategy of keeping dogs confined within their household.  

The other deterministic SEIR model was developed by Zhang et al., (2011) to analyze the 

control and transmission of rabies among dogs and from dogs to human in China. Both dogs 

and human were included and classified into susceptible, exposed, infectious, and recovered 

classes. They first simulated human rabies from 1996 to 2010 using the data reported by 

Chinese Ministry of Health, and the numerical simulation they got significantly supported the 

data. They also estimated the basic reproductive rate 0 2R  for rabies transmission in China.  

Sensitivity analysis of 0R  was performed in terms of the model parameters and compared the 

effects of culling and immunizing of dogs. Their results showed that reducing dog birth rates 

and increasing dog immunization coverage rates are the most effective methods in controlling 

human rabies infection in China. They recommend that culling of dogs can be replaced by 

immunization of dogs. The reason is that in the process of culling of dogs, human community 

can be disturbed. Additionally culling can cause increased movement of infected dogs to less 

infected areas. Their model predicted that rabies transmission in China will decrease for the 

coming 7 to 8 years and it will peak again in 2030.   

SEIV (Susceptible-Exposed–Infectious–Vaccinated) model was formulated by Hou et al., 

(2012) for the transmission of rabies among dogs, and from dogs to human in the context of 

Guangdong province of China. In their model domestic and stray dogs were taken as different 

groups, and the model was governed by twelve differential equations. In this study, sensitivity 

analysis of the reproduction rate was determined in terms of various parameters. The 
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reproduction rate was 0 1.65R  which is less compared to the result of Zhang et al., (2011) 

which was 0 2R  .  According to their results the recruitment rate of domestic dogs, the number 

of stray dogs and the valid time of immunity play a very important role for the transmission of 

rabies.   

In this study we propose a mathematical model for the transmission dynamics of rabies from 

dogs to both human and livestock in the context of Addis Ababa and its surrounding areas. The 

model is based on SEIR type and domestic dogs infect both human and livestock populations. 

We have used the improved model of Zhang et al., (2011) to incorporate livestock populations. 

Though livestock populations are highly affected by rabies virus, they have not been considered 

in the above studies. 

2.2 Materials and Methods 

2.2.1 Model Formulation 

In this chapter we formulate SEIR (Susceptible-Exposed-Infected-Recovered) model of rabies 

for human, dog and livestock populations. We categorize the human, dog and livestock 

populations into susceptible, exposed, infected and recovered groups. Susceptible groups have 

no disease, but they are likely to be infected in case of contact with rabid dogs. Exposed 

individuals are those who contracted the virus via bites or scratches, but still they have not 

shown symptoms. Infected individuals are those who develop clinical symptoms and they are 

unlikely to recover due to the nature of rabies. The recovered classes are those who recovered 

through vaccination before they reach infectious stage, whereas the rest get infected and die 

eventually.  

The human population is grouped into susceptible, 𝑆ℎ , exposed,  𝐸ℎ , infectious, 𝐼ℎ , and 

recovered, 𝑅ℎ . Individuals are recruited to susceptible class by birth at a rate of 𝜗 h. A 

susceptible man bitten by a rabid dog becomes exposed. If post-exposure treatment is not given 

the person become infectious and dies since there is no recovery at infectious stage. 

The dog population is divided in to susceptible,  𝑆𝑑 , exposed,  𝐸𝑑 , infectious,  𝐼𝑑  and 

recovered , 𝑅𝑑 . Individuals are recruited into susceptible class by birth at a rate d . For 

susceptible dogs vaccination is applied at a rate of d . This is because it is the dog population 

which infects both human and livestock populations. An exposed dog automatically moves to 
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the infectious class since the community cannot observe which dog is infected as many dogs 

are very mobile around the city. 

It is assumed that all parameters of the model are positive and they are described in Table 2.1 

Table 2. 1: Description of parameters. 

Parameter Description 

, ,h d l    
The annual birth rate of human, dog and livestock populations respectively per 

annum 

, ,h d l    
Death rate due to rabies for human, dog and livestock populations 

respectively 

, ,h d l    
The loss rate of vaccination immunity for human, dog and livestock  

populations respectively 

, ,h d l    Natural death rate of human, dog and livestock populations respectively 

, ,h d l    
The rate at which infectious dogs infect susceptible human, dog and livestock 

populations respectively 

, ,h d l    The incubation period in human, dog and livestock populations respectively 

, ,h d l    
Vaccination rate of exposed human, dog and livestock populations 

respectively 

 

Livestock populations are also divided into susceptible,  𝑆𝑙 , exposed,  𝐸𝑙 , infectious, 𝐼𝑙 and 

recovered, 𝑅𝑙. Individuals are recruited to susceptible class by birth at a rate l . Members of 

the susceptible class contract the disease from dog bites or scratches. Livestock which are bitten 

by a rabid dogs become exposed. If post exposure treatment is provided the individual moves 

to recovered class before reaching the infectious stage. 

Our model is developed based on the following assumptions.  

i. Susceptible populations are recruited by birth at a rate of  ; 

ii. Rabies transmission among humans, among livestock and between human and 

livestock was ignored due to rare cases; 

iii. An individual who is bitten or scratched by rabid dog becomes exposed; 

iv.  Individuals in each group have equal natural death rate; 
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v.  Populations are homogeneous, that is each individual has equal probability of being 

bitten or scratched by a dog and thereby contracting the diseases; 

vi. Once an individual reaches to infectious stage there is no recovery and death is 100% 

certain.  

2.2.2 Model Compartment  

Using the above assumptions, definition of variables and parameters, the model flow diagram 

which depicts the dynamics of rabies transmission among dogs and from dogs to both human 

and livestock is shown in Fig. 2.1.  

 

 

 

Figure 2.1: Flow diagram for rabies transmission among dogs and to human and livestock in 

which the parameters are as defined in Table 2.1. 

The parameters of the model are positive. where , ,  i i h d l  represents the annual birth of 

dog, human and livestock populations respectively. Exposed population of human and 

livestock can recover through post exposure treatment. The parameters i  where , ,i h d l  

represent the latency rates of human, dog and livestock population respectively so that  
1

𝜌𝑖
  

where , ,i h d l  are the corresponding incubation periods. 
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2.2.3 Model Equations 

Based on the assumptions and interrelation between the variables and parameters in Fig. 2.1, 

rabies transmission dynamics can be described by using ordinary differential equations. 

,

( ) ,

( ) ,

( ) .

h
h h h h d h h h

h
h d h h h h h

h
h h h h h

h
h h h h h

dS
R I S S

dt

dE
I S E

dt

dI
E I

dt

dR
E R

dt

   

   

  

  

   

   

  

  

                                    Human                          (2.1a) 

( ) ,

( ) ,

( ) ,

( ) .

d
d d d d d d d d

d
d d d d d d

d
d d d d d

d
d d d d d

dS
R I S

dt

dE
S I E

dt

dI
E I

dt

dR
S R

dt

    

  

  

  

    

  

  

  

                               Dog                            (2.1b)    

,

( ) ,

( ) ,

( ) .

l
l l l l d l l l

l
l d l l l l l

l
l l l l l

l
l l l l l

dS
R I S S

dt

dE
I S E

dt

dI
E I

dt

dR
E R

dt

   

   

  

  

   

   

  

  

                          Livestock                        (2.1c) 

The total human, dog and livestock populations are ( ), ( )and ( )h d lN t N t N t given by 

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) .

h h h h h

d d d d d

l l l l l

N t S t E t I t R t

N t S t E t I t R t

N t S t E t I t R t

   

   

   

                                                                          

Therefore adding each of the differential equations of system (2.1) of human, dog and 

livestock populations will give us: 
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,

,

,

h
h h h h h

d
d d d d d

l
l l l l l

dN
N I

dt

dN
N I

dt

dN
N I

dt

  

  

  

  

  

  

                                                                                      (2.2)                                                                                  

where iN , , ,i h d l  is the total of human, dog and livestock populations at time t. 

Invariant Region 

The model system represented by (2.1) dealing with human, dog and livestock populations will be 

analyzed in the feasible region  , and all state variables and parameters are assumed to be positive 

for all t ≥ 0. The invariant region will be obtained through Theorem 2.1. 

Theorem 2.1: 

All solutions of the system (2.1) are contained in the region Φ 
12

   and =
h d l  

4 4 4 ,      

where  

4{( , , , ) }0: h
h

h

h h h h hS E I R N



     , 

4{( , , , ) }0: d
d

d

d d d d dS E I R N



     , 

4{( , , , ) }0: l
l

l

l l l l lS E I R N



     , 

and   is the positive invariant region for system (2.1) 

Proof: 

From system (2.1a) the human population is  
( ) ( ) ( ) ( ) ( )h h h h hdN t S t E t I t R t

dt dt dt dt dt
    . 

Therefore the sum of total population of human will satisfy 

h
h h h h h

dN
N I

dt
      .   as in (2.2) 
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Thus 

h
h h h

dN
N

dt
    , 

h
h h h

dN
N

dt
     . 

This is a first order linear differential inequality with integrating factor ht
e
   

h h ht t th
h h h

dN
e e N e

dt

     , 

( )h ht t

h h

d
N e e

dt

   , 

h ht t

h hN e e dt
    ,  

h ht th
h

h

N e e c
 


  , 

hth
h

h

N ce





  .                                                                                                     (2.3) 

Applying initial conditions when t = 0  

( 0) (0)h hN t N  , 

(0) h
h

h

N c



  , 

(0) h
h

h

N c



  . 

