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ABSTRACT

Newcastle disease (ND) is a highly contagious viral bird disease affecting the domestic and

other wild birds. The disease is a major threat to the farming of village chicken by small,

medium, and large scale farmers.

In this dissertation, a non-linear deterministic mathematical model of ND to study the dynam-

ics, control and the economic loss of the village poultry with village chicken population, wild

birds population of virus in the environment is formulated and analyzed.

The basic reproduction number(R0) which represents the number of secondary cases where one

case would produce in a completely susceptible population is derived using the Next Genera-

tion Matrix technique. The bifurcation analysis of the equilibrium points shows that a model

exhibits the forward bifurcation meaning that the R0 less than a unit is a sufficient condition

to reduce the transmission of ND in village chicken population. The sensitivity analysis of the

parameters in R0 were computed using a normalized forward sensitivity analysis, results show

that the transmission coefficient of the Newcastle disease virus between the hosts and the envi-

ronment is found to be the most positive sensitive parameter in the model.

A model is then extended to include three time dependent variables: vaccination, culling and

the environmental hygiene and sanitation control strategies. To determine the best control strat-

egy to mitigate the ND burden, the optimal control techniques are applied. The existence of

the optimal control problem is proved with the necessary conditions for optimality determined

using the Pontryagin’s Maximum Principle. Numerical simulations were performed using the

forward-backward sweep iterative scheme of Runge-Kutta method of order four.

Finally, a cost-effectiveness analysis is performed using the Incremental Cost-Effective Ra-

tio (ICER). The results showed that the vaccination control strategy indicates the lowest cost

compared to other control measures. The economic burden of the ND to chicken farmers, is

considered as the total annual expenditure that a chicken farmer can incur to rescue the at risk

chicken population from the ND is also investigated. The economic data of the model were

collected from ten villages of Bagamoyo and Kibaha, Tanzania. Results from this study in-

dicate that the recurrence of the ND in the village chicken population could lead to a serious

economic loss at family level in this already financially constrained environment where small

and medium farmers operate. The results obtained shows that there was 22.5% loss from their

expected profit post Newcastle outbreaks in 2017. Also the results show that the occurrence of
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the ND leads to an average range of 482.89− 541.30$ economic loss at family in 2017.

Therefore, for the effective control of NDV and its transmission we recommend vaccination to

be paired with regular cleaning of chicken yards.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Newcastle disease (ND) is a highly contagious viral disease affecting many domestic and wild

avian species (Gilchrist, 2005; Ashraf and Shah, 2014; Brown and Bevins, 2017). The sus-

ceptibility of Newcastle disease virus (NDV) to the host depends on the isolates of the poultry

groups among the avian species. The first isolate includes a group of chicken whilst the second

isolate comprises of the group of other domestic and wild birds (Munir et al., 2016). The effects

of ND are more notable to chicken due to their high susceptibility than to other avian species

(Alexander et al., 2004).

The disease is caused by Avian Paramyxovirus Serotype 1 (APMV-1) virus in paramoxyviridae

family (Yongolo et al., 2002; Munir et al., 2016) and it is a major constraint to the development

of village chicken industry particularly in Africa and Asia (Otte et al., 2004; Ashraf and Shah,

2014). High mortality rate of up to 90% have been documented with sometimes devastation of

whole flocks during an outbreak (Yongolo et al., 2002; Hugo et al., 2017). ND is characterized

by: coughing, head twisting, paralyzed legs and wings,greenish diarrhea, and other nervous

symptoms that follow in one or two weeks (Alexander et al., 2004; Oluwayelu et al., 2014).

Figure 1: The clinical signs of ND (Source:https:www.agricpays.com)

However, these signs and symptoms are not pathognomonic thus it becomes hard to distinguish

1



the disease from other avian paramyxovirus diseases (Alexander et al., 2004). The rates nor-

mally vary depending on the age of the host, virulence and the strains of the pathotypes (velo-

genic, mesogenic and lentogenic), susceptibility of the host, other diseases in the flock, environ-

mental influences, and the vaccination history of the birds (Brown and Bevins, 2017). Though

chickens among other domestic birds are mostly affected by the disease, young birds in a flock

are extremely susceptible to disease where death rate reaches the peak of 100% (Knueppel et al.,

2009). Though ND is not common to human and other animals, the disease is transmissible to

humans, with conjunctivitis, influenza-like symptoms being the most common clinical signs

(Spradbrow, 2001; Ibitoye et al., 2013).

The disease under consideration is of global importance as it could affects both poultry and

humans. It is primarily posing a potential threat to village poultry farming by small and medium

farmers leading to serious economic losses to an already financially constrained environment.

1.1.1 History of Newcastle Disease

The first documented outbreaks were in Java, Indonesia (1926) and in Newcastle-upon-Tyne,

England in 1927 (Alexander, 2001; Kapczynski et al., 2013). However; there were earlier

reports of similar disease outbreaks in Central Europe before this date that wiped out all the

domestic fowls in the North-West Isles of Scotland in 1896 (Macpherson, 1956). The disease

is now endemic in Asia, the Middle East, Africa, Central and South America (Alexander et al.,

2004). Its history, origin and spread to Tanzania have not been reported but it is documented in

some countries of Africa and the rest of the world (Awan et al., 1994; Yongolo et al., 2011).

1.1.2 Transmission Dynamics of Newcastle Disease

Although the ND is endemic in rural poultry, many aspects of its epidemiology have not fully

understood. In rural environment, poultry are managed in semi-free range and/or free range

system where chickens are left freely searching for food themselves. Under the free range sys-

tem village chickens get the ND and primarily spreads through direct contacts of the susceptible

birds with the contaminated water, food, droppings or discharges of the infected birds and other
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farm utensils (Dortmans et al., 2011) of the infected birds or carrier birds and other un-infected

birds in their flocks. Furthermore, the carrier birds may shade NDV in their discharges and

contaminate the environment. Depending on the season, the virus can survive for days in the

environment, forage, water and in the bird’s feathers. The . Interactions of the wild birds and the

chickens when searching for food is another way that virus passes to village chicken (Alexander

et al., 2004; Gilchrist, 2005).

1.1.3 Poultry Industry in Tanzania

The poultry industry in Tanzania is greatly dominated by local chickens and exotic birds (breed

chickens, turkeys, guinea fowl, geese, parrots, pigeons and ducks). This industry though it may

contribute very little to the growth domestic product (GDP), it is possibly the most important

socio-economic factor of the rural population along with subsistence agriculture (Yongolo et al.,

2002). It is a good enterprise for less privileged groups in villages especially women and youth

who are left behind economically (Alders et al., 2009). The enterprise provides them with

employment, nutritious food and income depending on the number of chicken available per

household (Alexander et al., 2004; Alders et al., 2009). In 2011, Tanzania had an estimate of 56

millions chicken, where 80% of chicken were local breeds reared traditionally by the free range

system and the rest (that is, 20%) were exotic breeds (Swai et al., 2011).

1.1.4 The Study Area

Pwani Region is one among the administrative Regions in Tanzania Mainland. It is located

between latitude 60 and 80 South of Equator and longitude 37030 and 400 East Greenwich. It

borders the Indian ocean and Dar es salaam Region in East, Morogoro Region in West, Tanga

Region in North and Lindi Region in South. The Region has five Districts namely: Kisarawe,

Mkuranga, Rufiji, Bagamoyo and Kibaha. Our study is focusing in two Districts of Kibaha and

Bagamoyo which have a total estimate of 1, 817, 200 village chickens. In Bagamoyo district

four villages namely: Dunda, Kibindu, Lugoba and Zinga villages were considered for the

study. However, six villages namely: Gwata, Soga, Janga, Kilangala, Ruvu and Mlandizi from
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Kibaha district were selected for data collection.

Figure 2: A map of Bagamoyo and Kibaha showing four surveyed villages in Bagamoyo and six

surveyed villages in Kibaha Districts, Tanzania

1.2 Statement of the Research Problem

Different studies have been conducted on the village chicken looking at different aspects for

the transmission dynamics of ND (Alexander et al., 2004; Yongolo et al., 2011; Rist et al.,

2015). Those literature have not adequately studied the transmission dynamics and control of

ND with environment and wild birds reservoirs. However, interventions to reduce the spread of

ND have been proposed but no study has considered the optimal control of the ND and other
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poultry diseases that hinders the village poultry farming. The aim of this study is to formulate

and analyze mathematical model of the ND transmission and its control in village chicken

population.

1.3 Research Objectives

1.3.1 General Objective

The general objective of this study is to develop a mathematical model for the transmission,

control and economic loss of ND in the village chicken.

1.3.2 Specific Objectives

The specific objectives of this study are:

(i) To formulate and analyze a basic mathematical model for ND.

(ii) To formulate and analyze a mathematical model of ND with vaccination, culling and

environmental hygiene and sanitation control strategies.

(iii) To evaluate the cost-effectiveness in the control of ND.

(iv) To analyze the economic loss of ND at the family level.

1.4 Research Questions

(i) How to formulate a model for the transmission dynamics of ND with environment and

wild birds reservoir?

(ii) How to formulate a transmission dynamics model of ND with an optimal control?

(iii) What is the Cost-Effectiveness in the control of ND?

(iv) To what extent does the recurrence of ND affect the economy of people at family level?

5



1.5 Justification of the Research Problem

The significance of this study are:

(i) Provision of mathematical framework for determination of the control strategies of the

ND among the village chicken population.

(ii) Provision of understanding on the socio-economic importance of the ND as it affects both

human and village chicken industry.

(iii) Provision of a platform for future researches on the transmission of ND among the village

chicken.

1.6 Rationale of the Study

Understanding the transmission dynamics of the ND will help farmers, Veterinary officers and

the policy makers to plan the best time for different interventions so as to reduce the possibilities

for the spread of the Newcastle disease. The selected research topic aims to fill the gap that has

been left behind by other theoretical and empirical studies by developing a mathematical model

that shows the epidemiology of ND in the village chicken population. Identifying optimal

controls of the ND will help poultry keepers and policy makers to plan for the best time and the

control measures for reducing the spread of NDV. Furthermore, this study will help farmers to

improve their economy by optimizing the number of poultry that can be reared per households.

1.7 Basic Mathematical Concepts

1.7.1 Dynamical System

A dynamical system Ẋ = G (X, t) is a function which describes the time dependence of a point,

X ∈ Rn, in a geometrical space.
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1.7.2 Basic Reproduction Number

The basic reproduction number (R0) is defined as the average number of secondary cases

caused by one infectious individual introduced in a population that consisting of entirely sus-

ceptibles (Foppa, 2005; Hartemink et al., 2008; Mwanga et al., 2014). This number tells and

quantifies the ability of an infectious disease to invade a purely susceptible population and per-

sist (Foppa, 2005; Hartemink et al., 2008) and is measured as the spectral radius of the next

generation matrix i.e;R0 = ρ(FV −1).

1.7.3 Next Generation Method (NGM)

It is a method developed by Van den Driessche and Watmough (2002) that give brief descrip-

tions on how to calculate the basic reproduction numberR0. This method is applied as follows;

Given a dynamical system

dXi

dt
= Gi (X, t) , for i = 1, 2, ..., n ∈ N (1)

where Xi be the status of the disease in the compartment i and suppose V +
i and V −i be the rate

of transfer in and out of the compartment i, respectively. It also assumes that the disease free

equilibrium point of the dynamical; system is given by φ0. Therefore,

dXi

dt
= Fi (t)− Vi (t) , where, Vi = V −i − V +

i (2)

Then

F =
∂Fi (φ0)

∂t
, V =

∂Vi (φ0)

∂t
(3)

and lastly the basic reproduction number is found as the spectral radius of the Next Generation

Matrix (NGM) written as;

R0 = ρ
(
FV −1

)
(4)

1.7.4 Metzler Matrix

The real square matrix M = [mij] ∈ Rn×n is called the Metzler matrix if its all off-diagonal

entries are nonnegative, i.e. mij ≥ 0, i 6= j.

7



1.7.5 Lipschitz condition

Let (Z, ‖.‖) be a normed linear space, A dynamical system G (t,X(t)) : Z → Z is said to be

Lipschitz if ∃K ≤ 0 for which the Lipschitz condition ‖G(X1)−G(X2)‖
X1−X2

≤ K is satisfied for all

pairs X1, X2 ∈ Z , X1 6= X2. The bound K is called a Lipschitz constant for G.

1.7.6 The Optimal Control Theory

The optimal control theory is a mathematical tool that helps the designing of the optimization

systems which are influenced by external factors to be controlled (Sadiq et al., 2014; Kahuru

et al., 2017b; Hugo et al., 2017). The theory helps to describe different external factors of

complex models and provide control measures by analyzing the necessary conditions of optimal

control using the Pontryagin’s maximum principle (Lenhart and Workman, 2007; Kahuru et al.,

2017b). The theory was developed by Lev S. Pontryagin (1968− 1988) and his co-workers

and over decades has been used for the analysis of the optimality of the solutions in different

complex mathematical models from biological sciences (Lenhart and Workman, 2007; Schńttler

and Ledzewicz, 2012; Kahuru et al., 2017b).

Optimal Control theory as a mathematical tool has different procedures and/or ways of reaching

the optimality of the desired problem. Lets consider the controlled dynamical system:Ẋ (t) = G (t,X (t) , u (t)) ; t > 0

X (0) = X0, X (T ) = XT

(5)

According to the dynamical system (5), X (t) refers to the state variable in a specified time

t, X0 is the initial condition of the state variables, XT is the final condition of the state vari-

able and u (t) refers to time dependent control parameter. This model system is a continu-

ous dynamical system and is governed by the set of non-linear ordinary differential equations

(ODEs) under a fixed and/or free time interval. The state variable X (t) is enclosed in the Eu-

clidean space {X (t) ∈ Rn : n ∈ N} and the control u (t) variable is Lebesgue measurable i.e

{u (t) ∈ U ∈ Rm : 0 ≤ u (t) ≤ T}. The controls affects the dynamical system with the main

purpose of minimizing or maximizing the cost functional. We minimize the cost function,

J (u (t)) by finding the primal control variable u∗ such that,

8



J (u∗i ) = min
ui∈U
{J (ui)} ; for i = 1, 2, .., n ∈ N (6)

1.7.7 Optimal Problem

A controlled system is an optimal problem Ẋ (t) = (X (t) ,U ,G) consisting of a state space

X (t), a control set U , and the dynamics G (Schńttler and Ledzewicz, 2012). Throughout the

dissertation we use the following notations for the data defining the optimal problem (5);

(i) The state space X (t) is an open and connected subset of Rn.