Substituting this expression in (2.3) we get  

(0) hth h
h h

h h

N N e
 

 

 
   

 
, 

as t gets bigger and bigger the expression (0) hth
h

h

N e




 
 

 
  will be zero . 
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Thus we have 

( ) (0) hth h
h h

h h

N t N e
 

 

 
   

 
 ( ) h

hN t



    . 

Therefore  

0 ( ) h
h

h

N t



  .  This is the boundary for human population.                                  (2.4) 

This implies that ( ) 0hN t   for all t. 

Similarly, if we consider the total of dog and livestock populations of sub-systems (2.1b) and 

(2.1c) we get the same result as in (2.4). That is ( ) 0dN t   and ( ) 0lN t   hence the set  

4 4 4{( , , , ),( , , , ),( , , , )}h h h h d d d d l l l lS E I R S E I R S E I R      is positively invariant set in Φ. 

Positivity of the solution  

The model system (2.1) to be epidemiologically meaningful and well posed. We need to 

prove that all state variables are non-negative 0t  . 

Theorem 2.2: 

Let {( (0), (0), (0) 0, (0), (0), (0) 0, (0), (0), (0) 0, (0) , 0}h d l h d l h d l h d lS S S I I I R R R E E E       

Then the solution set  { ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}h h h h d d d d l l l lS t E t I t R t S t E t I t R t S t E t I t R t      

of the model system (2.1) is positive for all 0t  . 

Proof. 

From the first equation of (2.1a) we have:- 

( )h
h h h h h d h

dS
R I S

dt
       . 

This can be written as  

( )h
h h d h

dS
I S

dt
    , 
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by rearranging we get  

( )h
h h d

h

dS
I dt

S
    , 

in the absence of disease 

h
h

h

dS
dt

S
  , 

Integrating both sides 

1
h h

h

dS dt
S

   , 

ln h hS t  , 

(0) 0ht

h hS S e


  we have shown that hS  is positive for 0t  . 

Using a similar process  

( )
(0) 0h h h t

h hE E e
    

  , 0t  , 

( )
(0) 0h h t

h hI I e
  

  , 0t  , 

( )
(0) 0h h t

h hR R e
  

  , 0t  , 

( )
(0) 0d d t

d dS S e
  

  , 0t  , 

( )
(0) 0d d t

d dE E e
  

  , 0t  , 

( )
(0) 0d d t

d dI I e
  

  , 0t  , 

( )
(0) 0d d t

d dR R e
  

  , 0t  , 

(0) 0lt

l lS S e


  , 0t  , 

( )
(0) 0k k k t

l lE E e
    

  , 0t  , 
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( )
(0) 0l l t

l lI I e
  

  , 0t  , 

( )
(0) 0l l t

l lR R e
  

  , 0t  . 

Therefore the solution set 

12{ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}h h h h d d d d l l l lS t E t I t R t S t E t I t R t S t E t I t R t    of the model is 

positive 0t  . 

2.3  Model Analysis  

2.3.1 Disease Free Equilibrium Points (DFE) 

To find the disease free equilibrium points we set the right hand side of equations of system 

2.1 equal to zero. In the absence of attack or in the absence of rabies the following 

compartments will be zero. 

0h h h d d l l lE R I E I E R I           

then the disease free equilibrium (DFE)   0   will be 

 

0 0

0

0 0 0 0

( ,0,0,0, ,0,0, , ,0,0,0) ,

( )
where , , and .

( ) ( )

h d d l

h d d d d d l
h d d h

h d d d d d d d d l

S S R S

S S R S



      

         




   

   

 

For the dog population in the case of disease free equilibrium points dR  cannot be zero 

because susceptible dogs which are vaccinated transfer to recovered class. Therefore the 

disease free equilibrium points of system (2.1) exists and is given by: 

0

( )
,0,0,0, ,0,0, , ,0,0,0

( ) ( )

h d d d d d l

h d d d d d d d d l

      


         

 
  

    
.                               (2.5) 

2.3.2 The Basic Reproduction Number, 0R  

The basic reproduction number 0R  is a threshold parameter defined as the average number of 

secondary infection caused by an infectious individual by introducing in to a completely 

susceptible population. It is also called the basic reproduction ratio or basic reproductive rate 

(Hethcote, 2000). Basic reproduction number is very important parameter which helps to 
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determine whether the disease spreads in the population or it dies out. If 0 1R  , then on average 

an infected individual produces less than one new infected individual over the course of its 

infectious period, and the infection cannot grow. Conversely, if 0 1R   then each infected 

individual produces, on average, more than one new infection, and the disease can invade the 

population. It is also crucial in the process of analyzing sensitive parameters which drive the 

dynamics of the disease and stability analysis of disease free and endemic equilibrium points. 

To compute the basic reproduction number, it is important to identify new infections from all 

other changes in the population. We used next generation operator method proposed by Van 

den Driessche & Watmough (2000). We considered system (2.1) without vaccination i.e. 

0   . 

Let ( )if x  be the rate of appearance of new infection in compartment i , ( )iv x
 be the rate of 

transfer of individuals out of compartment i and ( )iv x
 be the rate of transfer of individuals 

into compartment i  by all other means, and it is assumed that each function is continuously 

differentiable at least twice in each variable. The disease transmission model of system (2.1) 

consists of nonnegative initial conditions together with the following system of equations: 

𝑥̇ = ℱ𝑖(𝑥) = ( )if x ( ), 1,...,6iv x i  ,                                                                         (2.6) 

where i i iv v v   . 

We consider expressions in which the infection is in progression. These are   

, , , , and h h d d l lE I E I E I .  

( ) ,

( ) ,

( ) ,

( ) ,

( ) ,

( ) .

h
h h d h h h

h
h h h h h

d
d d d d d d

d
d d d d d

l
l l d l l l

l
l l l l l

dE
S I E

dt

dI
E I

dt

dE
S I E

dt

dI
E I

dt

dE
S I E

dt

dI
E I

dt

  

  

  

  

  

  

  

  

  

  

  

  

                                                                                          (2.7) 
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By rearranging equations of system (2.1) without vaccination from infected to infectious class 

of human dog and livestock populations with a system of equations given by (2.7) 

                   

 

Let F be a non-negative  n n  matrix and V be a non-singular N-matrix such that 

F = 0( )i

j

f

x

 
 
  

    and     V = 0( )i

j

v

x

 
 
  

     with 1 ,  i j n  .   

The point 0  is the disease free equilibrium point in (2.5) without vaccination.  

where 

1

2

3

4

5

6

0

,
0

0

h h d

d d d

i

l l d

f S I

f

f S I
f

f

S If

f







   
   
   
   

    
   
   
   

             (2.8)                            

1

2

3

4

5

6

( )

( )

( )
.

( )

( )

( )

h h h

h h h h h

d d d

d d d d d

l l l

l l l l l

Ev

I Ev

v E
v

v I E

v E

v I E

 

  

 

  

 

  

  
  

 
  
   

    
   

   
  

               (2.9)

                     

By considering the classes in which infection is on progression and using the linearization 

technique. The Jacobean matrices of and f v  at the disease free equilibrium point 0  are given 

by:  

F= 0( )i

j

f

x


= 

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

h h

h

d d

d

l l

l

 



 



 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 ,                                                                 (2.10) 
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V= 0( )i

j

v

x




=

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

h h

h h h

d d

d d d

l l

l l l

 

  

 

  

 

  

 
 
 

 
 
 

  
 
 

   

 .                (2.11) 

 

Solving for 1V   and multiplying it with F  gives us a matrix 
1

1 0 0( ) ( )i i

j j

f v
FV

x x

 



    

    
      

.   

Choosing the maximum eigenvalue in absolute terms that is the spectral radius of the matrix 

1FV   gives us the basic reproduction number which is given by: 

 

0
( )( )

d d d

d d d d d

R
  

    


 
  .                                                                                           (2.12) 

 

In our assumption there is no secondary infection in human and livestock population, due to 

this all the parameters of 0R  in (2.12) are depending on dog population. This shows that 

targeting dog population in the process of combating rabies transmission is very important. 

Providing PEP for human or livestock population does not eradicate the disease from the 

community.   

2.3.3 The Effective Reproduction Number, eR  

The effective reproduction number is defined as the measure of average number of infections 

caused by a single infectious individual introduced in a community in which intervention 

strategies (in our case vaccination) is administered. The effective reproduction number eR  of 

system (2.1) is computed by applying the same procedure of 0R . The spectral radius 

(dominant eigenvalue) of 1FV   denoted by ( )eR FV  . 

        

( )

( )( )( )

d d d d d
e

d d d d d d d d

R
    

       




   
 .                                                                    (2.13) 
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Since 0
( )( )

d d d

d d d d d

R
  

    


 
, 

 

we can express eR  in terms of 0R  as 

 

0

( )

( )

d d
e

d d d

R R
 

  




 
 .                                                                                                  (2.14) 

Numerical computation of 0R , and eR  was done using the parameter values which are given 

in Table 3.1. Estimations of the model parameters and reasons are given in section 3.3. We 

substitute the parameter values in to the expressions in (2.12) and (2.13) respectively.  

5 4

0

(0.17)(1.29 10 )(2 10 )
2

0.083(0.17 0.083)(0.083 1)
R



 
 

 
 

Without any control measure the result of 0R  is greater than one, which shows that the disease 

will continue spreading in the population. 