(ii) The control set U is a subset of Rm

1.7.8 The Cost Function

The cost or objective function is a mathematical equation describing the production output

that corresponds to the maximization or minimization of the target with respect to the optimal

problem and the initial condition such that;

Maximize/Minimize J (t,X, u) =

∫ tf

t0

{G (t,X (t) , u (t))} dt (7)

subject to the state equation;

Ẋ (t) = G (X (t) , u (t)) (8)

and the initial and terminal conditions in (5)

X ∈ Rn : X (t0) = X0, X (tf ) = XT ; t ∈ [t0, tf ] (9)

where u (t) is the control variable and tf stands for the final time on the control trajectory.

A state variable X (t) is an open and connected subset of the Euclidean space Rn that character-

ize the behavior of the dynamical system at an instantly time t. A control set is a set of points

characterized by u (t) ∈ U ∈ Rm, m ∈ N. A control variable u(t) is said to be an admissible

control if it is piecewise continuous defined on some time interval t0 ≤ t ≤ tf with range in the

control region U , u(t) ∈ U , ∀t ∈ tf .
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1.7.9 Equilibrium Point

Let D ∈ Rn and f : D 7→ Rn be a nonlinear vector field. Then any point X̄ that satisfies the

condition f
(
X̄, t

)
= 0,∀t > 0 is an equilibrium point of the system f (Hunter, 2011; Selemani

et al., 2016; Olaniyi et al., 2016).

1.7.10 Positive Invariant Solution

D is a positively invariant set for a dynamic system Ẋ = G(t,X(t)) if every trajectory X(t)

which starts from a point X(0) ∈ D remains in D, ∀t > 0.

1.7.11 Optimal Trajectory

An optimal trajectory (X∗) refers to the set of constraints which its performance satisfies the

condition of minimizing or maximizing the cost function J (t,X, u).

1.7.12 Optimal Solution

An optimal solution is a feasible solution of the optimal problem where the cost function

reaches its minimum or maximum value. For the case of the minimization problem, a solu-

tion (t∗, X∗, u∗) is optimal if J (t∗, X∗, u∗) ≤ J (t,X, u) for all admissible (t,X, u). u∗ is

the optimal control variable which gives an optimal trajectory X∗ of the system (5).

1.7.13 Hamiltonian Function

According to Poggiolini and Spadini (2011), Schńttler and Ledzewicz (2012) and Mwanga et al.

(2014), the Hamiltonian functionH of the optimal control problem is defined as

H : R× [0,∞)× Rn × Rm → R (10)

10



with

H(t,X, u, λ) = L(t,X, u) + λf(t,X, u). (11)

where L(t,X, u) is the Lagrangian function and λ = λ(t) stands for the adjoint or co-state
variable of the function. X and u are real-valued functions on [t0, tf ] with values in Rn and

Rm respectively. The adjoint or Co-state variable λ (t) is a variable in the Hamiltonian function

which is used for optimizing the solution of the controlled problem.

1.7.14 Pontryagin’s Maximum Principle (PMP)

The Pontryagin’s Maximum Principle (PMP) states the necessary conditions that an optimal

trajectory of the optimal control problem must hold (Evans, 1983; Anita et al., 2011). The

optimality of a solution is reached when all of the necessary conditions are fulfilled in a way that

an optimal solution exists and is unique (Anita et al., 2011; Schńttler and Ledzewicz, 2012). By

considering a control system in equation (5), the PMP necessary conditions holds only if there

exists an adjoint variable λ(t) together with the state variables X (t) and the optimal control

u (t) such that in terms of the Hamiltonian H, the adjoint condition, transvesality condition,

and the optimal condition holds.

Theorem 1.1

Pontryagin’s Maximum Principle.

Let (t,X∗, u∗) be a controlled trajectory defined over the interval [t0, tf ] with the control u∗

piecewise continuous. If (t,X∗, u∗) is optimal, then there exist an adjoint or a co-state variable

λ (t) such that the following conditions are satisfied:

(i) Non-triviality of the multipliers: (λ(t)) 6= 0 for all t ∈ [t0, tf ].

(ii) The adjoint variable λ (t) is a solution to the time-varying linear differential equation

− λ̇ (t) = HX (X∗ (t) , λ (t) , u∗) (12)

where X stands for the state variables in the model.

(iii) The Transvesality condition: the final point of the controlled trajectory.
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λi (tf ) = 0 for i = 1, 2, ..., r, r ∈ N (13)

(iv) The Optimal condition

Ḣuj = 0 for j = 1, 2, ..., n, n ∈ N (14)

The Pontryagin’s Maximum Principle is stated depending on the following:

(i) The time or source of the desired dependent time

(ii) Dimension and regularity of the source of the desired source

(iii) The cost containing only the final part, the running part or both

(iv) The time being fixed or free

After the formulation of the optimal cost function, then the existence of the control variable is

proven. Thereafter the principle is used to characterize the control variables where an optimal

solution of the model is obtained.

1.7.15 Forward-Backward Sweep Method (FBSM)

The Forward-Backward Sweep method (FBSM) is the indirect technique for solving numeri-

cally optimal control problems (McAsey et al., 2012; Mwanga et al., 2014). FBSM has the

following successive steps;

(i) The total time is divided into N sub-intervals irrespectively to the state
−→
X = (X1, X2, ..., XN+1) and the Co-state variables as

−→
λ = (λ1, λ2, ..., λN+1)

(ii) The controls are assumed to take zero values for starting an iteration such that
−→
U = [0, 0, .., 0].
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(iii) With the initial condition X (0) = X0, the state solutions in the ODE with the controls

are solved forwardly by using the forward in time Runge-Kutta method of order four.

(iv) With the transvesality condition λN+1 = λ (tf ) where tf is a final time, the values for

u (t) and X (t) from the Co-state differential equation are solved by the backward in time

Runge-Kutta method of order four.

(v) The update of the control is done by entering the new X and λ through the rule

u∗ = min {umax,max (usig, umin)} (15)

where the boundedness of controls is defined as;

u∗ =


umin if ∂H

∂u
< 0

umin < usig < umax if ∂H
∂u

= 0

umax if ∂H
∂u

> 0

(16)

(vi) If the last preceding iterations are negligible close such that |XN+1−XN−1|
|XN |

< ε, then the

last iteration is the complete solution otherwise return to step (iii) above.

1.7.16 Runge-Kutta Method (RK4)

The 4th order Runge Kutta method is a built in MATLAB software used to approximate the

solution to the first order differential equation (ODE’s) of the form;

dX

dt
= G (X (t) , t) ; X (t0) = X0 (17)

The 4th order Runge Kutta scheme starts when an initial value of the function is given to start

the algorithm. When h > 0 takes the algorithm to;

Xn+1 = Xn +
h

6
[k1 + 2k2 + 2k3 + k4] , with n = 1, 2, ...

k1 = G (X (t0) , t0)

k2 = G
(
X (t0) , t0 + k1

h

2
, t0 +

h

2

)
k3 = G

(
X (t0) , t0 + k2

h

2
, t0 +

h

2

)
k4 = G (X (t0) , t0 + k3h, t0 + h)

(18)
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where as; k1 describes the slope of the differential equation dX
dt

at the beginning of the first time

t = t0, k2 at the mid-point at the time step t = t0 + h/2 using the value of k1, k3 half way

through the mid point at the time step t = t0 + h/2 using the value of k2 and k4 estimates the

slope of the function at the end point using time interval t = t0 + h and the value of k3.

1.7.17 Convergent Criterion of Ordinary Differential Equation (ODE)

A steady state solutionX∗ (t) of a dynamical system Ẋ = G (X, t) is stable if, for any arbitrarily

small ε > 0, ∃δ > 0 such that, for any trajectory X (t) for which ‖ X (0)−X∗ (0) ‖< δ , then

the inequality ‖ X (t)−X∗ (t) ‖< ε is satisfied ∀t > 0 (Anishchenko et al., 2014). According

to Tumwiine et al. (2010); Selemani et al. (2016) and Wiggins (2003), a steady state X∗ (t) is

stable iff all initial trajectories in an open set X ∈ Rn moves towards X∗ (t) and remain near it

∀t ≥ 0 and is unstable if moves away from X∗ (t).

1.7.18 The Outline of the Dissertation

In this work, the review of the related literatures is done in Chapter two. The Chapter covers the

review of previous works in the dynamics of ND, Optimal Control Theory as well as the cost

effectiveness on various disease transmission models.

Chapter three of this work covers the formulation of the ND basic transmission model, its

analysis on the basic properties of the model to include but not limited the invariant region,

positivity and the equilibrium points of the model. However, the Chapter covers the area of

computation of the basic reproduction number, the sensitivity of the model parameters, stability

analysis of the equilibria of the model and last covers the simulation of the basic model.

Chapter three is then extended to include the control variables. In this part, vaccination, culling

and the environmental hygiene and sanitation control variables are added to the basic model

followed with its analysis to investigate the best countermeasure for limiting the spread of the

ND among the village chicken. Then followed with the Cost-Effectiveness analysis which is

done by using the Increment Cost-Effectiveness Ratio (ICER) method. The Chapter also covers
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the analysis of the economic loss of the ND to village chicken farmers at a family level.

Chapter four of this work covers the methods and findings followed with the conclusion and

recommendations for future works.
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CHAPTER TWO

LITERATURE REVIEW

This section review and discuss literatures on ND ranging from clinical and theoretical studies.

It also cover areas of mathematical modeling for poultry diseases, explore intervention strategies

for control of different diseases, optimal control theory as well as the cost- effective techniques

for the control of infectious disease.

Yongolo et al. (2002) conducted a study in Morogoro and Tabora Regions, involving ducks and

village chicken. In each region, one district with five randomly selected villages was consid-

ered for the study. The aim was to study the ND and Infectious bursal disease (IBD) among

free-range village chicken in Tanzania. Standardized questionnaires were used for data collec-

tions among chicken farmers. In the study, the confirmation of the NDV was achieved through

isolation of the virus, the clinical and pathological signs and the characterization of the field

virus strains. However, through the isolations of the virus and the serological survey, it was

discovered that ND is a seasonal poultry disease that occurs between June and October. The

APMV-1 (serotype-1) among other serotypes was identified as the main causative of the ND.

Also the isolations of NDV among the domestic ducks revealed the role played by the ducks

in the epidemiology of ND in the free-range system in Tanzania. The study recommended the

need on the control of ND before the active period of NDV in June while taking considerations

on age groups of the chicken. Also the study recommended the need on researching for other

poultry diseases and risk factors for reducing high mortality rates in chicken.

Alexander et al. (2004) reviewed the transmission dynamics of ND among local chicken as

one of the constraints on increasing the small-scale poultry production. The review covered

the origin and nature of ND, its characteristics, epidemiology, symptoms and its control. The

study aimed on making a reference and platform for the control of ND in developed countries.

However, a study pointed out the avian paramyxovirus 1 (APMV-1) virus as the main cause of

ND in indigenous chicken. The study also revealed that the prevalence of ND in local chicken

or backyard flocks in many countries are not well documented which sometimes become hard

to trace the occurrence of the disease in those areas. Also the study shows the role of wild

birds in the spread of the disease and its pathogenic varies widely depending on the virus,
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age of the host, the host species and the immune state of the host. Also, the review revealed

that the spread of the NDV was spotted to be caused by live birds for trading, movement of

people and equipments, poultry products, contaminated food or water, air borne spread and non-

avian hosts such as rodents, insects or scavenging animals. On the other hand, the biosecurity

and hygiene in the control of the ND was highlighted since its occurrence for the first time.in

Europe. The study revealed that live lentogenic, live mesogenic and inactivated vaccines have

been developed and applied in some countries for controlling the spread of ND. However, the

choice of vaccine in backyard chicken revealed to depend on their cost, the nature of service

providers, past experience, the climatic condition and the population distribution of chicken.

Lastly, the study pointed out the live vaccine to be less costly especially when produced locally

than the inactive vaccines.

McDermott et al. (2001) studied the role of improving the control of ND in southern Africa.

Both epidemiological and economic data were used to predict relative control of ND among

local chicken. A mathematical model for the transmission of ND in local was developed. The

developed model was the extension of the model for foot and mouth disease in Thailand (Perry

et al., 1999). The model was developed in the assumption that the transmission of ND to

commercial sector has different roots and possibility of infections. Also a model assumed that

no compartment of the recovered chicken after being attacked by the ND. Economic analysis of

ND and its control was also carried out. The study revealed that in order for the vaccination of

ND to be active it must be conducted frequently in a large population of the local chicken.

Daut et al. (2016) developed two mathematical models aimed on showing the influence of illegal

harvest and effects of age structurer of the wild wingled-Parakeets on the dynamic of ND.

Interactions of ND transmission and harvest were evaluated through their basic reproductive

numbers and the population dynamics of the wingled-Parakeets in a short time. The findings

showed the relationship between the introduction of ND in the Parakeets population with its

mortality. The results show that the population decreases up to its total population in two years.