5 4

1.6
(0.17)(1.29 10 )(2 10 )(0.083 0.5)

0.083(0.083 0.1 0.5)(0.17 0.083)(0.083 1)eR


 
  

   
 

With the current 10% vaccination coverage for dog population the result of eR  is greater than 

one which shows again the disease will persist in the community. The above results of eR  and 

0R tell us that more interventions should be taken to control the spread of rabies within and 

around Addis Ababa. The result of basic reproduction number is almost the same with (Zhang 

et al., 2011) which was 2 for the transmission of rabies in china. Our result of effective 

reproduction number (with the current 10% vaccination coverage for dog population in and 

around Addis Ababa) is also approaching the basic reproduction number result of (Hou et al, 

2012) for the transmission of rabies in Guangdong province of China.   

2.4  Stability Analysis 

2.4.1 Local Stability of the Disease Free Equilibrium Points  

In this sub-section we investigate the local stability of the disease free equilibrium points using 

the trace and determinant method using the Jacobean matrix of system (2.1) at DFE.  
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Theorem 2.3. If 1eR  , then (a) the disease-free equilibrium 0 of system (2.1) is locally 

asymptotically stable; (b) the disease-free equilibrium 0  of system (2.1) is globally 

asymptotically stable in the region . 

Using the disease free equilibrium points in (2.5), we derive the Jacobean matrix of system 

(2.1) by differentiating each of the equation of system (2.1) in terms of state variables 

, , , , , , , , , , ,h h h h d d d d l l l lS E I R S E I R S E I R  

0
J   

 

0 0 0 0 0 0 0 0 0

0 ( ) 0 0 0 0 0 0 0 0 0

0 ( ) 0 0 0 0 0 0 0 0 0

0 0 ( ) 0 0 0 0 0 0 0 0

( )
0 0 0 0 ( ) 0 0 0 0 0

( )

( )
0 0 0 0 0 ( ) 0 0 0 0 0

( )

0 0 0 0 0 ( ) 0 0 0 0 0

0 0 0 0 0 0

h h
h h

h

h h
h h h

h

h h h

h h h

d d d d
d d d

d d d d

d d d d
d d

d d d d

d d d

d

 
 



 
  



  

  

   
  

   

   
 

   

  






  

 

 

 
 

 


 

 

 

( ) 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ( ) 0 0

0 0 0 0 0 0 0 0 0 ( ) 0

0 0 0 0 0 0 0 0 0 0 ( )

d d

l l
l

l

l l
l l l

l

l l l

l l l

 

 




 
  



  

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 


 
 
 
   
 
 

  
   

 

Then we find the trace of matrix 
0

J    

The trace of an byn n   square matrix A  is defined to be the sum of the elements in the main 

diagonal  of A , i.e., 

11 22

1

Tr( ) ...
n

nn ii

i

A a a a a


     ,    where nna  denotes the entry on the -n th row and -n th

column of A.  

Therefore 

0
Tr( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

h h h h h h h h d d d d

d d d d l l l l l l l l

J            

           

             

          
 

4 4 4d h l d h l d h l d h l d h l                               

Since we have assumed that all parameters of the model  are positive then 
0

Tr( ) 0J   
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To find the determinant of the Jacobean matrix at the disease free equilibrium points we used 

Mathematica software and simplify fully to get the following expression. 

0
( ) ( ( )( ))( )( )

( )( )( )( )( )

d h l d d d d d d d h h l l

h h h l l l l l d d d h h

Det J S             

            

       

       
 

but from our disease free equilibrium point 
( )

( )

d d d
d

d d d d

S
  

   




 
   substitute this value to the 

above expression 

0

( )
( ) ( ( )( ))( )

( )

( )( )( )( )( )( )

d d d
d h l d d d d d d h h

d d d d

l l h h h l l l l l d d d h h

Det J

  
          

   

              


      

 

        

 

Since 
( )

( )( )( )

d d d d d
e

d d d d d d d d

R
    

       




   
, 

simple computation makes the following two  expression to be equal    

( )
( ( )( )) (1 )( )( )

( )

d d d
d d d d d d e d d d d

d d d d

R
  

         
   


       

 
 

therefore  

0
( ) (1- R )( + )( + σ )( +σ )( +σ )( + + )

( + )( + + )( + +ω )( +ω )

d h l e d d d d h h l l h h h

l l l l l d d d h h

Det J μ μ μ μ ρ μ μ μ μ ρ φ

μ φ μ ρ φ μ φ μ

  
  

Thus for 1eR  , we have    

 

( )Tr J   < 0  and  
0

( )Det J   > 0.     Then the DFE is locally asymptotically stable otherwise 

it is unstable if 1eR  . 

2.4.2 Global Stability of Disease Free Equilibrium Points 

To investigate the global stability of disease free equilibrium point of system (2.1) we used 

the method proposed by (Iggidr et al., 2007).  

We write our system as follows:  

0 , 1

2

( ) ,

,

n
n E n i

i
i

dX
A X X A X

dt

dX
A X

dt


  


 


                                                                                   (2.15) 
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in which nX  and iX  are vectors corresponding to the transmitting and non-transmitting 

compartments, and 
0 ,E nX  is vector at disease free equilibrium point 0E  of the same vector 

length as nX  . 

Referring to system (2.1) we define  

( , , , , , )T

n h h d d l lX S R S R S R       ,           ( , , , , , )T

i h h d d l lX E I E I E I , 

0 ,

( )
,0, , , ,0

( ) ( )

T

h d d d d d l
E n

h d d d d d d d d l

X
      

         

 
  

    

, 

0 ,

( )

( )

( )

h
h

h

h

d d d
d

d d d d

n E n

d d
d

d d d d

h
l

h

l

S

R

S

X X

R

S

R





  

   

 

   





 
 

 
 
 

 
  

   
 
  
 
 
 
 
  

. 

 

For the global stability of DFE we need to prove the following. 

i) A should be a matrix with real negative eigenvalues  

ii) 2A   should be a Metzler matrix  

Using system (2.1) together with the representation in (2.15) the two equation can be written 

as follows: 

( ) ( )

( ) ( )

( )

( )

( )

h
h

h

h h h h d h h h h

h h h h h d d d
d

d d d d d d d d d d d d

d d d d d d d
d

d d d dl l l l d l l l

ll l l l l
l

l

l

S

R I S S R

E R
S

R I S
A

S R
R

R I S S

E R
S

R





   

     

        

    

      

  







    

  
     

       
  

    
      
  

     




1

h

h

d

d

l

l

E

I

E
A

I

E

I





 
 
 
 

  
 
 
 
   




 

, 
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2

( )

( )

( )

( )

( )

( )

d d d d d d h

d d d d d h

d d d d d d d

d d d d d d

l d l l l l l l

l l l l l l

S I E E

E I I

S I E E
A

E I I

I S E E

E I I

  

  

  

  

   

  

    
   

 
   
    

   
    

     
   

       

. 

Matrices A , 1A  and 2A  are of order 6 6  

Using non-transmitting elements of the Jacobian matrix of system (2.1) and representation in 

(2.15) we get. 

0 0 0 0

0 ( ) 0 0 0 0

0 0 ( ) 0 0

0 0 0 ( ) 0 0

0 0 0 0

0 0 0 0 0 ( )

h h

h h

d d d

d d

l l

l l

A

 

 

  

 

 

 

 
 

 
 
  

  
  

 
 

   

,          (2.16) 

1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

h

h

d d

l l

l

S

S
A

S











 
 
 
 

  
 
 
 
  

,                           (2.17) 

2

( ) 0 0 0 0

( ) 0 0 0 0

0 0 ( ) 0 0

0 0 ( ) 0 0

0 0 0 ( ) 0

0 0 0 0 ( )

h h h h h

h h h

d d d d

d d d

l l l l l

l l l

S

S
A

S

   

  

  

  

   

  

   
 

 
 
  

  
  

   
 

   

. (2.18) 

 

We have seen that Matrix A is upper triangular whose eigenvalues are located on its main 

diagonal which are real and negative )), ( ), ( , ( ), , (h h h d d d d l l l                   . The off 

diagonal elements of matrix 2A  are non-negative (since all parameters are positive) which is 

Metzler matrix. This proves that the DFE point of system (2.1) globally asymptotically stable 

in the region  . This leads us to the following important theorem. 
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Theorem 2. 4. The disease-free equilibrium point is globally asymptotically stable in the 

region   if 1eR   and unstable if 1eR  . 

2.5 Endemic Equilibrium Points 

2.5.1 Existence of Endemic Equilibrium Points 

To find the equilibrium points of system (2.1) we set the right hand side of the equation equal 

to zero. The endemic equilibrium points of system (2.1), when they exist are given by: 

* * * * * * * * * * * * *

0 ( , , , , , , , , , , , )h h h h d d d d l l l lS E I R S E I R S E I R  , 

where 

 

* *

*
*

* *

*
* *

( ) [( ( )( )]
,

( )

( )
,

( )[ ( ) ( )]

, .

h h h h h h h h h h
h h

h h h

h h h h d
h

h h h h h h h d h h h h h h d

h h h h
h h

h h h h

S E

I
E

I I

E E
I R

         

  

   

            

 

   

     
 

 
 

 
       


 

  

 

 

* * *

*
* *

( )( ) ( )
, ,

( )( )
, .

( )

d d d d d d
d d d

d d d

d d d d d d d d
d d

d d d d d

S E I

N
I R

     

  

      

    

   
  




    
 

                        (2.19) 

* *

*
*

* *

*
* *

( ) [( ( )( )]
,

( )

( )
,

( )[ ( ) ( )]

, .

l l l l l l l l l l
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l l l

l l l l d
l

l l l l l l l d l l l l l l d

l l l l
l l

l l l l

S E

I
E

I I

E E
I R

        

  

  

           

 

   

      
 




 
       


 

  

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In which  

* ( ) ( )( )( )
.

( )( )( )

d d d d d d d d d d d d d
d

d d d d d d d

I
            

      

     


  
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2.5.2 Local Stability of the Endemic Equilibrium Points 

To show the local stability of the endemic equilibrium points of system (2.1) we have used 

the following theorem as in (Parks, 1962). 

Theorem 2.5 (Routh-Hurwitz Criteria) Given a polynomial  

1

1 1( ) ... ,n n

n np a a a   

      

where the coefficients ia  are real constants, i 1, , n   define the n Hurwitz matrices using 

the coefficients ia  of the characteristic polynomial: 

1

1

1 1 2 3 3 2 1

3 2

5 4 3

1 0
1

( ), ,

a
a

H a H H a a a
a a

a a a

 
   

     
   

 

, 

and   

1

3 2 1

5 4 3 2

1 0 0 0

1 0

0

0 0 0 0

n

n

a

a a a

H a a a a

a

 
 
 
 
 
 
 
 

, 

where ia = 0 if j n . All of the roots of the polynomial ( )p   are negative or have negative 

real part iff the determinants of all Hurwitz matrices are positive:  

det 0, 0,1,2,..., .jH j n   

Details in Routh-Hurwitz criteria are given by (Parks, 1962; Sivanandam & Deepa, 2007). 

Now consider system (2.1a) as it is independent of (2.1b) and (2.1c). The Jacobian matrix of 

system (2.1a) is given by: 

 

*

*

*

0 0

0 0
|

0 0

0 0

h h d h

h d h h h

h h h

h h h

I

I
J 

  

   

  

  

  
 

   
  
 

   

.              (2.20) 

By eliminating the third row and third column a 3 3 matrix can be generated from 2.20.  

*

*

0

0

0

h h d h

h d h h h

h h h

I

I

  

   

  

  
 

   
   

 

through computation, we derive the characteristic polynomial  
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where 
* ,, h h h h hh h da I b c          ,  the expressions for   

* *and  Sd dI   are as 

in (2.19). 

We now consider 

 
3 2( )p A B C                                                                                          (2.21) 

where 

*, , h d h hA a b c B ab ac bc C abc I           

Using the characteristic polynomial representation in (2.21) the Hurwitz matrix is given by  

4

1 0

0 0

A

H C B A

C

 
 

  
 
 

,           (2.22) 

The determinant of the Hurwitz matrix is  

2ABC C ,                                  (2.23) 

By Routh-Hurtwiz criteria of Theorem 2.5 the determinant of Hurtwiz matrix becomes 

positive if  0, 0, 0 and A B C AB C    . 

All parameters of our model are positive and the starred variables 
* *and S  d dI  are given by 

(2.19). Therefore A a b c   is greater than zero,  0B ab ac bc     and 0C   if and 

only if *

h d h habc I   . When all the conditions for , and A B C hold, similarly using the 

same procedure  AB C  holds. Hence all roots of the characteristic polynomial of (2.23) are 

negative. This verifies that system (2.1a) is locally asymptotically stable. 

Further we consider system (2.1b) 

The Jacobean is given by 

 
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*

* *

* *

( ) 0

0
|

0 0

0 0

d d d d d d d

d d d d d d

d d d

d d d

I S

I S
J 

    

   

  

  

    
 

  
  
 

   

.  (2.24) 

3 2 *( ) ( ) ( ) ( )h d h hp a b c ab ac bc abc I              
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through calculation we have come up with the following characteristic polynomial. 

 

 

where 
*

1 1 1 1, , ,d d d d d d dd d da I b c d              , and  the expressions 

for   
* *and  Sd dI   are as in (2.19). 

Consider  

4 3 2

1 1 1 1 1( )p A B C D                                (2.25) 

where 

*

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 * * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 * * *

1 1 1 1 1 1 1 1 1
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.

d d d d d

d d d d d d d d d d d d d d
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C a c b a b d a c d b c d I S b c a S d S

D a b c d S I S a d S c b

   

         

         

           

        

    

 

Using the characteristic polynomial representation in (2.25) the Hurwitz matrix is given by  

1

1 1 1'

4

1 1 1

1

1 0 0

1

0

0 0 0

A

C B A
H

D C B

D

 
 
 
 
 
 

. 

 It follows that the determinant of  
'

4H  is 

2 2

1 1 1 1 1 1 1( )D A D A B C C   .        (2.26) 

By Routh-Hurtwiz criteria of theorem 2.5 the determinant of  Hurtwiz  matrix becomes 

positive if the following conditions hold. 

2 2

1 1 1 1 1 1 1 1 10, 0, 0 and A C D A BC C A D     , 

Since all the parameters of our model are positive and the variables 
* *and S  d dI  are given by 

(2.19) 

1 1 1 1 1A a b c d     is greater than zero,  1 0C   if and only if 

2 * * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( )d d d d d d d d d d d d d da c b a b d a c d bc d I S b c a S d S                  and 
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2 * * *

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

* * 2 * * *

1 1 1 1 1 1 1

( ) ( ) ( )

(

) (

d d d d d

d d d d d d d d d d d

d d d d d d d d d d d d d d d d d

p a b c d a b a c a d b c b d c d S

a c b a b d a c d b c d I S b c a S

d S a b c d S I S a d S c

       

       

            

            

        

     1 1)b



29 
 

1 0D   if and only if 
2 * * *

1 1 1 1 1 1 1 1( ) ( )d d d d d d d d d d d d d da bc d S I S a d S c b             .When 

all the conditions for 1 1 1, and A C D  hold, similarly using the same procedure  

2 2

1 1 1 1 1 1A BC C A D   holds. Hence all roots of the characteristic polynomial of (2.25) are 

negative, this verify that system (2.1b) is locally asymptotically stable. 

   

Using the same procedure for (2.1c) gives the same proof. Therefore the endemic equilibrium 

point of system (2.1) is locally asymptotically stable. 

2.6  Conclusion  

Rabies is one of the infectious diseases that highly affect Addis Ababa and surrounding areas. 

The rate of the spread of the disease is alarming. To study the dynamics of the disease we have 

formulated and analyzed a deterministic mathematical model for the dynamics of rabies 

transmission. The model comprises dog, human and livestock populations. Since classical 

rabies is very common in dog populations, the model was intended to show rabies transmission 

among dogs and to humans and livestock in which the dog populations infect both humans and 

livestock. 

The basic reproduction number and the effective reproduction number have been computed 

using next generation operator method. The results are entirely dependent on the parameters of 

the dog population. The dog populations are the source of infection for both human and 

livestock populations.  It is assumed that there is no secondary infection in human and livestock 

populations due to rare cases. We found that control measures should focus on dog populations. 

Supplying PEP for humans can save exposed individuals, but cannot reduce the future rabies 

transmission.  

The burden of rabies in and around Addis Ababa can be seen from the results of basic 

reproduction rate and effective reproduction rate.  In developing countries like Asia and Africa 

the transmission of rabies has been increasing due to growth and urbanization. The number of 

dog populations are increasing in African cities from time to time. In 2009 the reproduction 

rate for African cities was estimated to be 1.2. In this study the basic reproduction rate for 

Addis Ababa and surrounding areas is found to be 2, which shows that rabies transmission in 

the city is above the average compared to other African countries. This result is the same with 

the reproduction rate in China which has high rabies transmission. This makes Ethiopia to be 

ranked one of the top countries highly affected by rabies. 
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CHAPTER THREE 

Sensitivity Analysis and Numerical Simulations for the Mathematical Model of Rabies 

in Human and Animal Within and Around Addis Ababa2 

 

 

Abstract: We propose a deterministic mathematical model to study the transmission dynamics 

of rabies within and around Addis Ababa. Sensitivity analysis of eR  is done using parameters 

of the model. The natural death rate of dogs  𝜇𝑑 , the annual birth rate of dogs 𝜗𝑑, dog-to-dog 

transmission rate 𝛽𝑑, and disease induced death rate 𝜎𝑑  are found to be the most sensitive 

parameters of eR . According to numerical simulations of our system with initial year 2008 

rabies transmission will increase within and around Addis Ababa, and may peak in 2026 and 

2033 in human and livestock populations respectively. Our simulation shows that 25% 

vaccination coverage in livestock populations will reduce the future infection by half. This 

study suggest that a combination of interventions consisting of 60% of vaccination coverage in 

dog populations, 15% culling of stray dogs, and reducing annual crop of newborn puppies by 

25% will reduce the number of  human and livestock infections by 70% .  