However much harvest shows to reduce the spread of the ND in the Parakeets population. But

the second case showed a slight difference that means the age of the Parakeets can influence the

spread of ND though not in a very great extent.
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Rist et al. (2015) established a mathematical model to show the effects of poultry diseases on

the economy of people living in rural Madagascar. A proposed model have three sub models;

the epidemiological model that consists of poultry compartments, the income generation model

and the simple economic model. The coupled ecology-economic model was built in a sense that

poultry diseases are economical drivers on the people in rural Madagascar. Data for parameter-

ize the model were collected from 1520 households and from the demographical survey where

80 households pilot study was conducted on livestock health. Equilibrium monthly household

income was used to estimate the mean burden of disease as the percent of income lost to disease

for a range of potential transmission rates. The results from the sensitivity analyses were in-

cluded in the burden estimation to account for the high uncertainty in model parameter values.

Based on the Latin Hyper-cube sampling method, 1000 simulations were run, each with differ-

ent combination of parameters, at transmission rates from 0 to 1. An exponential increase in

the economic burden is observed at transmission rates below 0.4 while the burden approaches

a fixed value at higher transmission rates. The majority of simulations with a transmission rate

predicted a 10 − 25% loss of monthly income. PRCC results suggested that in the presence of

poultry disease, both economic and epidemiological parameters highly influenced the outcomes

of the model.

Hugo et al. (2017) formulated a deterministic compartmental eco-epidemiological model with

the optimal control of ND. The model has human and chicken as its populations. It incorporated

three control strategies; vaccination, human education campaign and treatments of the infected

human. Necessary conditions of optimal control were analyzed with the Pontryagin’s maxi-

mum principle. The cost effectiveness analysis techniques were employed and found that the

combinations of chicken vaccination and human education strategies are the best strategies to

be applied in the scarcity of the resources.

Seidu and Makinde (2014) formulated an optimal control model with the efforts of reducing

HIV/AIDS infections, irresponsibilities and non productivity in the work place. The model

incorporate four interventions aimed at reducing the spread of the disease in the working places.

The interventions include the efforts for reducing the infections of the susceptible individuals,

efforts for treating the infected individuals, control efforts at changing the behavior of people

around and the efforts aimed at reducing non productivity at the working places.
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Kahuru et al. (2017b) applied an optimal control techniques to minimize the number of the

infected human, animals and the sand flea population in the dynamics of Tungiasis. In this

work, five control strategies are incorporated in the model as part of the efforts to reduce the

spread of the disease and the cost of the control among the human and animals populations.

Blayneh et al. (2009) applied the optimal control theory to study the effects of prevention and

treatment for the control of a malaria disease while reducing the cost of control. the results

shows that there are cost effective control efforts for treatment of the infectives as well as the

prevention of host-vector contacts.

Wang and Modnak (2011) developed a mathematical model of cholera dynamics. In this model,

three control namely: vaccination, theraupetic treatment and the water sanitation were included.

They applied the optimal control techniques aiming at minimizing the number of the infected

people as well as the cost of controls over a short period of time. The analysis of their model

showed that the combination of the multiple strategies is the the accurate measure to achieve

the optima; control of cholera.

Kim et al. (2012) used a deterministic differential equations to develop a plasmodium vivax

malaria model with the control terms. They performed the analysis and its numerical solutions.

Finally they suggested that the use of mosquito reduction strategies is more effective than the

personal protection.

Okosun et al. (2013) used a mathematical approach to study the cost-effectiveness on the con-

trols towards the prevention of malaria. In their model; the use of insecticide sprays, treating

of the infective human and the use of bed nets preventive measures were involved. They cal-

culated the Infection Averted Ratio (IAR) and then used the Incremental Coast-effectiveness

Ratio (ICER) to investigate the most cost-effective strategy for the control of malaria. In this

work, the combination of the insecticides splay and treating of the infected human have found

a cost-effective strategy above all.

Athithan and Ghosh (2015) formulated a non-liner mathematical model of malaria and extended

it to an optimal problem. They used the Pontryagin’s Maximum Principle to find the optimality

of the control. Simulation of the extended model shows better results than the model without
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control.

Kinene et al. (2015) developed an optimal model to study the control and the cost effective

intervention of the cassava brown streak disease (CBSD). In this model, two time dependent

intervention strategies were included. The Pontryagin’s maximum principle was used to es-

tablish the necessary conditions for the control of the CBSD. They also used the Incremental

cost-effectiveness Ratio (ICER) to analyze the cost effectiveness of the control strategies. They

concluded that, uprooting and burning of the infected plants is more cost effective than the

application of the combination of the chemical spray and uprooting of the infected plants.

Otieno et al. (2016) formulated a deterministic malaria transmission model which includes hu-

man and mosquito populations for controlling malaria disease in Kenya. Four time dependent

control variables namely; the use of Insect treated bed nets (ITNs), treated of infective human,

spray of insect sides and treated of pregnant women were included in the model. The aim of

this model was to find which strategy is effective and cost benefit. The cost effective analysis

was done using the Incremental cost effective ratio (ICER),The analysis showed that, in the

endemic regions the combination of insect treated nets (ITNs), indoor residual sprays (IRS) and

Intermittent Preventive Treatment for Pregnant Women (IPTp) is the most effective for malaria

prevention and control.

To the best of my knowledge, there is no any study applied the optimal control Theory and

the Incremental Cost-Effectiveness Ratio (ICER) to study the dynamics and control of ND by

considering the local poultry farming. This study is therefore design and analyze a mathemat-

ical model to study the transmission dynamics and the control of ND among the local poultry

farming. The economical burden of the ND at the household level is also studied.
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CHAPTER THREE

MATERIALS AND METHODS

In this section, a basic model of ND transmission is formulated based on the idea that wild

birds and the environment are primary reservoirs of NDV (Alexander et al., 2004; Gilchrist,

2005; Nwanta et al., 2008; Martin and row, 1992; Lawal et al., 2015). A system of ODEs was

considered to represent the parameters and change of state variables in the non-linear determin-

istic mathematical model. The model is formulated and analysed qualitatively and numerically.

The basic model is then extended by incorporating vaccination, culling and the environmen-

tal hygiene and sanitation control strategies. The purpose is to study the dynamics of ND and

investigating the impact of the controls for reducing its transmission.

3.1 The Basic Model of Newcastle Disease

The village chicken population Nc (t) is divided into three subpopulations namely: Sc (t) that

represents a number of susceptible village chicken, Ec (t) that represents a number of exposed

chicken in the population, Ic (t) that represents number of village chicken in the population

which is severe infected from the infection. The total population size of village chicken is

denoted by Nc (t) = Sc (t) + Ec (t) + Ic (t).

The wild birds population Nb (t) is divided into four sub-populations as follows: Sb (t) are

susceptible wild birds; Eb (t) are exposed population of wild birds; Ib (t) the severe infected

wild birds population and Ir (t) are the mild infected wild birds population. The total population

size of wild birds is therefore denoted by Nb (t) with Nb (t) = Sb (t) + Eb (t) + Ib (t) + Ir (t)

and the environment has only one compartment denoted by H (t).

The village chicken population is recruited by the density dependent recruitment rate µNc

through birth. Initially, village chicken acquires NDV when a sick village chicken is intro-

duced in a flock or environment and come into contact with other un-affected chicken. Village

chicken can also acquire NDV when exposed into unhygienic environment as well as when in-

teracting with other mild infected wild birds (Lawal et al., 2015; Daut et al., 2016). Village
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chicken spread the NDV after developing the clinical signs within the incubation period of two

to fifteen days (Perry et al., 1999; Alexander et al., 2004; Sharif et al., 2014). Chicken acquire

infections at a rate βc (Ic, Ir, H) which is defined by:

βc (Ic, Ir, H) =

(
ψ
Ic
Nc

+ b
Ir
Nb

+ d
H

κ+H

)
Sc (19)

where ψ is the transmission coefficient between the infected village chicken and susceptible

population of the village chicken, b is the transmission coefficient between the mild population

of wild birds and the susceptible village chicken, d is the coefficient transmission constant rate

of NDV with the hosts when come into contact with the unhygienic environment. The parameter

kappa is the saturation constant rate of NDV in the environment. The ratio

d
H(t)

κ+H(t)
(20)

is the density of NDV in the environment which gives the great chance for the disease outbreak

(Martin and row, 1992; Nwanta et al., 2008). After few days, chicken starts to show aerosol

signs and progress to chronic stage of the disease at the rate γEc(t). We assume that village

chicken cannot recover from disease but they die naturally at a rate µ and by the disease induced

death rate δc.

Wild birds are assumed to be recruited by the density dependent recruitment rate µNb through

birth and migrations. Like the village chicken, the susceptible wild birds gets NDV from the

contaminated environment as well as when interacts with the severe infected and mild infected

wild birds population at the rate βb (Ib, Ir, H) defined by:

βb (Ib, Ir, H) =

(
ϕIb + aIr

Nb

+ d
H

κ+H

)
Sb (21)

where ϕ is the transmission coefficient between the chronically infected population of wild birds

and the susceptible wild birds and a is the transmission coefficient between the mild infected

wild birds and the susceptible wild birds. Wild birds are resistant to the ND which makes them

to be carries of the virus (Awan et al., 1994; Brown and Bevins, 2017). Therefore the progress

of the ND in the wild birds leads to two infected subpopulations; severe infected, Ib(t) and the

mild population, Ir(t) at the proportions of ρ and 1 − ρ respectively. It is assumed that wild

birds cannot recover from the disease once affected but they are reduced by natural death µ and
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others by the disease induced death at the rate δb. NDV are introduced in the environment by

the severe infected village chicken, severe infected wild birds and the mild infected wild birds

through shedding at the rate αc and αb respectively (Awan et al., 1994; Nwanta et al., 2008).

The NDV can survive for some months at a temperature between 20 − 300C and much longer

at cooler physical environments (Martin and row, 1992). The model is formulated with the

following assumptions;

(i) The contaminated environment with NDV, the Infected Village chickens and the wild

birds reservoirs are the primary sources of the NDV infections to the village chicken

(Nwanta et al., 2008; Lawal et al., 2015; Brown and Bevins, 2017).

(ii) The environment is considered to carry only active viruses (Mesogenic, Lentogenic and

the velogenic) during the outbreak of the ND.

(iii) Wild birds are reservoir of the ND strains and can be maintained for a long period.

(iii) Susceptible population of village chicken can get NDV by either through direct contact

with an infected Village chicken or from mild and severe infected wild birds and the

environment (forage and water).

(iv) Neither age structure nor vertical transmission is considered in building the model.

(v) severe infected wild birds, the mild infected wild birds and the infected village chicken

contaminate the environment through shading of the NDV (Awan et al., 1994; Nwanta

et al., 2008).

(vi) Both village chicken and wild birds cannot recover from the ND once infected.

(vii) All avians have the same shedding rate of virus into the environment.

The parameters and the model state variables used in the formulation of the ND model are

summarized in tables below:
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Table 1: Descriptions of the Model State Variables used in the formulation of the Model

Variable Description

Sc(t) Susceptible village chicken population

Ec(t) Exposed village chicken population

Ic(t) Infected village chicken population

Sb(t) Susceptible wild birds population

Eb(t) Exposed wild birds population

Ib(t) Severely infected wild birds population

Ir(t) Mildly infected wild birds population

H(t) NDV population in the surroundings

Nc(t), Total population of village chicken

Nb(t) Total population of wild birds
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Table 2: Descriptions of Parameters used in the formulation of the Model

Parameter Description

a Transmission coefficient between the mild population of wild birds and

the susceptible population of wild birds

b Transmission coefficient between between mild population of wild birds

and the susceptible population of the village chicken

ψ Transmission coefficient between the severe infected and the susceptible

population of village chicken

κ Half saturation constant of NDV in the environment

d Contact rate between susceptible populations of village chicken and wild

birds with the environment

ρ Proportion of the exposed wild birds which become chronically infected

with NDV

αb Shading rate of NDV in the environment by chronically infected

and the carrier wild birds

αc Shading rate of NDV in the environment by the chronically infected

village chicken

βc Force of infection among the village chicken population

βb Force of infection among the wild birds population

ϕ A transmission coefficient between severely infected and the susceptible wild

birds population

µ Natural mortality death of the host populations

µv Clearance rate of the NDV from the environment

δb Disease induced death rate in wild birds populations

δc Disease induced death rate in the village chicken population

γ Progression rate of the disease in the host populations
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3.1.1 Model Flow Diagram

Based on the Transmission Dynamics of the ND, Model assumptions, definition of variables

and parameters respectively, the dynamics of the ND is summarized in the flow diagram as

follows:

 

 

 

                  cN      cS           HII cr ,,1              cE          cE              cI        cc I              

                 cS                                         cE                                         

           

                                                                                                             

            Hv         H                                       rI  rI  

                                                                                                   

              bE1                  

   

bN   bS     HII br ,,2    bE      bE                     bI      bb I            

   bS                                 bE      

Figure 3: Compartment model diagram for the Transmission Dynamics of Newcastle disease in village

chicken population. The sold lines show the constant transmission from one compartment to

another, the dotted lines show the normal interactions between different compartments and a

dash dot lines represent the shedding of NDV onto the environment

.
3.1.2 Equations of the Model

Now using model assumptions discussed before, the dynamics of ND is described by the fol-

lowing systems of nonlinear differential equations:

Chicken

dSc(t)

dt
= µNc(t)−

(
ψ
Ic(t)

Nc(t)
+ b

Ir(t)

Nb(t)
+

dH(t)

κ+H(t)
+ µ

)
Sc(t) (22a)

dEc(t)

dt
=

(
ψ
Ic(t)

Nc(t)
+ b

Ir(t)

Nb(t)
+

dH(t)

κ+H(t)

)
Sc(t)− (µ+ γ)Ec(t) (22b)

dIc(t)

dt
= γEc(t)− (δc + µ)Ic(t) (22c)
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Wild birds

dSb(t)

dt
= µNb(t)−

(
ϕIb(t) + aIr(t)

Nb(t)
+

dH(t)

κ+H(t)
+ µ

)
Sb(t) (23a)

dEb(t)

dt
=

(
ϕIb(t) + aIr(t)

Nb(t)
+

dH(t)

κ+H(t)

)
Sb(t)− (µ+ ργ)Eb(t) (23b)

dIb(t)

dt
= ργEb(t)− (δb + µ)Ib(t) (23c)

dIr(t)

dt
= (1− ρ)γEb(t)− µIr(t) (23d)

Environment
dH(t)

dt
= αcIc(t) + αb (Ib(t) + Ir(t))− µvH(t) (24)

With initial conditions,

Sc(0) > 0, Ec(0) ≥ 0, Ic(0) ≥ 0, Sb(0) > 0, Eb(0) ≥ 0, Ib(0) ≥ 0, Ir(0) ≥ 0, H(0) ≥ 0.

The susceptible populations of the hosts Sc and Sb are positive they and cannot be zero at any

how, but other infected populations can either be zero or greater than zero depending on the

disease status in the population. They are zero if the the population is free from the disease and

greater than zero if disease persists in the population.

The total population sizes of village chicken and the wild bird are given by

Nc(t) = Sc(t) + Ec(t) + Ic(t) and Nb(t) = Sb(t) + Eb(t) + Ir(t) + Ib(t) respectively.

3.2 Basic Properties of the Model

3.2.1 Invariant Region of the Solution

The ND model system (22a)−(24) has three subpopulations where all parameters and variables

are positive ∀t ≥ 0.

Lemma 3.1

Given the model system (22a) − (24) in R8
+ with the initial conditions Sc(0) > 0, Ec(0) ≥

0, Ic(0) ≥ 0, Sb(0) > 0, Eb(0) ≥ 0, Ib(0) ≥ 0, Ir(0) ≥ 0, H(0) ≥ 0, its solution enters the
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invariant region D = D1 ∪ D2 ∪ D3 = R3
+ × R4

+ × R1
+ where;

D1 =
{

(Sc(t), Ec(t), Ic(t)) ∈ R3
+ : Sc(t) + Ec(t) + Ic(t) = Nc

}
D2 =

{
(Sb(t), Eb(t), Ib(t), Ir(t)) ∈ R4

+ : Sb(t) + Eb(t) + Ib(t) + Ir(t) = Nb

}
D3 =

{
H(t) ∈ R1

+

} (25)

Proof : to establish the feasible region of the ND model solution, we apply the box invariant

method as used in (Abate et al., 2009; Mpeshe et al., 2014b; Kahuru et al., 2017a). For our dy-

namical system Ẋ = G (X, t) , X ∈ Rn, we assume the continuity and the Lipschitz properties

of its solution. The model system (22a)− (24) is reduced to the form

dX

dt
= Q (x)X +G (26)

where X = (Sc, Ec, Ic, Sb, Eb, Ib, Ir, H)T and a column vector G = (Nc, 0, 0, Nb, 0, 0, 0, 0)T .

Q (x) =


Q1 (x) 0 0

0 Q2 (x) 0

0 0 Q3 (x)

 (27)

is a Metzler matrix for all X ∈ R8
+ with sub-matrix Q1 (x) , Q2 (x) and Q3 (x) from the village

chicken, wild birds and environment respectively. We define the sub matrices from the system

(27) as follows:

Q1 (x) =


− (βc(t, Ic, Ir, H) + µ) 0 ψ

Nc

βc(t, Ic, Ir, H) −(γ + µ) 0

0 γ −(δc + µ)

 (28)

Q2 (x) =


− (βb(t, Ib, Ir, H) + µ) 0 0 b

Nb

βb(t, Ib, Ir, H) −(γ + µ) 0 a
Nb

0 ργ −(δb + µ) 0

0 (1− ρ)γ 0 −µ

 (29)

Q3 (x) =
(

0 0 αc 0 0 αb αb −µv
)

(30)
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By combining the matrices in equation (28) , (29) and (30), we get the matrix Q (x) which is a

Metzler matrix for all X ∈ R8
+ defined as:

Q (x) =



−A1 0 ψ
Nc

0 0 0 0 0

A2 −(γ + µ) 0 0 0 0 0 0

0 γ −(δc + µ) 0 0 0 0 0

0 0 0 −A3 0 0 b
Nb

0

0 0 0 A4 −(γ + µ) 0 a
Nb

0

0 0 0 0 ργ −(δb + µ) 0 0

0 0 0 0 (1− ρ)γ 0 −µ 0

0 0 αc 0 0 αb αb −µv



(31)

where

A1 = βc(t, Ic, Ir, H) + µ; A2 = βc(t, Ic, Ir, H), A3 = βb(t, Ib, Ir, H) + µ

A4 = βb(t, Ib, Ir, H)

A reduced Metzler matrix Q (x) in (31) has all negative values along its principle diagonal and

the rest non-negative values in its off diagonal. Hence proves that all variables enter and remain

in the invariant region D. This shows that the ND model system (22a)− (24) is epidemiologi-

cally meaningful and well posed in the invariant region D.

3.2.2 Positivity of the Solution

Theorem 3.2

Let the initial set of variables of the model in the equation (22a)−(24) be Sc(0) > 0,Ec(0) ≥ 0,

Ic(0) ≥ 0, Sb(0) > 0, Eb(0) ≥ 0, Ir(0) ≥ 0, Ib(0) ≥ 0 and H(0) ≥ 0 then the solution set

{(Sc(t) > 0, Ec(t) ≥ 0, Ic(t) ≥ 0, Sb(t) > 0, Eb(t) ≥ 0, Ir(t) ≥ 0, Ib(t) ≥ 0, H(t) ≥ 0} ∈ R8
+

is positive for all t.

Proof:

Lets consider the equation (22a) of the model system (22a)− (24)

dSc(t)

dt
= µNc − β1(t, Ic, Ir, H)Sc(t)− µSc(t) (32)
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dSc(t)

dt
≥ − (β1(t, Ic, Ir, H) + µ)Sc(t) (33)∫ t

0

dSc(t)

Sc(t)
≥ −

∫ t

0

(β1(t, Ic, Ir, H) + µ) dt (34)

Sc(t) ≥ Sc(0)e−µt−
∫ t
0 (β1(t,Ic,Ir,H)dt (35)

Thus as t → ∞ then it follows that Sc(t) ≥ Sc(0)e−µt−
∫ t
0 (β1(t,Ic,Ir,H)dt ≥ 0. From equation

(22b) of the model system (22a)− (24), we have

dEc(t)

dt
= βc(t, Ic, Ir, H)Sc(t)− (γ + µ)Ec (t) (36)

dEc(t)

dt
≥ −(γ + µ)Ec(t) (37)

dEc(t)

Ec(t)
≥ −(γ + µ)dt (38)

Integrating both sides of equation (38) with respect to time we then have∫ t

0

dEc(t)

Ec(t)
≥ −

∫ t

0

(γ + µ)dt (39)

and finally we get

Ec(t) ≥ Ec(0)e−(γ+µ)t (40)

As t→∞, Ec(t) ≥ Ec(0)e−(µ+γ)t ≥ 0 , we have Ec(t) ≥ 0

Also from equation (22c) of the model system (22a)− (24) we have

dIc(t)

dt
= γEc(t)− (δc + µ)Ic(t) (41)

∫ t

0

dIc(t)

Ic
≥ −

∫ t

0

(δc + µ)dt (42)

which gives Ic(t) ≥ Ic(0)e−(δc+µ)t ≥ 0. Following the same procedures it follow that; Sb(t) ≥

0, Eb(t) ≥ 0, Ib(t) ≥ 0, Ir(t) ≥ 0 and H(t) ≥ 0 which proves that all state variables are

positive ∀t.

3.2.3 Existence of the Steady States

The disease is endemic whenever persists in a population and the population is free iff

no disease persists in it (Mwanga et al., 2014; Selemani et al., 2016). The steady state
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φ∗ (S∗c , E
∗
c , I
∗
c , S

∗
b , E

∗
b , I
∗
b , I

∗
r , H

∗) of the model system in equation (22a) − (24) is obtained

by setting the model system to zero and thus solving for the state variables. Therefore, we have

the following system:

µNc −
(
ψ
Ic(t)

Nc

+ b
Ir(t)

Nb

+
dH(t)

κ+H(t)
+ µ

)
Sc(t) = 0(

ψ
Ic(t)

Nc

+ b
Ir(t)

Nb

+
dH(t)

κ+H(t)

)
Sc(t)− (µ+ γ)Ec(t) = 0

γEc(t)− (δc + µ)Ic(t) = 0

(43)

αcIc(t) + αb (Ib(t) + Ir(t))− µvH(t) = 0 (44)

µNb −
(
ϕIb(t) + aIr(t)

Nb

+
dH(t)

κ+H(t)
+ µ

)
Sb(t) = 0(

ϕIb(t) + aIr(t)

Nb

+
dH(t)

κ+H(t)

)
Sb(t)− (γ + µ)Eb(t) = 0

ργEb(t)− (δb + µ)Ib(t) = 0

(1− ρ)γEb(t)− µIr(t) = 0

(45)

Compartment wise, we have the following steady states in village chicken population:

I∗c =
γ

δc + µ
E∗c , E

∗
c =

βcS
∗
c

µ+ γ
, S∗c =

µN∗c
βc + µ

(46)

Substituting S∗c into E∗c and E∗c into I∗c we get

E∗c =
βcµN

∗
c

(µ+ γ) (βc + µ)
(47)

I∗c =
γ

(δ1 + µ)

βcµN
∗
c

(µ+ γ) (βc + µ)
(48)

By considering the force of infections in chicken, Ic is obtained by solving the equation

B2I∗c + B1I∗c + B0 = 0 (49)

where:

B2 = µNc (δc + µ) (µ+ γ) (κ+H)

B1 = NbNc (κ+H) + bNc (δc + µ) (µ+ γ) (κ+H) Ir + µNbNc (κ+H) (δc + µ) (µ+ γ)

B0 = bµγN2
c (κ+H) Ir + dµγNbN

2
c (1−R0)

(50)
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N∗c = S∗c + E∗c + I∗c =

(
1 +Rbch

(
1 +

β1µN
∗
c

(µ+ γ) (βc + µ)

))
S∗c (51)

where βc =
(
ψ I∗c (t)

N∗
c

+ b I
∗
r (t)
N∗

b
+ dH∗(t)

κ+H∗(t)

)
, andRbch = βcµN∗

c

(µ+γ)(β1+µ)

and

I∗c =
−B1 ±

√
B2
1 − 4B2B0

2B0
(52)

Also in the wild birds population we have the following steady states:

S∗b (t) =
µN∗b
βb + µ

, E∗b (t) =

(
βbS

∗
b

µ+ γ

)
(53)

I∗b =
ργµβbN

∗
b

(δb + µ) (µ+ γ) (βb + µ)
(54)

I∗r (t) =

(
(1− ρ) γµβbN

∗
b

µ (µ+ γ) (βb + µ)

)
(55)

N∗b = S∗b + E∗b + I∗b + I∗r =

(
1 +Rbch

(
1 +

γρ

µ
+

γρ

δb + µ

))
S∗b (56)

Where βb =
(
ϕI∗b (t)+aI

∗
r (t)

N∗
b

+ dH∗(t)
κ+H∗(t)

)
and Rcbh =

βbµN
∗
b µ

(µ+γ)(βb+µ)

H∗(t) =
αcγµβcN

∗
c

µv (µ+ γ) (βc + µ)
+
αb
µv

(
ργµβbN

∗
b

(µ+ γ) (βb + µ)

(
µ

δb + µ
− 1

µ

))
+

γβbN
∗
b

(µ+ γ) (βb + µ)
(57)

From all these state variables, the solution βc 6= 0 and βb 6= 0 gives the endemic equilibrium

points while βc = 0 and βb = 0 gives the disease free equilibrium point.

3.2.4 Existence of Disease Free Equilibrium Point

The model has a disease free equilibrium point (DFEP) which is obtained when all forces of

infections in the steady states are set to zero i.e, βc (Ic, Ir, H) = βb (Ib, Ir, H) = 0. Therefore

the disease free equilibrium point in their respective compartments are φ0
c = {Nc, 0, 0}, φ0

b =

{Nb, 0, 0, 0} and φ0
H = 0 for village chicken,wild birds and the concentration of NDV in the the

environment respectively. Generally, the disease free equilibrium point of a model is given by

φ0 = {Nc, 0, 0, Nb, 0, 0, 0, 0} where Nc and Nb represent the population size of village chicken

and wild birds respectively.
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3.2.5 Existence of Endemic Equilibrium Point

From the stead states in equation (46) to (57), the endemic equilibrium

D∗ = (S∗c , E
∗
c , I
∗
c , S

∗
b , E

∗
b , I
∗
b , I

r
r , H

∗) is found iff the force of infections are not equal to zero i.e

βc (Ic, Ir, H) 6= 0 and βb (Ib, Ir, H) 6= 0. Therefore, the endemic equilibrium point D∗ is a

set of the steady states in a condition that E∗c 6= 0, I∗c 6= 0, E∗b 6= 0, I∗b 6= 0, I∗r 6= 0 and H∗ 6= 0.

3.2.6 Bifurcation Analysis for the Equilibrium Points

The existence of forward or backward bifurcation has an important implications on the epidemi-

ological control measure of the infectious diseases. The bifurcation analysis of the equilibrium

points tells the nature of the points and also tells whether the disease can be completely reduced

or remain in the population. Therefore, in this part we use the centre manifold theorem as stated

by Castillo-Chavez and Song (2004), Buonomo and Vargas-De-León (2013), Nyerere et al.

(2014) and Mushayabasa et al. (2017) to investigate the changes of signs of the equilibrium

points aroundR0 close to one.