Key Words: Rabies, Addis Ababa, Sensitivity analysis, Endemic, Reproduction number  

3.1.Introduction 

Rabies virus is Lyssavirus genus in the family of Rhabdoviridae. The virus has a shape 

resembling a bullet. After the virus enters the body through a skin opening, it travels to the 

spinal cord via the peripheral nervous system. Once the virus reaches the spinal cord it can 

easily travel to the brain and replicate itself there. It destroys the brain nerve cells and then 

disseminates to the salivary glands. It is unlikely for the infected individual to recover after 

symptoms start. Symptoms may include depression, profuse salivation, blindness, lack of 

appetite, difficulty in swallowing, eating and drinking, head-pressing, pacing, vocalization, 

fever, increased sexual excitement and activity, constant yawning and itching. The period of 

time before the individual exhibit symptoms, or incubation period, is usually one to three 

                                                           
2This chapter is based on published research paper: 

Tesfaye Tadesse Ega, Livingstone S. Luboobi, Dmitry Kuznetsov and Abraham Haile Kidane. ‘Sensitivity 

Analysis and Numerical Simulations for the Mathematical Model of Rabies in Human and Animal Within and 

Around Addis Ababa’, Asian Journal of Mathematics and Applications, Volume 2015, Article ID ama0271, 23 

pages, ISSN 2307-7743. 
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months, however it can vary from less than one week to more than one year depending on 

different factors. Factors include the distance from bite to brain, immune status, wound severity, 

wound site in relation to nerve supply, amount and strain of virus and protection provided by 

clothing (Addo, 2012). 

Rabies is the most fatal of all zoonotic infectious diseases. Unfortunately awareness about the 

disease is low and it is often recognized as a public health issue in developing continents. 

Despite the interventions and scientific breakthroughs, rabies continues to be a dreadful 

communicable infectious disease. (Acha & Arambulo, 1985). More than 55 000 people die due 

to rabies per annum in more than 150 countries and territories. In low-income countries the 

rabies surveillance systems are often poor and underreporting occurs because of infected 

people dying at home. (Lembo et la., 2015). More than 40% of the people who are bitten by 

infected (rabid) animals are children, which is explained by the higher tendency of children to 

play with animals. More than 15 million people receive post exposure vaccination worldwide 

(WHO, 2013). 

Rabies is transmitted among animals and to humans through bites or scratches of a rabid animal. 

Many mammals can transmit the rabies virus, but in many parts of the world rabies is spread 

through infected domestic dogs. More than 3 billion people in developing countries are exposed 

to dog rabies (Khan, 2012). Dogs are the source for almost all types of human and livestock 

infection (Deressa et al., 2010). Saliva from the infected dog can contaminate the paws, and 

hence a scratch is capable of transmitting the virus. A rabid dog may have bitten other animals 

such as another dog, cat, mule or cattle which can become rabid as well. Thus the infection is 

transmitted from animal to animal and the disease is perpetuated. The infected animal will 

demonstrate all symptoms of rabies and eventually die. 

Rabies is highly endemic to Ethiopia. It was estimated that 10 000 people in Ethiopia die each 

year from rabies, making it one of the worst affected countries in the world. In most cases an 

individual who is bitten by a rabid dog goes to a traditional healer which interferes with timely 

seeking of post exposure prophylaxis (PEP). There is lack of accurate quantitative information 

on rabies both in human and animal populations. Further, low awareness is preventing people 

from applying effective control measures (Jemberu et al., 2013). 

In most cases rabies transmission is very high in urban places because of the high number of 

domestic dogs (Khan, 2012). The major cause of spread of rabies in these regions is 

urbanization.  It is estimated that the dog to human population ratio in Ethiopia is 1:6 in urban 
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and 1:8 in rural areas. The number of dogs in Addis Ababa is estimated to be between 150 000 

to 200 000 (Petros et al., 2014). Despite vaccination and other control measures, rabies has 

persisted for centuries and it is reported from all regions of Ethiopia (Reta et al., 2014). The 

first occurrence of rabies was recorded in August, 1903 in Addis Ababa, and it was known by 

its traditional name of mad dog disease (Pankhurst, 1970). Addis Ababa and its surroundings 

are the endemic parts of the country. It is reported that around 2000 people are bitten by dogs 

annually (Ali et al., 2010). A retrospective record review of rabies deaths from 2001 to 2009 

reports 386 total human deaths with an annual range of 35 to 58 deaths. From this, 42.72% 

were children under the age of 14 (Deressa et al., 2010).  

In Chapter two we developed a mathematical model for the transmission dynamics of rabies 

using ordinary differential equations. We have computed the effective reproduction and basic 

reproduction numbers, and performed the stability analysis of the model. In this chapter we 

perform numerical simulations of basic reproduction number and effective reproduction 

number. This is to analyze which control measures are more effective to reduce the value of eR

. For the purpose of identifying sensitive parameters and to predict the future status of rabies 

in human, dog and livestock populations we perform sensitivity analysis and numerical 

simulations of system (2.1) respectively. 

From equations (2.12) and (2.13) the basic reproduction and effective reproduction numbers 

are given by: 

0
( )( )

d d d

d d d d d

R
  

    


 
    and 

( )

( )( )( )

d d d d d
e

d d d d d d d d

R
    

       




   
              respectively.                                                         

 

The simulation for the basic reproduction number shows that rabies transmission is very high 

without any intervention. We simulated the effective reproduction number with different 

vaccination coverages and a combination of interventions consisting of vaccination, culling 

and controlling the annual crop of newborn puppies. The results show that as we increase 

vaccination of the dog population there is a possibility for the disease to die out. The 

simulations show that a combination of interventions are the best way to reduce Re to less than 
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unity. In Fig. 3.1, R0 is without any vaccination, Re1 is the current 10% vaccination coverage, 

Re2 is 60% vaccination coverage, Re3 is 90% vaccination coverage and Re4  is combination of 

interventions consisting of 60% vaccination, 15% culling of stray dogs and reducing the 

annual crop of newborn puppies by 25% . 

 

Figure 3.1: Reproduction number for different vaccination coverages and combination of 

vaccination, culling and controlling newborn puppies.

 
From Fig. 3.1 we observe that  

4 3 2 1 0e e e eR R R R R   
 ,
 which shows that as we increase 

vaccination of dog populations the effective reproduction number decreases and becomes less 

than unity. It is very important to combine different interventions so as to facilitate the 

eradication of the disease form the community. 

3.2. Sensitivity Analysis of eR  with Respect to the Model Parameters  

The aim of any mathematical epidemiology study is to understand the dynamics of a disease 

so as to control it by targeting some sensitive parameters. This can be achieved by performing 

sensitivity analysis based on the model parameters. The parameters of our model are given with 

their descriptions in Table 3.1.  

Sensitivity analysis tells us how each parameter of 
eR

 
affects its result. This will help to 

identify which parameters are most sensitive for the spread of the rabies virus, so that 

appropriate control measure can be taken (Chitnis et al., 2008). Sensitivity analysis can be done  
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Table 3.1:  The parameter values of the model 

Parameter          Description Value (Year-1)    Source 

h  

h  

 Annual birth of humans  11 2980 
 

 Assumption 

h  
Human loss of vaccination immunity 1 Zhang et al., (2011) 

h  
Human incubation period  0.17 Zhang et al., (2011) 

h  Natural death rate of humans 0.016 Assumption 

h  
Dog-to-human transmission rate  81.29 10  Fitting 

h  Vaccination rate of humans  0.54 EPHI 

h
 

Disease related death rate of  human 1 Assumption 

d   Annual birth of dogs  32 10  Fitting 

d  
Loss of vaccination immunity of dog 0.5 Zhang et al., (2011) 

d  Incubation period of dogs 0.17 Zhang et al., (2011) 

d  Natural death rate of  dogs 0.083 Assumption 

d  Dog-to-dog transmission rate 51.29 10  Fitting 

d  Vaccination rate of  dogs   0.1 Assumption 

d  Disease related death rate of  dogs 1 Assumption 

l  
 Annual birth of livestock 52 10  Assumption 

l  
Loss of vaccination immunity of 

livestock 

0 EPHI 

l  Livestock   incubation period  0.17 Assumption 

l  Natural death rate of   livestock 0.05 Assumption 

l  
Dog-to-livestock transmission rate  81.18 10  Fitting 

l  Vaccination rate of  livestock    0 EPHI 

l  
Disease related death rate of   

livestock 

1 Assumption 

by computing the sensitivity indices of eR . With small variation of the parameters it is 

important to identify which parameters greatly affect Re. 

The normalized forward sensitivity index is the ratio of relative change of a variable to the 

relative change in parameter. If the variable is a differentiable function of the parameter then 

the sensitivity index is defined as follows: 

Definition 3.1: The normalized forward sensitivity index of variable g that depends on 

parameter b is defined as:  
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g

b

g b

b g
 

 


  .                                                             (3.1) 

Since we have computed the effective reproductive number, eR , the normalized forward 

sensitivity with respect to the parameter b is given by:   

                                                          

                                                    eR e
b

e

R b

b R
 

 


. 

For example the sensitivity indices of eR  with respect to d  is given by:  

                                                                1e

d

R e d

d e

R

R





 

   


  .                                                 (3.2) 

By using the same notion, the sensitivity indices of the effective reproduction number given in 

expression 2.13 is computed with respect to all parameters embedded to eR . 

Table3. 2: Sensitivity indices of eR  

Parameter         Description Value Sensitivity Indices 

d  Natural death rate of  dogs 0.083 -1.3781 

d   Annual birth of dogs  32 10  +1 

d  Dog-to-dog transmission rate  51.29 10

 
+1 

d                             Disease related death rate of  dogs 1 -0.9259 

d  Dog  incubation period  0.17 0.3243 

  d  Vaccination rate of  susceptible 

dogs   

0.1 
-0.1471 

d  
Loss of vaccination immunity of 

dogs 

0.5 
0.1268 

 

According to the sensitivity indices, the parameters of annual birth of dogs 
d  and dog-to-dog 

transmission rate d  are the most positively sensitive parameters. This means increasing the 

parameters increase the effective reproduction number and vice versa. For instance increasing 

d   by 10% will increase eR  by 10%.  Decreasing 
d  by 10% will decrease eR  by 10%. Dog 
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loss of vaccination immunity d   and dog incubation period  d   are less sensitive positive 

parameters.  

Natural death rate of dog d  and disease related death rate d  are the most negatively sensitive 

parameters. Increasing the parameters which have negative signs will decrease the value of eR  

and vice versa. For instance e

d

R

  -1.3781 means increasing the natural death rate of dogs by 15% 

will decrease eR  by 18%.   

In summary, targeting the most positively and negatively sensitive parameters in the process 

of combating rabies will be most effective in reducing the transmission of the virus within and 

around Addis Ababa.  

3.3.Numerical Results and Discussion  

In this section we present the numerical simulations of system (2.1). We used ode45 MATLAB 

(Version 7.13.0.564 (R2011b)) standard solver for ordinary differential equations (ODEs). This 

function implements a Runge-Kutta method with a variable time step for efficient computation. 

In our simulation we need to estimate our parameters. The data for the number of infected 

human and livestock population from 2008 to 2014 were obtained from EPHI. Using the data 

we first simulated rabies fatal cases. The parameters like the annual birth of dog populations, 

dog-to-dog transmission, dog-to-human transmission and dog-to-livestock transmission rate 

were obtained by varying their values during simulations. 

The number of dog populations within and around Addis Ababa are estimated to be between 

230 000 and 300 000 of which 70% of them are stray dogs (Abraham et al., 2012). In most 

cases the incubation period of rabies is one to three months. In our simulation we used two 

months by considering the average duration. According to the protection period of rabies 

vaccine, it is assumed that 1h d    (Zhang et al., 2011). Life expectancy in Ethiopia is 63.0 

for male and 66.4 for female, therefore by taking the average 64.7 the natural death rate of 

human is 0.0016h  . We used also 20 and 12 for life expectancy of livestock and dog 

respectively. The vaccination coverage for human and dog population is taken 60% and 10% 

respectively. Human vaccination coverage is obtained from EPHI, and for dog population we 

estimated 10% due to the high number of stray dogs, people awareness and high transmission 

of rabies in dog population. The efficiency of rabies vaccine is 90% therefore vaccination rate 
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for human and dog will be 0.6 0.9 0.54h     and 0.1 0.9 0.09 0.1d     respectively. 

We assume the probability of clinical outcome of the exposed is 40% in most cases it ranges 

between 30%-70%.  

 

Figure 3.2: Comparison between reported data and simulation of system (2.1) for rabies 

infected   humans in and around Addis Ababa from 2008 to 2014. 

The broken curve represents the data which was reported from EPHI and the smooth curve is 

the simulation of the system (2.1) of infected human populations. There is a good match 

between our model and the reported data. Our simulation further predicts that human rabies 

will increase for the upcoming thirty four years. The simulations are based on parameters which 

are presented in Table 3.1. The initial values used in the simulations are  (0)hS = 5106
, (0)hE

=100, (0)hI = 38, (0)hR =2.5  104
, (0)dS =3  105, (0)dE = 8000, (0)dI =4000, (0)dR =5  104

, 

(0)lS = 2.5105
, (0)lE =50, (0)lI =5, (0)lR =0. 

In Fig. 3.3 the numerical result of the infected human population shows that the rabies virus 

will spread very rapidly in the coming years and it will peak in 2026. The bite of a rabid dog is 

the main reason for the transmission of rabies to humans. The increased number of dogs within 

and around Addis Ababa raises the number of stray dogs. Surveys indicate that in Addis Ababa, 

1299 dog bites and/or scratches were reported in humans for the period September 2008 to 

August 2009. The majority of bites were made by stray dogs (Mengistu et al., 2011). This 
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indicates that there is a need for stray dog control strategy to reduce the number of human 

infections. 

 

Figure 3.3: The dynamics of rabies in infected humans for the next 34 years in and around 

Addis Ababa. 

From our sensitivity analysis, we found that annual dog birth is one of the sensitive parameters 

which controls the dynamics of the disease. A minor increase in newly born puppies’ increases 

human infection and vice versa. Fig. 3.4 shows infectious humans versus time for different 

values of annual birth of dogs. It can be noted that applying a strategy to control the annual 

birth of new born puppies is one of the most effective ways to reduce human rabies. 

 

Figure 3.4: The effect of annual birth of dogs 
d  for human rabies infection. 
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During our simulation the annual birth of dogs is estimated to be 20 000. Replacing this value 

with a lower estimate of 18 000 annual dog birth significantly decreases human infection. This 

shows that targeting the annual birth of the dog population is very significant to reduce human 

infection.   

 

Figure 3.5: Transmission of rabies in dog population in 40 years’ time. 

The numerical solution for the dog population in Fig.3.5 shows that based on the current 

condition of rabies transmission dynamics the disease will not perish. As the susceptible dog 

population decreases, exposed and infected populations increase. Dog-to-dog transmission is 

higher than dog-to-human or dog-to-livestock transmission. It is estimated that 70% of the total 

dog population in Addis Ababa are stray dogs and rabies transmission is more likely in stray 

dogs than owned dogs. In most cases a stray dog which bites a human will run away. This 

complicates the quarantine process and the stray dog continues to spread the virus.  

Fig 3.6. shows rabies prevalence in the livestock population within and around Addis Ababa. 

According to the information we got from EPHI there is no rabies vaccine for livestock being 

used in Ethiopia and little is known about the status of rabies in livestock populations. In our 

simulation we show how rabies vaccination of livestock has the potential to reduce rabies 

livestock infection, if this intervention was applied in Ethiopia. 
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Figure 3.6: Comparison between the reported data and the model simulation of infected 

livestock population from 2008 to 2014. 

The broken curve in Fig.3.6 shows the data reported from EPHI for rabies infected livestock 

populations. The smooth curve is the simulation of our system. The number of infected 

livestock decreases from 2008 to 2011 and it increases rapidly from 2011 onwards. The 

transmission of the rabies virus in livestock populations is underestimated; it is likely there are 

more livestock infection cases which are not reported to EPHI. 

 

Figure 3.7: The trend of livestock populations with different vaccination coverage in 40 

years time. 
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From Fig.3.7 the rabies virus increases rapidly in the livestock population for the coming 

seventeen years and will peak in 2033. Aside from control measures which should be taken in 

dog populations there is a possibility to reduce the disease by applying 25% vaccination 

coverage in the livestock population, which can cut the number of livestock infections 

predicted around 2033 by half. Our simulation shows there is no way to eliminate rabies disease 

by increasing vaccination of livestock alone. With each increase of 25% vaccination coverage 

the total impact in terms of reductions of rabies infected livestock gets smaller. Even 75% 

vaccination coverage does not lead to the elimination of the disease. For this reason, we 

recommend that reducing rabies transmission in the dog population is the best method for 

controlling the transmission in human and livestock populations.  

3.4. Discussion and Conclusion  

In this chapter we have done the numerical simulations of the basic reproduction number
0R ,  

the effective reproduction number 
eR  and the model system (2.1) with different parameter 

values. It is found that a combination of interventions in dog populations can greatly reduce rabies 

infection in human and livestock populations. A 60% vaccination coverage in the dog population 

reduces the threshold parameter 𝑅𝑒  to less than unity, which means rabies will die out from 

the community. A more aggressive intervention consisting of 60% vaccination coverage in dog 

populations, 15% culling of stray dogs and reducing the annual crop of newborn puppies by 

25% will reduce the number of human and livestock infection by 70% which leads to a faster 

eradication of the disease from the community. In Fig.3.8 the two upper curves show human 

and livestock infection cases before interventions in dog populations. After combining 

interventions in dog populations, the number of infected cases in livestock and humans are 

greatly reduced as shown by the two lower line curves.  

According to the sensitivity analysis that we have performed the annual birth of dogs and dog-

to-dog transmission rate are the most positively sensitive parameters. The natural death rate of 

dogs and disease induced death rate of dogs are the most negatively sensitive parameters. Using 

numerical simulation of our model, current data predict that rabies transmission within and 

around Addis Ababa will increase in the coming years. It will peak in 2026, killing more than 

150 people before becoming stable. The annual birth of newborn puppies greatly affects rabies 

infection in humans and livestock. As we decrease the annual birth of puppies by 30%, human 

and livestock infection also decreases by 30%. Therefore, controlling the annual birth of 

newborn puppies is one of the best ways to reduce human and livestock rabies infection.  
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Figure 3. 8 Effects of combining interventions in dog populations (CIDP) on human and 

livestock rabies infection. 

According to our simulations, rabies transmission in livestock populations will increase rapidly 

in the coming seventeen years. It will peak in 2033, killing more than 180 individuals. We have 

applied vaccination for different numbers of livestock populations.  

 

Figure 3.9 Comparison between no vaccination and 25% vaccination for rabies infected 

livestock. 