Theorem 3.3

Castillo-Chavez and Song (2004), Consider the following general system of ordinary differen-

tial equations with a parameter ψ

dx

dt
= g (x, ψ) , g : Rn × R→ Rn and g ∈ Cn(Rn × R) (58)

it is assumed that ψ is an equilibrium for system (58) for all values of the parameter ψ,

(that is g(0, ψ) ≡ 0) . Now, suppose that:

(i) M = Dxg (0, 0) = ∂gi
∂xj

(0, 0) is the linearized matrix of the system in (58) around the

equilibrium 0 and ψ evaluated at 0. Zero is a simple eigenvalue of M and all other

eigenvalues of M have negative real parts:

(ii) Matrix M has a non-negative right eigenvector ω and a left eigenvector v corresponding

to the zero eigenvalue. Let gk be the kth component of g and
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S =
n∑

k,i,j=1

vkωiωj
∂2gk
∂xi∂xj

(0, 0) ,

T =
n∑

i,k=1

vkωi
∂2gk
∂xi∂ψ

(0, 0)

(59)

the local dynamics of the system (58) around zero are totally determined by the signs of S and

T . If S > 0 and T > 0, then a backward bifurcation occurs at ψ = 0.

(i) S > 0, T > 0, when ψ < 0 with |ψ| << 0, is locally asymptotically stable and there

exist a positive unstable equilibrium. When 0 < |ψ| << 1, 0 is unstable and there exists

a negative and a locally asymptotically stable equilibrium.

(ii) S < 0, T < 0, when ψ < 0 with |ψ| << 0, is unstable. When 0 < |ψ| << 1, 0 is

asymptotically stable and there exists a positive unstable equilibrium.

(iii) S > 0, T < 0, when ψ < 0 with |ψ| << 0, is unstable. When |ψ| << 1, 0 is unstable

and there exists a locally asymptotically unstable equilibrium.

(iv) S < 0, T > 0, when ψ < 0 changes sign from negative to positive, 0 changes its sta-

bility from stable to unstable. The corresponding negative unstable equilibrium becomes

positive and locally asymptotically stable.

Now, to apply the above theorem, the change of variables are made on the model system (22a) to

(24) by letting the variables as follows; Sc = x1, Ec = x2, Ic = x3, Sb = x4, Eb = x5, Ib = x6,

Ir = x7,H = x8. These simplifications giveNc = x1+x2+x3 andNb = x4+x5+x6+x7. With

the vector notations x = (x1, x2, x3, x4, x5, x6, x7, x8)
T and dx

dt
= (g1, g2, g3, g4, g5, g6, g7, g8)

T

the system (22a) to (24) is now re-written as;
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dx1(t)

dt
= g1 = µ (x1(t) + x2(t) + x3(t))− (β1 + µ)x1(t)

dx2(t)

dt
= g2 = β1x1(t)− (µ+ γ)x2(t)

dx3(t)

dt
= g3 = γx2(t)− (δc + µ)x3(t)

dx4(t)

dt
= g4 = µ (x4(t) + x5(t) + x6(t) + x7(t))− (µ+ β2)x4(t)

dx5(t)

dt
= g5 = β2x4(t)− (µ+ ργ)x5(t)

dx6(t)

dt
= g6 = ργx5(t)− (δb + µ)x6(t)

dx7(t)

dt
= g7 = (1− ρ)γx5(t)− µx7(t)

dx8(t)

dt
= g8 = αcx3(t) + αb (x6(t) + x7(t))− µvx8(t)

(60)

β1 = ψ x3(t)
x1(t)+x2(t)+x3(t)

+ b x7(t)
x4(t)+x5(t)+x6(t)+x7(t)

+ dx8
κ+x8(t)

, β2 = ϕx6(t)+ax7(t)
x4(t)+x5(t)+x6(t)x7(t)

+ dx8(t)
κ+x8(t)

,

x1(t) + x2(t) + x3(t) = 1, x4(t) + x5(t) + x6(t)x7(t) = 1, xi(t) ≥ 0 for i = 1, 2, ..., 8

Lets choose ψ = ψ∗ from the basic reproduction number as the bifurcation parameter. Using

Maple for solving ψ∗ fromR0 = 1 we then have

ψ = ψ∗ = −1

2

($
τ

)
(61)
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$ = −κµ3φ ργ Nbµv + γ2κµ2Nbδcµv − γ aκµ3Nbµv − γ2µNbαbdN bδb − γ µ2NbαbdN bδb

− γ2aκµ2Nbµv + γ2aµNbαcdN c + γ2aNbαcdN cδb + γ2µ ραcbN cdN b − γ2µNbαbdN bδc

+ γ2ραcbN cdN bδb − γ2NbαbdN bδbδc − γ µ2NbαbdN bδc − γ µ2NbαcdN cδb + κµ3Nbδbδcµv

+ 2 γ κµ3Nbδbµv + 2 γ κµ3Nbδcµv − γ2µNbαcdN cδb + γ2κµ2Nbδbµv + κµ5Nbµv

+ γ aκµ ρNbδbδcµv − κµ2φ ργ Nbδcµv + γ2κµNbδbδcµv + 2 γ κµ2Nbδbδcµv

− γ2aκµNbδcµv − γ2aκNbδbδcµv − γ2aµ ρNbαcdN c − γ2aρNbαcdN cδb + γ2ρNbαbdN bδbδc

− γ aκµ2Nbδcµv + γ µφ ργ NbαcdN c − γ µNbαbdN bδbδc + γ2aκµ2ρNbµv + γ aκµ3ρNbµv

− γ2aκµNbδbµv + γ2µ ρNbαbdN bδb − γ aκµ2Nbδbµv − γ κµ2φ ργ Nbµv + γ µ2ρNbαbdN bδb

+ γ2aκµ ρNbδbµv + γ aκµ2ρNbδbµv + γ2aκµ ρNbδcµv + γ2aκ ρNbδbδcµv + γ aκµ2ρNbδcµv

− γ aκµNbδbδcµv − γ κµφ ργ Nbδcµv + γ µ ρNbαbdN bδbδc + κµ4Nbδcµv − γ µ3NbαcdN c

− γ2µαcbN cdN b − γ2αcbN cdN bδb + γ2κµ3Nbµv + 2 γ κµ4Nbµv − γ2µ2NbαcdN c

− γ2µ2NbαbdN b − γ µ3NbαbdN b + κµ4Nbδbµv
(62)

τ = γ
(
ε+ κµ3µv + κµ2δbµv − κµφ ργ µv − γ µαbdN b − γ αbdN bδb

)
Nb (63)

ε = aγ κµ ρµv + aγ κ ρ δbµv − aγ κµµv − aγ κ δbµv + γ κµ2µv + γ κµ δbµv + γ ραbdN bδb

(64)

Then, the linearized system (60) is transformed with ψ = ψ∗ which has a simple zero eigenval-

ues and the centre manifold theory is used to analyze the dynamics of (60) near ψ = ψ∗. The

Jacobian of the system (60) at ψ = ψ∗ has a right eigenvector associated with zero eigenvalues

given by ω = (ω1, ω2, ..., ω8)
T . The eigenvectors of the Jacobian matrix of the system (60) are

obtained as follows:

−µ 0 −ψ∗ 0 0 0 −b − d
κ

0 −γ − µ ψ∗ 0 0 0 b d
κ

0 γ −δc − µ 0 0 0 0 0

0 0 0 −µ 0 −ϕ −a −d
κ

0 0 0 0 −µ− ργ ϕ a d
κ

0 0 0 0 γρ −δb − µ 0 0

0 0 0 0 γ (1− ρ) 0 −µ 0

0 0 αc 0 0 αb αb −µv





ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8



=



0

0

0

0

0

0

0

0



(65)
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This gives the following eigenvectors

ω1 = −
(
γ + µ

µ

)
ω2,

ω2 = −
(

µ

γ + µ

)
ω1,

ω3 =
(bκω7 − dω8) γ

((µ+ γ) (δc + µ)− ψγ)
,

ω4 =

(
µ+ γρ

µ

)
ω5,

ω5 > 0,

ω6 =

(
µκργ (aκω7 − dω8)

µκ (µκ (δb + µ)− ργκ (ϕ− δb − µ))

)
ω7 =

(
1− ργ
µ

)
ω5,

ω8 =
αcω3 + αb (ω6 + ω7)

µv

(66)

Also, the left eigenvector vi = (v1, v2, ..., v8)
T associated with the zero Eigenvalues at ϕ = ϕ∗

gives following Jacobian matrix:



−µ 0 0 0 0 0 0 0

0 −γ − µ γ 0 0 0 0 0

−ψ∗ ψ∗ −δc − µ 0 0 0 0 αc

0 0 0 −µ 0 0 0 0

0 0 0 0 −µ− ργ γρ (1− ρ)γ 0

0 0 0 −ϕ ϕ −δb − µ 0 αb

−b b 0 −a a 0 −µ αb

− d
κ

d
κ

0 − d
κ

d
κ

0 0 −µv





v1

v2

v3

v4

v5

v6

v7

v8



=



0

0

0

0

0

0

0

0


(67)

Then from the linear combinations it follows that

37



v1 = 0

v3 =
(δc + µ) v2

γ

v4 = 0

v6 =
µv5 − γρ (v5 + v7)− γv7

ργ

v7 =
bv2 + av5 + αbv8

µ

v8 =
(δc + µ) v3

αc

(68)

Computations of S and T

From the system (60) the associated non-zero partial derivatives of the function gk at disease

free equilibrium are

∂2g1
∂x1∂x3

= −ψ, ∂2g1
∂x1∂x7

= −b, ∂2g1
∂x1∂x8

=
∂2g4
∂x4∂x8

= −d
κ

∂2g4
∂x4∂x6

= −ϕ, ∂2g4
∂x4∂x7

= −a

From equation (59) it then follows that

S = v1ω1ω3
∂2g4
∂x1∂x3

+ v2ω1ω7
∂2g4
∂x1∂x7

+ v3ω1ω8
∂2g4
∂x1∂x8

+ v4ω4ω8
∂2g4
∂x4∂x8

+ v5ω4ω6
∂2g4
∂x4∂x6

+ v6ω4ω7
∂2g4
∂x4∂x7

(69)

S = −ψv1ω1ω3 − bv2ω1ω7 −
d

κ
v3ω1ω8 −

d

κ
v4ω4ω8 − ϕv5ω4ω6 − av5ω4ω7 (70)

S = −ω2

(
γ + µ

µ

)(
bv2ω7 +

d

κ
v3ω8

)
− v5ω5 (ϕω6 + aω7)

(
µ+ γρ

µ

)
< 0 (71)

For the sign of T , it can be shown that the associated non-zero partial derivatives of the function

gi at disease free equilibrium are:

∂2g1
∂ψ∂x3

= −1,
∂2g2
∂ψ∂x3

= 1 (72)

which gives

T = v1ω1
∂2g1
∂x3∂ψ

+ v2ω2
∂2g2
∂x3∂ψ

(73)
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and therefore

T = −v1ω1 + v2ω2 (74)

But v1 = 0, then it follows from equation (74) that T = v2ω2 > 0. Since S < 0 and T > 0,

regarding to Theorem 3.3 (4), the equilibrium is positive, unique and locally asymptotically

stable. Thus the system undergoes the forward bifurcation withR0 close to one.
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Figure 4: The Forward Bifurcation for a ND model in village chicken with environment and wild birds

reservoirs.

The diagram shows the behavior of the disease near the point R0 = 1. For the disease to

disappear from the village chicken population, making R0 < 1 is a necessary condition to

reach the target. So R0 should be kept as low as possible to reduce the spread of ND in the

village chicken population.

Theorem 3.4

The Equilibrium point of the ND model undergoes forward bifurcation and endemic equilibrium

is locally asymptotically stable forR0 > 1 withR0 close to one.
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3.2.7 The Basic Reproductive Number

The basic reproduction numberR0, is defined as the average number of secondary cases caused

by one infectious individual introduced in a population that consisting of entirely susceptibles

(Foppa, 2005; Hartemink et al., 2008). This number tells and quantifies the ability of an infec-

tious disease to invade a purely susceptible population (Foppa, 2005; Hartemink et al., 2008).

The Epidemic persists when R0 > 1 and dies out when the R0 < 1 (Diekmann et al., 2009;

Hethcote, 2000; Van den Driessche and Watmough, 2002; Wang and Modnak, 2011). We com-

pute the R0 by the next generation method as proposed by Van den Driessche and Watmough

(2002). We firstly define our system for infections in compartments as

dXi

dt
= Fi − Vi (75)

Where:

(i) Xi defines a set of infected classes

(ii) Fi defines the rate of new infections in compartment i

(iii) Vi = V−i − V+
i the total transfer rate

V−i defines the rate of transfer of individuals out of compartment i and V+
i is the rate of transfer

of individuals into compartment i through interactions. Then it follows that;

dEc

dt

dIc
dt

dEb

dt

dIr
dt

dIb
dt

dH
dt


= Fi − Vi =



(
ψ Ic
Nc

+ b Ir
Nb

+ d H
κ+H

)
Sc

0(
ϕIb+aIr
Nb

+ d H
κ+H

)
Sb

0

0

0


−



−(γ + µ)Ec

γEc − (δc + µ)Ic

−(γ + µ)Eb

ργEb − (δb + µ)Ib

(1− ρ)γEb − µIr
αcIc + αb (Ib + Ir)− µvH


The corresponding Jacobian matrices of F and V are the matrices of the derivatives of Fi and

Vi with respect to Ec(t), Ic(t), Eb(t), Ir(t), Ib(t) and H(t) at the disease free equilibrium point,

φ0, which are given by
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F =

(
∂Fi(φ0)

∂Xj

)
and V =

(
∂Vi(φ0)

∂Xi

)
respectively.