With 25% vaccination coverage in livestock populations, we can cut the mortality in the 
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coverage for livestock populations, the number of livestock infections decreases. We strongly 

recommend that combined interventions in dog populations can be adopted to save many 

vulnerable individuals within the livestock population.  
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CHAPTER FOUR 

General Discussion, Conclusion and Recommendations 

4.1 General Discussion 

In this study, we have formulated and analyzed a mathematical model for the dynamics of 

rabies transmission among dogs and to human and livestock in communities within and around 

Addis Ababa, Ethiopia. We found the sensitivity of the dynamics of the disease with respect to 

embedded parameters of the model. The conditions for the existence and stability of endemic 

and disease free equilibrium points were presented. Numerical solutions of the model were 

carried out to predict future transmission and to identify sensitive parameters.  

Our model comprises of human, dog and livestock populations and is formulated as a system 

of ordinary differential equations. Since domestic dogs are the main reservoir for rabies, they 

are found to be the source of infection for both human and livestock populations. As a result it 

can make sense to target dog populations in the process of combating rabies transmission. 

We have computed the basic and effective reproduction numbers using the method of next 

generation operator. The results entirely depend on the parameters of dog populations. This is 

because we assume there is no secondary transmission in human and livestock populations due 

to rare cases. We have simulated the effective reproduction number with different vaccination 

coverages. According to the results, as we increase the vaccination coverage in dog populations 

the effective reproduction number decreases. It was likewise noted that if there is no 

vaccination eR  will be the same as 0R . We have found that at least 60% of dog population 

should be immunized to reduce the value of the effective reproduction number to less than 

unity. Combination of interventions consisting of reducing annual crop of newborn puppies, 

culling of stray dogs and increasing vaccination coverage in dog population is the best way to 

combat the spread of rabies.  

From already presented literatures both Zhang et al., (2011) and Hou et al., (2012) recommend 

to avoid culling and substitute this by immunization. Even though culling is not preferable way 

of controlling rabies, in our study we found that reducing stray dogs by 15% with other 

combined interventions is very effective. This is because 70% of the total populations are stray 

dogs which is more than twice of owned dogs. The natural death rate of dogs is one of the most 

negatively sensitive parameter. In the current situation of Addis Ababa and surrounding areas 
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it is very difficult to immunize majority of stray dogs. There is one institution only which is 

dealing with rabies in the entire country. 

For estimated values of parameters the basic reproduction number 0R  and the effective 

reproductive number eR  worked out to be 2 and 1.6 respectively, which indicate that the 

disease will be endemic in the community. The result we found is very high compared to the 

result of the basic reproduction number which was found to be 0 1.2R    in 2009 for African 

cities. We can see that there is higher rabies burden in and around Addis Ababa.  

Sensitivity analysis of eR  is done using the model parameters. This was done to identify the 

sensitive parameters which drive the dynamics of the disease. The annual crop of newborn 

puppies d  , dog to dog transmission rate d ,  the natural death rate of dogs d  and disease 

related death rate d , are sensitive parameters. It was seen that targeting these parameters in 

the process of combating rabies will give effective results. 

We have simulated system 2.1 for infected human and livestock populations. The simulations 

significantly support the reported data. It has been observed that human rabies will increase in 

the coming nine years and peak in 2026. The simulation for the trend of the dog population in 

40 years time shows that many dogs will move from susceptible to exposed and infected classes. 

When the population of infected dogs increases, human and livestock infections also increase. 

It has been observed in our 
eR  computation that it is the dog population which is the source of 

infection for both human and livestock infections. We strongly recommend that interventions 

target dog populations to control the transmission of rabies.  

Another simulation was carried out in which we varied the size of the immunized livestock 

populations. Simulations show that a significant number of livestock populations are infected 

with rabies due to dog bites and scratches. The model simulation verifies that there is continued 

livestock infection within and around Addis Ababa. It will peak in 2033, killing more than 180 

individuals. Our simulation shows that at least 25% vaccination coverage in the livestock 

population is needed to reduce future infections by half.  

4.2  Conclusion   

Rabies transmission within and around Addis Ababa is underestimated because there is a poor 

rabies surveillance system. Due to traditional beliefs and limited knowledge about the 
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transmission and control of rabies, it is estimated that there are a significant number of 

unreported deaths. The mathematical model that we have developed has given the best results 

to analyze and predict the transmission of the virus and to combat the disease. It was found that 

a combination of interventions consisting of the annual crop of newborn puppies, culling of 

stray dogs and increasing vaccination coverage in dog population is the best way to combat the 

transmission of rabies.  

In the process of combating the transmission of rabies virus it is very important to target 

parameters including the annual dog births
d , dog-to-dog transmission rate

d , natural death 

rate of dogs d  and disease induced death rate d . These are the most sensitive parameters 

which control the dynamics of the disease and change the value of eR . Increasing d  or d   by 

10% will increase eR  by 10% and vice versa. Increasing d  by 15% will decrease eR  by 18%.  

On the other hand, decreasing the natural death rate of dogs by 15% will increase eR  by 25%. 

Thus, targeting the most positively and negatively sensitive parameters in the process of control 

measures will reduce the transmission of rabies virus within and around Addis Ababa. 

The current interventions which are administered against rabies transmission are not ideal 

compared to the interventions this research recommends. The numerical simulations of our 

model show that there are increasing number of rabies infections in human, dog and livestock 

populations. The human rabies infection will peak in 2026 with more than 150 cases. In 2033 

more than 180 livestock rabies cases will occur. Intensive interventions should be used in order 

to control rabies in the dog population. Combining measures of reducing annual crop of 

newborn puppies and increasing vaccination coverage in dog populations is an effective 

technique to eradicate rabies from the community. Applying PEP can save exposed humans, 

but cannot reduce the transmission. 
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4.3 Recommendations   

Based on the results from this study, we strongly recommend the following points. 

1. More research should be conducted on the transmission dynamics of rabies. Accurate 

and proper data handling systems should be developed. Institutions which are dealing 

with tropical neglected diseases like rabies should be expanded. 

2. Educational campaigns like workshops, seminars and trainings should be conducted to 

create awareness on the transmission of rabies and control measures. There should be 

media coverage to encourage dog owners to confine their dogs rather than letting them 

wander free. 

3. Government and policy makers should come up with a means to manipulate and bring 

down the number of stray dogs. A strategy to control annual crop of newborn puppies 

and to reduce dog-to-dog transmission rate by keeping owned dogs to confined places. 

4. Vaccination for dog population should be increased to at least 60%. Government should 

work to reintroduce the free anti-rabies vaccination program to undertake a mass 

vaccination exercise which should be followed by the consistent re-vaccination of dogs 

within and around Addis Ababa. 

5. Strategies should focus on the more effective interventions which combine reducing 

annual crop newborn puppies by 25%, culling stray dogs by 15% and vaccinating at 

least 60% of dog populations which reduces human and livestock infection by 70% and 

lead to a fast eradication of the diseases. 

6. This study can be extended by applying optimal control theory for a better transmission 

control. Stochastic models can be applied to consider all random movement of animals 

or humans. 

7. The study was conducted using the context of Addis Ababa and its surrounding areas. 

It can be done using another region of Ethiopia or another country anywhere in the 

world.  

8. The study can be broadened to incorporate cats, which are the second most important 

reservoir of rabies after dogs. The dog population can be grouped into owned and stray 
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APPENDICES 

MATLAB Codes for Chapter Three 

Appendix 1: MATLAB Codes for Fig. 3.1. 

Reproduction number for different vaccination coverage, and combination of vaccination, 

culling, and controlling newborn puppies  

%R0andRe.m 

%constant values of parameters of reproduction numbers 

%different values of theta, phi and omega. 

hod=1/6; thetad=2*10^4; thetad2=1.5*10^4; omegad=0.5; 

mud2=0.09545; mud=0.083; sigmad=1; phid1=0.1; phid2=0.54; 

phid4=0.54; phid3=0.81; 

betad=0:1*10^-8:1.39*10^-5; 

R0=(rhod.*betad*thetad)./(mud*(rhod+mud)*(mud+sigmad)); 

Re1=(rhod.*betad*thetad*(mud+omegad))./(mud*(mud+phid1+omegad)

*(rhod+mud)*(mud+sigmad)); 

Re2=(rhod.*betad*thetad*(mud+omegad))./(mud*(mud+phid2+omegad)

*(rhod+mud)*(mud+sigmad)); 

Re3=(rhod.*betad*thetad*(mud+omegad))./(mud*(mud+phid3+omegad)

*(rhod+mud)*(mud+sigmad)); 

Re4=(rhod.*betad*thetad2*(mud2+omegad))./(mud2*(mud2+phid4+ome

gad)*(rhod+mud2)*(mud2+sigmad)); 

Y=[R0' Re1' Re2' Re3' Re4']*4; 

plot(betad,R0,'r-',betad,Re1,'k-',betad,Re2,'b-

',betad,Re3,'g',betad,Re4,'y','LineWidth',2) 

xlabel('Exposure rate \beta_d') 

ylabel('Reproduction number') 

legend('R_0','R_{e1}','R_{e2}','R_{e3}','R_{e4}') 

title('Variation of Reproduction Number with Exposure rate 

\beta_d') 

ylim([0 2]) 
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Appendix 2: MATLAB Codes for Fig. 3.2 

Comparison between reported data and simulation of system (1) for rabies infected human in 

and around Addis Ababa from 2008 to 2014 

%Humanrabiesdatafitting.m 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'b  ';'y  ']; 

%Paramter used for EEP 

thetah=112980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54; sigmah=1; thetad=20000; omegad=0.5; 

betad=1.29*10^-5; mud=0.083; rhod=1/6; phid=0.1; sigmad=1; 

thetal=2*10^5; omegal=0; betal=1.18*10^-8; mul=0.05; 

rhol=1/6; phil=0; sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[2008 2014]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=3:3 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

 xlabel('t(year)');ylabel('I_{h}') 

   hold on 

end 

time = 2008:1:2014; 

I1 = [38 30 33 37 44 52 60]; 

plot(time,I1,'b--','LineWidth',2) 

I1span=[30 35 40 45 50 55 60]; 

hold on 
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%rabiesmodelsystem.m 

%function file which has been used for the rest of all m-files 

function 

f=rabiesmodelsystem(t,y,thetah,omegah,betah,muh,rhoh,phih,sigm

ah,thetad,omegad,betad,mud,rhod,phid,sigmad,thetal,omegal,beta

l,mul,rhol,phil,sigmal) 

Sh=y(1); Eh=y(2); Ih=y(3); Rh=y(4); Sd=y(5); Ed=y(6); Id=y(7); 

Rd=y(8); Sl=y(9); El=y(10); Il=y(11); Rl=y(12); 

dSh=thetah+omegah*Rh-betah*Id*Sh-muh*Sh; 

dEh=betah*Id*Sh-(rhoh+muh+phih)*Eh; 

dIh=rhoh*Eh-(muh+sigmah)*Ih; 

dRh=phih*Eh-(omegah+muh)*Rh; 

dSd=thetad+omegad*Rd-(mud+phid+betad*Id)*Sd; 

dEd=betad*Sd*Id-(rhod+mud)*Ed; 

dId=rhod*Ed-(mud+sigmad)*Id; 

dRd=phid*Sd-(mud+omegad)*Rd; 

dSl=thetal+omegal*Rl-betal*Id*Sl-mul*Sl; 

dEl=betal*Id*Sl-(rhol+mul+phil)*El; 

dIl=rhol*El-(mul+sigmal)*Il; 

dRl=phil*El-(omegal+mul)*Rl; 

f=[dSh;dEh;dIh;dRh;dSd;dEd;dId;dRd;dSl;dEl;dIl;dRl]; 

Appendix 3: MATLAB Codes for Fig. 3.3. 

The dynamics of rabies infected human for the coming thirty years in and around Addis 

Ababa. 

%infectedhuman.m 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'b  ';'y  ']; 

%Paramter used for EEP 

thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54;sigmah=1; thetad=20000; omegad=0.5; 

betad=1.29*10^-5; mud=0.083; rhod=1/6;phid=0.1; sigmad=1; 

thetal=2*10^5; omegal=0; betal=1.18*10^-8; mul=0.05; 
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rhol=1/6; phil=0; sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[0 40]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=3:3 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

 xlabel('t(year)');ylabel('I_{h}') 

set(gca,'XTickLabel',[2008 2013 2018 2023 2028 2033 2038 2043 

2048] ) 

 set(gca,'YLim',[0  160]) 

   hold on 

end 

 

Appendix 4: MATLAB codes for Fig. 3.4. 

The effect of annual birth of dog population to human rabies infection.  

%newbornpuppies 

clear all 

%changing the color of infected human for each thetad 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'b  ';'y  ']; 

%Paramter used for EEP 

thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54;sigmah=1; 

%change the value of thetad(annual crop of newborn puppies) 

for each simulation of human infection 

thetad=20000; 

% thetad=18000; 

% thetad=14000; 
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% thetad=12000; 

omegad=0.5; betad=1.29*10^-5; mud=0.083; rhod=1/6; phid=0.1; 

sigmad=1; thetal=2*10^5; omegal=0; betal=1.18*10^-8; 

mul=0.05; rhol=1/6; phil=0; sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[0 40]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=3:3 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

legend('\vartheta_d=2x10^4','\vartheta_d=1.8x10^4','\vartheta_

d=1.4x10^4','\vartheta_d=1.2x10^4') 

 xlabel('t(year)');ylabel('I_{h}') 

set(gca,'XTickLabel',[2008 2013 2018 2023 2028 2033 2038 2043 

2048]) 

    hold on 

end 

 

Appendix 5: MATLAB codes for Fig. 3.5. 

Transmission of rabies in dog population in 40 years’ time 

%dogpopulation.m 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'b  ';'y  ']; 

%Paramter used for EEP 

thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54; sigmah=1; thetad=20000; omegad=0.5; 

betad=1.29*10^-5; mud=0.083; rhod=1/6; phid=0.1; sigmad=1; 

thetal=2*10^5; omegal=0; betal=1.18*10^-8; mul=0.05; 
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rhol=1/6; phil=0;sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[0 40]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=5:8 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

title('Trend of dog population') 

ylabel('Number of dog population') 

legend('Susceptible','Exposed','Infected','Recovered') 

 xlabel('t(year)'); 

set(gca,'XTickLabel',[2008 2013 2018 2023 2028 2033 2038 2043 

2048] ) 

    hold on 

end 

Appendix 6: MATLAB codes for Fig. 3.6. 

Comparison between the reported data and the model simulation for infected livestock population 

from 2008 to 2014. 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'r  ';'y  ']; 

%Paramter used for EEP 

thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54; 

sigmah=1; thetad=20000; omegad=0.5; betad=1.29*10^-5; 

mud=0.083; rhod=1/6; phid=0.1; sigmad=1; thetal=2*10^5; 

omegal=0; betal=1.18*10^-8; mul=0.05; rhol=1/6; phil=0; 

sigmal=1; 
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Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[2008 2014]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=11:11 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

 xlabel('t(year)'); 

 ylabel('I_{l}') 

   hold on 

end 

time = 2008:1:2014; 

I1 = [15 14 14 13 16 18 22]; 

plot(time,I1,'b--','LineWidth',2) 

I1span = [30 35 40 45 50 55 60]; 

hold on 

Appendix 7: MATLAB codes for Fig. 3.7. 

The trend of livestock population with different vaccination coverage in 40 years’ time 

%livestockvaccination 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'b  ';'y  ']; 

%Paramter used for EEP 

thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54; sigmah=1; thetad=20000; omegad=0.5; 

betad=1.29*10^-5; mud=0.083; rhod=1/6;phid=0.1; sigmad=1; 

thetal=2*10^5; omegal=0; betal=1.18*10^-8; mul=0.05; 

rhol=1/6; 

phil=0; 
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% phil=0.225; 

% phil=0.45; 

% phil=0.675; 

sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[0 40]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=11:11 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

title('Infected Livestock Population') 

legend('No vaccination','25% vaccination','50% 

vaccination','75% vaccination') 

 xlabel('t(year)'); 

 ylabel('I_{l}') 

set(gca,'XTickLabel',[2008 2013 2018 2023 2028 2033 2038 2043 

2048]) 

   hold on 

end 

Appendix 8: MATLAB codes for Fig. 3.8. 

The effect of combination of interventions in dog populations on human and livestock rabies 

infection. 

%infectedhuman.m 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'g--';'y  ']; 

%Paramter used for EEP 
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thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; phih=0.54; sigmah=1; 

% thetad=20000; 

thetad=15000; omegad=0.5; 

betad=1.29*10^-5; 

% mud=0.083; 

mud=0.09545; 

rhod=1/6; 

% phid=0.1; 

phid=0.54; 

sigmad=1; thetal=2*10^5; omegal=0; betal=1.18*10^-8; 

mul=0.05; 

rhol=1/6; phil=0; sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[0 40]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=11:11 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

   legend('infected human before cid','infected livestock 

before cid', 'infected human after cid','infected livestock 

after cid') 

 xlabel('t(year)');ylabel('the number of infected human and 

livestock') 

set(gca,'XTickLabel',[2008 2013 2018 2023 2028 2033 2038 2043 

2048] ) 

   hold on 

end 
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Appendix 9: MATLAB codes for Fig. 3.9 

Comparison between no vaccination and 25% vaccination for rabies infected livestock. 

%livestockvaccination 

clear all 

c=['b  ';'g  ';'r  ';'c- ';'g  ';'b- ';'r  ';'k- ';'r--';'m. 

';'g  ';'y  ']; 

%Paramter used for EEP 

thetah=121980; omegah=1; betah=1.29*10^-8; muh=0.016; 

rhoh=1/6; 

phih=0.54; sigmah=1; thetad=20000; omegad=0.5; betad=1.29*10^-

5; mud=0.083; rhod=1/6; phid=0.1; sigmad=1; thetal=2*10^5; 

omegal=0; betal=1.18*10^-8; mul=0.05; rhol=1/6;  

phil=0; 

% phil=0.225; 

sigmal=1; 

Re=(rhod*betad*thetad*(mud+omegad))/(mud*(mud+phid+omegad)*(rh

od+mud)*(mud+sigmad)); 

R0=(rhod*betad*thetad)/(mud*(rhod+mud)*(mud+sigmad)); 

y0=[5*10^6  100 38 25000 3*10^5 8000 4000 50000 2.5*10^5 90 15 

20000]; 

tspan=[0 40]; 

[t,y]=ode45(@rabiesmodelsystem,tspan,y0,[],thetah,omegah,betah

,muh,rhoh,phih,sigmah,thetad,omegad,betad,mud,rhod,phid,sigmad

,thetal,omegal,betal,mul,rhol,phil,sigmal); 

for i=11:11 

   plot(t,y(:,i),c(i,:),'Linewidth',2) 

title('Infected Livestock Population') 

legend('No vaccination','25% vaccination','50% 

vaccination','75% vaccination') 

 xlabel('t(year)'); 

 ylabel('I_{l}') 

   hold on 

end 