Then by differentiating the equation Fi and Vi w.r.t the infected classes we get the fol-

lowing matrices

F =



0 ψ 0 0 bNc

Nb
dNc

κ

0 0 0 0 0 0

0 0 0 ϕ a dNb

κ

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(76)

V =



γ + µ 0 0 0 0 0

−γ δc + µ 0 0 0 0

0 0 (γ + µ) 0 0 0

0 0 −ργ (δb + µ) 0 0

0 0 −(1− ρ)γ 0 µ 0

0 −αc 0 −αb −αb µv


(77)

The inverse of matrix V in equation (77) become

V −1 =



(γ + µ)−1 0 0 0 0 0

γ
(γ+µ)(δc+µ)

(δc + µ)−1 0 0 0 0

0 0 (γ + µ)−1 0 0 0

0 0 ργ
(γ+µ)(δb+µ)

(δb + µ)−1 0 0

0 0 − (−1+ρ)γ
(γ+µ)µ

0 µ−1 0

γ αc

(γ+µ)(δc+µ)µv
αc

(δc+µ)µv
−αb(−γ δb−γ µ+γ ρ δb)

(γ+µ)(δb+µ)µµv

αb

(δb+µ)µv

αb

µµv
µv
−1


(78)

We then compute the next generation matrix FV −1 by multiplying the matrices of equation

(76) and (78) which gives

41



FV −1 =



R S T dN cαb

κ (δb+µ)µv
bN c

Nbµ
+ dN cαb

κµµv
dN c

κµv

0 0 0 0 0 0

U V W ϕ
δb+µ

+ dN bαb

κ (δb+µ)µv
a
µ

+ dN bαb

κµµv

dN b

κµv

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(79)

where

R =
ψ γ

(γ + µ) (δc + µ)
+

dN cγ αc
κ (γ + µ) (δc + µ)µv

S =
ψ

δc + µ
+

dN cαc
κ (δc + µ)µv

T =
bN c (1− ρ) γ

Nb (γ + µ)µ
+

dN cαb (γ δb + γ µ− γ ρ δb)
κ (γ + µ) (δb + µ)µµv

U =
dN bγ αc

κ (γ + µ) (δc + µ)µv
,

V =
dN bαc

κ (δc + µ)µv

W =
ϕργ

(γ + µ) (δb + µ)
+
a (1− ρ) γ

(γ + µ)µ
+

dN bαb (γ δb + γ µ− γ ρ δb)
κ (γ + µ) (δb + µ)µµv

The eigenvalues of the matrix (79) are

λ1 = λ2 = λ3 = λ4 = 0

λ5 = −1/2

(
R +

ϕργ

(γ + µ) (δb + µ)
+
a (1− ρ) γ

(γ + µ)µ
+

dN bαb (γ δb + γ µ− γ ρ δb)
κ (γ + µ) (δb + µ)µµv

)
+ 1/2

√(
R− ϕργ

(γ + µ) (δb + µ)
+
a (1− ρ) γ

(γ + µ)µ
+

dN bαb (−γ δb − γ µ+ γ ρ δb)

κ (γ + µ) (δb + µ)µµv

)2

+ 4ω

(80)
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λ6 =
1

2

(
R +

ϕργ

(γ + µ) (δb + µ)
+
a (1− ρ) γ

(γ + µ)µ
+

dN bαb (γ δb + γ µ− γ ρ δb)
κ (γ + µ) (δb + µ)µµv

)
+

1

2

√(
R− ϕργ

(γ + µ) (δb + µ)
− a (1− ρ) γ

(γ + µ)µ
− dN bαb (γ δb + γ µ− γ ρ δb)

κ (γ + µ) (δb + µ)µµv

)2

+ 4ω

(81)

Basing on the eigenvalues of the matrix (79), the basic reproductive number R0 is the spectral

radius ρ(FV −1) of the next generation matrix (79). This gives the basic reproduction number

as

R0 = ρ
(
FV −1

)
=

1

2

(
(R +W ) +

√
(R−W )2 + 4UT

)
(82)

R0 =
1

2

(
R +

ϕργ

(γ + µ) (δb + µ)
+
a (1− ρ) γ

(γ + µ)µ
+

dN bαb (γ δb + γ µ− γ ρ δb)
κ (γ + µ) (δb + µ)µµv

)

+
1

2

√(
R− ϕργ

(γ + µ) (δb + µ)
− a (1− ρ) γ

(γ + µ)µ
− dN bαb (γ δb + γ µ− γ ρ δb)

κ (γ + µ) (δb + µ)µµv

)2

+ 4ω

(83)

for

ω =
4 dN bγ αc

κ (γ + µ) (δc + µ)µv

(
bN c (1− ρ) γ

Nb (γ + µ)µ
+

dN cαb (γ δb + γ µ− γ ρ δb)
κ (γ + µ) (δb + µ)µµv

)
From the equation (83) the basic reproduction number R0 is influenced by parameters from all

subpopulations of the model.

Term Description

γ
(µ+δc)

Is the probabilities that village survives in

the presence of ND

γ
(µ+δb)

Is the probabilities that wild birds survive in

the presence of ND

ψ
(µ+δc)

is the probability of village chicken to ac-

quire NDV when come into contact

with the infectious village chicken

ϕ
(µ+δb)

is the probability of wild birds to acquire

NDV when come into contact with

Continued on next page
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Table 3 – Continued from previous page

Term Description

chronically affected wild bird

d
κ(γ+µ)

The probabilities of village chicken and wild

birds to acquire the NDV

from the environment during the outbreak of

disease.

3.2.8 Local Stability of the Disease Free Equilibrium Point

The stability analysis of the disease free equilibrium point (φ0) of the model system (22a) to

(24) is examined by the Hurwitz Matrix criterion (Fallat and Johnson, 2011; Dyachenko, 2014).

From the Jacobian matrix J (φ0) is found by differentiating each equation of the model system

with respect to its state variables at φ0. Thus, the Jacobian matrix of the model system at φ0 is

then given by

J (φ0) =



−µ 0 −ψ 0 0 0 −bNc

Nb
−dNc

Nb

0 −µ− γ ψ 0 0 0 bNc

Nb
dNc

Nb

0 γ −δc − µ 0 0 0 0 0

0 0 0 −µ 0 −ϕ −a −dNb

κ

0 0 0 0 −µ− γ ϕ a dNb

κ

0 0 0 0 ργ −δb − µ 0 0

0 0 0 0 (1− ρ)γ 0 −µ 0

0 0 αc 0 0 αb αb −µv



(84)
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From matrix (84) the first two roots of J (φ0) are given by (−u − λ)(−u − λ) = 0. Then the

reduced 6× 6 matrix become:

ξ =



−µ− γ ψ 0 0 bNc

Nb
dNc

Nb

γ −δc − µ 0 0 0 0

0 0 −µ− γ ϕ aNb

κ
dNb

κ

0 0 ργ −δb − µ 0 0

0 0 (1− ρ)γ 0 −µ 0

0 αc 0 αb αb −µv


(85)

Then characteristic polynomial for the matrix ξ is

G (λ) = λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 (86)

The corresponding Hurwitz matrix is

G6 =



a1 a3 a5 0 0 0

1 a2 a4 a6 0 0

0 a1 a3 a5 0 0

0 1 a2 a4 a6 0

0 0 a1 a3 a5 0

0 0 1 a2 a4 a6


(87)

where

a1 = µv + 3µ+ ϕ+ δc + γ

a2 = γ ρ t+ µv γ + 3µv µ− µv ϕ+ µv δc + aµ+ aδb + 2 γ µ− γ ϕ− γ ψ − γ t+ γ δc + 3µ2

− 3ϕµ+ 2 δc µ− ϕ δc

a3 = µv γ ρ t+ γ2ρ t+ 2 γ µ ρ t+ γ ρ tδc + µv aµ+ µv aδb + 2µv γ µ− µv γ ϕ− µv γ ψ − µv γ t

+ µv γ δc + 3µv µ
2 − 3µv µϕ+ 2µv µ δc − µv ϕ δc + γ aµ+ aγ δb + 3 aµ2 + 3 aµ δb

+ aµ δc + aδb δc − γ2t+ γ µ2 − 2 γ µϕ− γ µψ − 2 γ µ t+ γ µ δc + γ ϕψ − γ ϕ δc − γ sαc

− γ tδc + µ3 − 3µ2ϕ+ µ2δc − 2µϕ δc
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a4 = µv γ
2ρ t+ 2µv γ µ ρ t+ µv γ ρ tδc − γ3rρ− γ2µ rρ+ γ2µ ρ t− γ2ψ ρ t− γ2ρ sαb

+ γ2ρ tδc + γ µ2ρ t+ γ µ ρ tδc + µv γ aµ+ µv aγ δb + 3µv aµ
2 + 3µv aµ δb

+ µv aµ δc + µv aδb δc − µv γ2t+ µv γ µ
2 − 2µv γ µϕ− µv γ µψ − 2µv γ µ t+ µv γ µ δc

+ µv γ ϕψ − µv γ ϕ δc − µv γ tδc + µv µ
3 − 3µv µ

2ϕ+ µv µ
2δc − 2µv µϕ δc + 2 γ aµ2

− aγ µψ + 2 aγ µ δb + aγ µ δc − aγ ψ δb + aγ δb δc + 3 aµ3 + 3 aµ2δb + 2 aµ2δc

+ 2 aµ δb δc + γ3r + γ2µ r − γ2µ t+ γ2ψ t− γ2tδc − γ µ2ϕ− γ µ2t+ γ µϕψ − γ µφ δc

− γ µ sαc − γ µ tδc + γ φ sαc − µ3ϕ− µ2ϕ δc

a5 = 2µv aµ δb δc + γ2ϕρ sαb + γ µφ sαc − µv γ2µ rρ+ µv γ
2µ ρ t− µv γ2ψ ρ t+ µv γ

2ρ tδc

+ µv γ µ
2ρ t− µv γ aµψ + 2µv γ aµ δb + µv γ aµ δc − µv γ aψ δb + µv γ aδb δc

+ µv γ µϕψ − µv γ µϕ δc − µv γ µ tδc − γ2ρ stαc − γ aµ sαc − γ asαc δb − 2 γ2µ ρ sαb

− γ µ sαb δb − aγ µψ δb + aγ µ δb δc + µv γ µ ρ tδc + 3µv aµ
3 − µv µ3ϕ+ µv γ

3r + γ3sαb

+ aγ µ3 + aµ3δb + aµ3δc + aµ4 − γ2sαb δb − γ µ2sαb + aγ3rρ2 − aγ3rρ− aγ µ2ψ + aγ µ2δb

+ aγ µ2δc + 3µv aµ
2δb + 2µv aµ

2δc − µv µ2ϕ δc − γ3ρ sαb − µv γ3rρ+ µv γ
2µ r

− µv γ2µ t+ µv γ
2ψ t− µv γ2tδc + 2µv γ aµ

2 − µv γ µ2ϕ− µv γ µ2t+ γ2stαc + aµ2δb δc

a6 = µv aµ
2δb δc − γ3ρ2stαb + γ3ρ stαb − γ aµ2sαc + µv γ

3arρ2 − µv γ3arρ− µv γ aµ2ψ

+ µv γ aµ
2δb + µv γ aµ

2δc − γ aµ sαc δb − µv γ aµψ δb + µv γ aµ δb δc + γ2µϕ, ρ sαb + µv aµ
4

+ µv aµ
3δb + µv aµ

3δc + µv γ aµ
3 − αb γ2µ2s− αb γ µ3s− αb γ2µ sδb − αb γ µ2sδb

+ γ3aρ2sαb − γ3aρ sαb
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The disease free equilibrium point is locally asymptotically stable iff the principal leading mi-

nors of Gn are all positive for n = 1, 2, .., 6. Thus

∆G1 = a1 = µv + 3µ+ φ+ δc + γ > 0

∆G2 =

∣∣∣∣∣∣a1 a3

1 a2

∣∣∣∣∣∣ = a1a2 − a3

∆G3 =

∣∣∣∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣ = a1a2a3 − a21a4 − a23 + a1a5

∆G4 =

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 0

1 a2 a4 a6

0 a1 a3 a5

0 1 a2 a4

∣∣∣∣∣∣∣∣∣∣∣∣
= a1a2 (a3a4 − a2a4 + a5) + a3

(
a22 − a3

)

− a3 (a3a4 − a2a5 + a1a4) + a25

∆G5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 0 0

1 a2 a4 a6 0

0 a1 a3 a5 0

0 1 a2 a4 a6

0 0 a1 a3 a5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a1a2a3 (a4a5 − a3a6)− a1a2a5 (a2a5 − a1a6)

− a1a4 (a4a5 − a3a6) + a4a
2
5 + a1a6 (a2a5 − a1a6 − a3a6) + a25
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∆G6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 0 0 0

1 a2 a4 a6 0 0

0 a1 a3 a5 0 0

0 1 a2 a4 a6 0

0 0 a1 a3 a5 0

0 0 1 a2 a4 a6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= a1a2a3a4a5a6 − a31a36 + a26a

3
3 − a6a35 + 2a6a1a4a

2
5

− a24a21a6a5 − 3a26a1a5a3 + 2a26a
2
1a5a2 − a4a23a5a6 + a4a3a

2
6a

2
1 + a3a2a6a

2
5 − a6a1a22a25

− a2a1a26a23
Therefore the disease free equilibrium point (φ0) of a model system (84) is LAS only if

∆G1, ∆G2, ..., ∆G6 > 0. For ∆G1 > 0. We have µv + 3µ + δc + γ + φ > 0, ∆G2 > 0 if

a1a2 > a3, ∆G3 > 0 if a1a2a3 + a1a5 > a21a4 + a23. Also ∆G4, ∆G5 and ∆G6 are

grater than zero when a1a2a3a4 +a1a2a5 +a3a
2
2 +a1a2a4 +a25 > a1a

2
2a4 +a23 +a23a4 +a1a3a4;

a1a2a3a4a5+a21a2a5a6+a1a3a4a6+a4a
2
5+a1a2a5a6+a25 > a1a

2
2a

2
3a6+a1a

2
2a

2
5+a1a

2
4a5+a1a

2
6+

a1a3a
2
6 and a1a2a3a4a5a6 +a26a

3
3 +2a6a1a4a

2
5 +2a26a

2
1a5a2 +a4a3a

2
6a

2
1 +a3a2a6a

2
5 +a31a

3
6 >

a6a
3
5 + a24a

2
1a6a5 + 3a26a1a5a3 + a4a

2
3a5a6 − a6a1a22a25 + a2a1a

2
6a

2
3 respectively. We therefore

establish a theorem:

Theorem 3.5

G(λ) is stable if and only if the leading principal minors of Gn (for n ∈ R+) are all positive

and thus the disease free equilibrium point is LAS.

3.2.9 Global Stability of the Disease Free Equilibrium Point

The global stability of the disease free equilibrium point of the Newcastle model is done by the

theorem as described by Castillo-Chavez et al. (2002), Mafuta et al. (2013) and Mwanga et al.

(2014). To apply the theorem, we write the model system (22a) to (24) as:

dX (t)

dt
= F (X, I)

dI (t)

dt
= G (X, I) , G (X, 0) = 0

(88)
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where X is the number of susceptible populations and I is the number of the infected popula-

tions whilst the disease free equilibrium point is given given by φ0 = {x∗, 0}. For the system

(88) to be GAS, two conditions must be fulfilled:

(i) dX(t)
dt

= F (X, 0), X∗ is globally asymptotically stable (GAS)

(ii) G (X, I) = BI − Ĝ (X, I), Ĝ (X, I) ≥ 0 for (X, I) ∈ D,

where D is the invariant region and B = DrG (X∗, 0) is an M -matrix with non-negative off

diagonal elements. If the system (88) satisfies condition (i) and (ii) above then the theorem

below holds:

Theorem 3.6

A disease free equilibrium point (φ0) of a model is globally asymptotically stable if and only if

R0 < 1 (LAS) and that condition (i) and (ii) holds.

Proof:

We need to show that condition I and II holds when R0 < 1. From the model system in

equation (22a) to (24); the set of non-infectious classes is given by X = (Sc, Sb) ∈ R2 and for

the infectious classes is given by I = (Ec, Ic, Eb, Ib, Ir, H) ∈ R6. The model system (22a) to

(24) is then transfered into the form of the system (88) as follows:

dX (t)

dt
= F (X, 0) =


µNc (t)− µSc (t)

µNb (t)− µSb (t)

0

 (89)

with φ0 = {Nc (t) , 0, 0, Nb (t) , 0, 0, 0, 0}. The system (89) is linear with the solutions

Sc(t) = Nc (t) + (S(0)−Nc (t))e−µt and Sb(t) = Nb (t) + (Sb(0)−Nb (t))e−µt. It is obvious

that Sc(t)→ Nc (t) and Sb(t)→ Nb (t) as t→∞ depending on the value of initial conditions.
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Thus, φ0 is globally asymptotically stable and therefore condition I holds. At the meantime

dI (t)

dt
= G(X, I) =



(
ψ Ic(t)

Nc
(t) + b Ir(t)

Nb
(t) + dH(t)

κ+H(t)

)
Sc(t)− (µ+ γ)Ec(t)

γEc(t)− (δc + µ)Ic(t)(
ϕIb(t)+aIr(t)

Nb
+ dH(t)

κ+H(t)

)
Sb(t)− (γ + µ)Eb(t)

ργEb(t)− (δb + µ)Ib(t)

(1− ρ)γEb(t)− µIr(t)

αcIc(t) + αb (Ib(t) + Ir(t))− µvH(t)


(90)

We need to show that G (X, I) = BI − Ĝ (X, I), G (X, 0) ≥ 0 for (X, I) ∈ D. The Jacobian

matrix of equation (90) at φ0 produce an M-matrix B as follows:

B =



−(µ+ γ) ψ 0 0 bNc

Nb
dNc

κ

γ −(δc + µ) 0 0 0 0

0 0 −(γ + µ) ϕ a dNb

κ

0 0 ργ −(δb + µ) 0 0

0 0 (1− ρ)γ 0 −µ 0

0 αc 0 αb αb −µv


(91)

and 

Ĝ1(X, I)

Ĝ2(X, I)

Ĝ3(X, I)

Ĝ4(X, I)

Ĝ5(X, I)

Ĝ6(X, I)


=



ψIc

(
1− Sc

Nc

)
0

ϕIb

(
1− Sb

Nb

)
+ aIr

(
1− Sb

Nb

)
0

0

0


(92)

From the equation (91), a matrix B comprises with all negative diagonal entries and all non-

negative off-diagonal entries. Also, by examining equation (92) we find that Ĝ1(X, I) > 0

and Ĝ3(X, I) > 0 whilst Ĝ2(X, I)=Ĝ4(X, I)=Ĝ5(X, I)=Ĝ6(X, I) = 0. At the disease free

equilibrium point Ĝi(X, 0) = 0 for (i = 1, 2, ...6). Since Nc (t) = Sc (t) + Ec (t) + Ic (t)

and Nb (t) = Sb (t) + Eb (t) + Ib (t) + Ir (t), it is almost surely that Sc(0) ≤ Nc (t) and

Sb(0) ≤ Nb (t) for {(Sc(t), Sb(t)} ∈ D. Therefore condition II holds which shows that the

disease free equilibrium point φ0 is GAS forR0 < 1 and hence the theorem (54) holds.
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3.2.10 Stability Analysis of Endemic Equilibrium Point

The global stability of the endemic equilibrium point (EEP ) of the model is explored by using

the Lyapunov method and the LaSalle’s Invariant principle. To prove the global stability of

point φ∗, lets consider a continuous and differentiable Lyapunov function defined as:

P (t) =
8∑

n=1

Ti (t) (yi − y∗i ln yi) , Ti > 0 (93)

where Ti (t) is a Lyapunov factor, yi a population variable at compartment i and y∗i is the equi-

librium point of the model at compartment i for i = (1, 2, .., 8); where y = y1, y2, ...y8} with

y1 = Sc, y2 = Ec, y3 = Ic, y4 = Sb, y5 = Eb, y6 = Ib, y7 = Ir, y8 = H . From equation (93),

the Lyapunov function L(t) can be written as follows:

P(Sc, Ec, Ic, Sb, Eb, Ib, Ir, H) = T1 (y1 − y∗1 ln y1) + T2 (y2 − y∗2 ln y2) + T3 (y3 − y∗3 ln y3)

+ T4 (y4 − y∗4 ln y4) + T5 (y5 − y∗5 ln y5) + T6 (y6 − y∗6 ln y6)

+ T7 (y7 − y∗7 ln y7) + T8 (y8 − y∗8 ln y8)

(94)

Since a function P is differentiable then from equation (93) the time derivative of P(t) along

the solution of the model system in equation (22a) to (24) is:

dP(t)

dt
= T1 (t)

(
1− y∗1

y1

)
dy1
dt

+ T2 (t)

(
1− y∗2

y2

)
dy2
dt

+ T3 (t)

(
1− y∗3

y3

)
dy3
dt

+ T4 (t)

(
1− y∗4

y4

)
dy4
dt

+ T5 (t)

(
1− y∗5

y5

)
dy5
dt

+ T6 (t)

(
1− y∗6

y6

)
dy6
dt

+ T7 (t)

(
1− y∗7

y7

)
dy7
dt

+ T8 (t)

(
1− y∗8

y8

)
dy8
dt

(95)

At the equilibrium point (y∗) we have

µNc = λ1y
∗
1,

λ1 =

(
ψ
Ic(t)

Nc

+ b
Ir(t)

Nb

+
dH(t)

κ+H(t)
+ µ

)
,

µ+ γ =
λ2y

∗
1

y∗2
,

λ2 =

(
ψ
Ic(t)

Nc

+ b
Ir(t)

Nb

+
dH(t)

κ+H(t)

)
,

µ+ δc =
γy∗2
y∗3

,
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µNb = λ3y
∗
4,

λ3 =

(
ϕIb(t) + aIr(t)

Nb

+
dH(t)

κ+H(t)
+ µ

)
γ + µ =

λ4y
∗
4

y∗5
,

λ4 =

(
ϕIb(t) + aIr(t)

Nb

+
dH(t)

κ+H(t)

)
δb + µb =

ργby
∗
5

y∗6
,

µ =
(1− ρ)γby

∗
5

y∗7
,

µv =
αcy

∗
3 + αb (y∗6 + y∗7)

y∗8
.

By substituting y∗ into equation (95) and through simplifications, we then have

dP(t)

dt
= −T1 (t)λ1y1

(
1− y∗1

y1

)2

+ T2 (t)λ2y1

(
1− y∗2

y2

)(
1− y∗1

y1y∗2

)
+ T3 (t) γy2

(
1− y∗3

y3

)(
1− y∗2

y2y∗3

)
− φ4 (t)λ3y4

(
1− y∗4

y4

)2

+ T5 (t)λ4y4

(
1− y∗5

y5

)(
1− y∗4y5

y4y∗5

)
+ T6 (t) ργy5

(
1− y∗6

y6

)(
1− y5

y5y∗6

)
+ T7 (t) (1− ρ)γy5

(
1− y∗7

y7

)(
1− y∗5

y∗7

)
+ T8 (t)

(
1− y∗8

y8

)(
1− αcy

∗
3 + αb (y6 + y7)

αcy3 + αb (y6 + y7) y∗8

)
(96)

Thus from the equation (96)

dP(t)

dt
= r + s (97)

where

r = T2 (t)λ2y1

(
1− y∗2

y2

)(
1− y∗1

y1y∗2

)
+ T3 (t) γy2

(
1− y∗3

y3

)(
1− y∗2

y2y∗3

)
+ T5 (t)λ4y4

(
1− y∗5

y5

)(
1− y∗4y5

y4y∗5

)
+ T6 (t) ργy5

(
1− y∗6

y6

)(
1− y5

y5y∗6

)
+ T7 (t) (1− ρ)γy5

(
1− y∗7

y7

)(
1− y75

y∗7

)
+ T8 (t)

(
1− y∗8

y8

)(
1− αcy

∗
3 + αb (y6 + y7)

αcy3 + αb (y6 + y7) y∗8

)
and

s = −T1 (t)λ1y1

(
1− y∗1

y1

)2

− T4 (t)λ3y4

(
1− y∗4

y4

)2

(98)
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From the equation (97) and (98), the global stability holds only if dP(t)
dt
≤ 0. Now if r < s then

dP(t)
dt

will be negative definite which implies that dP(t)
dt

< 0. But dP(t)
dt

= 0 if and only if yi = y∗i

for (i = 1, 2, ...8). Hence the largest invariant set
{
y∗1, y

∗
2, ...y

∗
8 ∈ D : dP(t)

dt
= 0
}

is a singleton

{y∗}. By the LaSalle’s invariant principle(La Salle, 1976), it is then implies that y∗ is globally

asymptotically stable in D if r < s and thusR0 > 1. We then establish the theorem below:

Theorem 3.7

The Endemic Equilibrium Point (EEP ) of a ND (22a) to (24) is globally asymptotically stable

if and only if R0 > 1.

3.3 Newcastle Disease model with Interventions

In this section, the Newcastle disease basic model as described in equation (22a) to (24) is

extended to include time dependent control terms ui (t) for (i = 1, 2, 3) aiming at increasing

the population of healthy chicken, reducing the number of the infected population of the vil-

lage chicken as well as the Newcastle disease virus from the environment. The variable u1 (t)

represent the control efforts to reduce infections to the susceptible chicken through vaccina-

tion, u2 (t) represents the control efforts to reduce the contacts of the infected chicken with the

susceptible chicken by the culling strategy, and u3 (t) represents the control of NDV from the

environment through improving of the environmental hygiene. It is assumed that all control

variables ui (t) are Lebesgue measurable such that 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 and 0 ≤ u3 ≤ 1. In

the new model, the terms u1 (t)Sc and u2 (t) Ic (t) represents the vaccination of the susceptible

chicken and the culling of the infected chicken respectively.

The Village chicken population is now divided into four subpopulations: the susceptible chicken

Sc (t), the latently infected Ec (t), the severely infected chicken Ic (t) and the vaccinated village

chicken population V (t). Thus, the total village chicken population become Nc (t) = Sc (t) +

Ec (t) + Ic (t) + V (t). We assume that the susceptible village chicken are recruited by the

density dependent birth rate µNc and the chicken with low immunity that reverted back from

the vaccinated population at the rate φV (t). Chicken at the susceptible population acquires

Newcastle disease virus when interacts with the mildly infected wild birds, Ir (t), the severely

infected chicken, Ic (t) and the unhygienic environment,H (t) and moves to the latently infected
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class at the rate λ1 (Ic, Ir, H) defined by

λ1 (Ic, Ir, H) =

(
ψ
IcSc
Nc

+ b
IrSc
Nb

+
dH

k +H

)
Sc (99)

After some days, individuals in the latently infected population of the village chicken progress

to the severely infected population at the rate γEc. The severely infected population of village

chicken is reduced at the rate (µ+ δc + u2) Ic. In the model we assume that the mortality of

NDV in the environment is increased by the rate (µv + u3)H(t). The wild birds population

is also divided into four subpopulations: the susceptible population Sb (t), the latent popula-

tion Eb (t), the severely infected wild bird population, Ib (t) and the mildly infected wild bird

population, Ir (t), which gives its total population as Nb (t) = Sb (t) + Eb (t) + Ib (t) + Ir (t).

The susceptible wild bird population is recruited by the time dependent rate µNb through birth.

However, the susceptible village chicken acquires NDV when interacts with the severely in-

fected wild birds, Ib (t), the mildly infected wild birds, Ir (t), and the unhygienic environment,

E (t) and moves to the latently infected class at the transmission rate λ2 (Ib, Ir, H) defined by

λ2 (Ib, Ir, H) =

(
ϕIb(t) + aIr(t)

Nb

+
dH(t)

κH(t)

)
Sb(t) (100)

After some days depending on the status of the wild birds in the latently infected population,

a proportion ρ of the latently infected wild bird population progress to the severely infected

population and the remained proportion, 1 − ρ, progress to the mildly infected population of

wild birds. The model assumes that village chicken and wild bird do not recover after getting

sick from the Newcastle disease but dies due to disease induced death at the rate δc and δb

respectively. The mildly infected wild bird population does have disease induced mortality, its

assumed that they only die naturally. The rest of population dies at the same natural death µ. The

environment has only one class denoted by a variable H (t). Other parameters of the model are

described in Table (2). All variables are assumed to be non-negative. Due to the complex nature

of interactions between the village chicken population and the wild birds, we are not introducing

the control variables in the wild bird population but the model assumes that, the environment is

the factor which brings the two population together. The general interactions between village

chicken, wild birds and NDV infested environment with control measures are presented by the

schematic flow diagram in Fig.5 and the non-linear differential equations describing the model

are given in model system (101) to (103).
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3.3.1 Model Flow Diagram

Based on the assumptions made on the optimal control, the schematic diagram of the ND with

controls is summarized in the flow diagram as follows:
 

                                                             

                                                                                                        cSu1  

          V                                                                                                  

  HII rc ,,1  cE   

              cN1  

        cS                          cE                                              cc Iu2              V  

                                              Huv 3                                                                                                    cI  

  

                                                                                                                       bE)1(   

bN2  

                                            HII rb ,,2                          bE                                       bb I   

            bS                                         bE  

   V 

H  

   

Figure 5: The flow chart showing the dynamics of ND with vaccination, culling and environmental

hygiene and sanitation control measures.

From the above assumptions and the model flowchart, the following dynamical system with

control measures u1, u2 and u3 is formulated as follow:

Chicken

dSc(t)

dt
= µNc + φV −

(
ψ
Ic(t)

Nc

+ b
Ir(t)

Nb

+
dH(t)

κ+H(t)
+ µ

)
Sc(t)− u1Sc(t) (101a)

dEc(t)

dt
=

(
ψ
Ic(t)

Nc

+ b
Ir(t)

Nb

+
dH(t)

κ+H(t)

)
Sc(t)− (µ+ γ)Ec(t) (101b)

dIc(t)

dt
= γEc(t)− (δc + µ+ u2)Ic (t) (101c)

dV (t)

dt
= u1(t)Sc (t)− (µ+ φ)V (t) (101d)
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Wild birds

dSb(t)

dt
= µNb −

(
ϕIb(t) + aIr(t)

Nb

+ d
H(t)

κ+H(t)
+ µ

)
Sb(t) (102a)

dEb(t)

dt
=

(
ϕIb(t) + aIr(t)

Nb

+ d
H(t)

κ+H(t)

)
Sb(t)− (γ + µ)Eb(t) (102b)

dIb(t)

dt
= ργEb(t)− (δb + µ)Ib(t) (102c)

dIr(t)

dt
= (1− ρ)γEb(t)− µIr(t) (102d)

dH(t)

dt
= αcIc(t) + αb (Ib(t) + Ir(t))− (µv + u3)H (t) (102e)

Environment

dH(t)

dt
= αcIc(t) + αb (Ib(t) + Ir(t))− (µv + u3)H (t) (103)

With initial conditions,

Sc(0) > 0, Ec(0) ≥ 0, Ic(0) ≥ 0, V (0) ≥ 0, Sb(0) > 0, Eb(0) ≥ 0, Ib(0) ≥ 0, Ir(0) ≥ 0,

H(0) ≥ 0, u1(0) ≥ 0, u2(0) ≥ 0, u3(0) ≥ 0.

3.3.2 Formulation of the Cost Function

From the Newcastle model with controls in equation (101) − (103), we use the variable X (t)

to represent the disease state variables and ui (t) to represent different control efforts used for

reducing the spread of ND among the village chicken. Our state equation is now appear as:

dX

dt
=M (t,X(t), ui (t)) (104)

The time dependent control variable ui (t) (i = 1, 2, 3) is considered on the time interval dt0, tfe

and allows the variable X (t) to be minimized at any point in the interval. Our purpose is to

minimize the number of the severely infected village chicken and the concentration of NDV

in the surroundings while keeping the cost of control as low as possible. Therefore, to reach

J (u∗ (t)) at a minimum cost we formulate an optimal cost function of our problem over the

optimal set of control U = {u1 (t) , u2 (t) , u3 (t)} as follows:

J = min
ui(t)∈U

∫ tf

t0

(
A1u1 (t)Sc (t) + A2u2 (t) Ic (t) + A3u3 (t)H (t) +

1

2

3∑
i=1

Liu
2
i (t)

)
dt

(105)
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subject to:
dX

dt
=M (t,X(t), u (t)) , t ∈ [t0, tf ]

X (0) = X0, X (tf )

ui (t) ∈ U : {ui (t) ; 0 ≤ ui (t) ≤ 1}

X (t) > 0, ui (t) ≥ 0

whereM (X (t)) denote the relative weight of the controls. In the equation (105), A1Sc, A2Ic

and A3H are the costs associated with the control of the susceptible village chicken, severe

infected wild birds and the unhygienic environment respectively, while the function L1

2
u21,

L2

2
u22

and L3

2
u23, are the additional costs associated with each control measure. We choose quadratic

terms in the controls in the objective functional (105) with the assumption that the cost are in a

nonlinear form and also to avoid the bang bang or singular optimal control cases (Joshi et al.,

2006; Kinene et al., 2015; Asamoah et al., 2017). Therefore, it is needed to find the optimal

control (u∗1 (t) , u∗2 (t) , u∗3 (t)) such that,

J (u∗i (t)) = min
ui(t)∈U

{J (ui (t))} (106)

Then, the Pontryagin’s Maximum Principle (PMP ) as described in (Lenhart and Workman,

2007; Anita et al., 2011) is applied to find the optimal solution of the model (104). Firstly, the

Hamiltonian function H (t,X (t) , u (t) , λ (t)) is formulated by introducing the adjoint func-

tion, λ (t), which saves as the Lagrangian multiplier for our optimal control model and later the

Pontryagin’s Maximum Principle necessary conditions (adjoint, transvesality and the optimality

conditions) are applied to find the optimal solution J (u∗ (t)) of our model.

3.3.3 Analysis of an Optimal Control Model

Using the formulated optimal control problem (104) constrained with the control variables

{ui (t) ∈ U| 0 ≤ ui (t) ≤ 1} , t ∈ [t0, tf ], and the state variables Sc (t), Ec (t), Ic (t), V (t),

Eb (t), Ib (t), Ir (t), and H (t) in (105), then we prove the following:

(i) Existence of the optimal controls

(ii) Characterization of the optimal control problem

57



(iii) Find the numerical solution of the optimal control model

(iv) And we investigate how the optimal control variables depends on various parameters of

the system (101)− (103) (Joshi et al., 2006).

3.3.4 Existence of the Optimal Controls

An Optimal control problem exists if the five necessary conditions that defines the optimal

solutions {ui (t) ∈ U| 0 ≤ ui (t) ≤ 1} , t ∈ [t0, tf ] of the problem (101) − (103) derived by

Pontryagin’s Maximum Principle are satisfied. Before proving for the existence of the optimal

solution, we state the following theorem;

Theorem 3.8

Given an optimal problem N (t,X (t) , ui (t)), subject to its initial boundary condition

t ∈ [t0, tf ] with a state variable X (t) ∈ R9 and a control variable ui (t) ∈ R3, then there exists

an optimal solution J (u∗i ) such that J (u∗i ) = min
ui∈U
{(J (ui)} for i = (1, 2, 3) if the following

necessary conditions are satisfied;

(i) The set of controls and the corresponding state variables is non empty.

(ii) The control set U is convex and closed.

(iii) The right hand side of the state system is bounded by the linear function in the state and

control variables

(iv) The integrand of the objective function is convex.

(v) There exists constants a1, a2 > 0 and ω > 1 such that the integrand of the objective

function is bounded below by a1 (|u1|+ |u2|+ |u3|)
ω
2 − a2

Proof: the existence of an optimal control is verified by conditions stated in (Fleming and

Rishel, 1975). From our optimal problem M ((X) (t) , u (t)) in equation (104), the set of all

state variablesX (t) and the control variables {ui (t) ∈ U| 0 ≤ ui (t) ≤ 1} , t ∈ [t0, tf ] are non-

negative, hence the first condition is satisfied (Kung’aro et al., 2015). By definition, the optimal
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solution u∗i (t) ∈ Rn is convex and bounded in U and thus the second condition is also satisfied

(Collins et al., 2009; Mpeshe et al., 2014a; Mlay et al., 2015). sd The optimal system (104)

is bounded which determines the compactness needed for the existence of the optimal control

(Athithan and Ghosh, 2015) and hence the third condition holds. In addition, the integrand in

the functional (105),

A1u1 (t)Sc (t) + A2u2 (t) Ic (t) + A3u3 (t)H (t) +
L1

2
u21 (t) +

L2

2
u22 (t) +

L3

2
u23 (t)

is clearly convex on the control set U which proves the fourth condition. According to Mlay

et al. (2015), since the state variables are bounded therefore the integrand is also bounded below

as;

A1u1 (t)Sc (t)+A2u2 (t) Ic (t)+A3u3 (t)H (t)+
1

2

3∑
i=1

Liu
2
i (t) ≥ a1

(
5∑
j=1

|uj|

)ω
2

−a2 (107)

that satisfies the last condition. With those five conditions satisfied, we therefore conclude that

there exist control variables u∗i such that, J (u∗i (t)) = min
ui(t)∈U

{(J (ui (t))}. And this completes

the proof of the existence of the optimal control.

3.3.5 Characterization of the Optimal Control

Here the Pontryagin’s Maximum Principle (PMP) is applied to derive the necessary conditions

that an optimal control solutions must satisfy (Joshi et al., 2006; Lenhart and Workman, 2007).

The Principle is used to obtain the differential equations for the adjoint variables, correspond-

ing boundary conditions as well as the characterization of an optimal solution J (u∗i ) for the

optimal model (104). Characterization gives a representation of an optimal control in terms

of state variables by minimizing the Hamiltonian, H (X, u, λ), with respect to the controls and

the adjoint function (Namawejje et al., 2015; Kung’aro et al., 2015). To obtain the minimum

Lagrangian of the optimal problem, we establish the Hamiltonian function H (X, u, λ), of the

control problem with respect to its state variable X (t), control variable u (t) and the adjoint

function λ (t) as follows:

H (X (t) , u, λ) = A1u1 (t)Sc(t) + A2u2 (t) Ic(t) + A3u3 (t)H(t) +
1

2

3∑
i=1

Liu
2
i (t) +

9∑
j=1

λjFj

(108)
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where λ1, λ2, .., λ9 stands for the adjoint functions and F1, F2, ..., F9 stands for the coefficient

of the state variable i in the ith equation of the optimal control problem. Now, the expanded

form of the Hamiltonian equation (108) becomes:

H (X (t) , u, λ) = A1u1(t)Sc (t) + A2u2(t)Ic (t) + A3u3(t)H (t) +
L1

2
u21 (t) +

L2

2
u22 +

L3

2
u23

+ λ1

(
µNc (t) + ϕV (t)−

(
ψ
Ic (t)

Nc (t)
+ b

Ir (t)

Nb (t)
+

dH (t)

κ+H (t)
+ µ+ u1

)
Sc

)
+ λ2

((
ψ
Ic (t)

Nc (t)
+ b

Ir (t)

Nb (t)
+

dH (t)

κ+H (t)

)
Sc (t)− (µ+ γ)Ec (t)

)
+ λ3 (γEc (t)− (δc + µ+ u2 (t))Ic (t))

+ λ4 (u1(t)Sc (t)− (µ+ ϕ)V (t))

+ λ5

(
µNb (t)−

(
φIb (t) + aIr (t)

Nb

+
dH (t)

κ+H (t)
+ µ

)
Sb

)
+ λ6

((
ϕIb (t) + aIr (t)

Nb (t)
+

dH (t)

κ+H (t)

)
Sb (t)− (γ + µ)Eb

)
+ λ7 (ργEb (t)− (δb + µ)Ib (t))

+ λ8 ((1− ρ)γEb (t)− µIr (t))

+ λ9 (αcIc(t) + αb (Ib (t) + Ir (t))− (µv + u3 (t))H (t))

(109)

Now, after having the the Hamiltonian function, H (X, u, λ), of the optimal problem, we need

to find the minimum value of the Lagrangian equation.

Theorem 3.9

Given {u∗1 (t) , u∗2 (t) , u∗3 (t)} be the set of the optimal control J (u∗i (t)) and S∗c , E∗c , I∗c , V , S∗b ,

E∗b , I∗b , I∗r and E∗ be the corresponding solutions of the problem that minimizes J (u∗i ) over

U , then there exists an adjoint λ (t) such that together with X (t), u (t) and λ (t) satisfying the

following conditions:

dλ1
dt

= −∂H
∂Sc

,
dλ2
dt

= − ∂H
∂Ec

=, ...,=
dλ9
dt

= −∂H
∂H

(adjoint condition) (110)

λ1 (tf ) = λ2 (tf ) =, ..., λ9 (tf ) = 0 (transversality condition) (111)

∂H
∂ui

= 0 at u∗i = 0, j = 1, 2, 3, (optimality condition) (112)
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Proof: to prove this, the function (109) is differentiated partially w.r.t to its state variables

which gives the adjoint system . With the Pontryagin’s Maximum Principle, we get the follow-

ing adjoint system evaluated at the optimal control pair corresponding to the state variables:

dλ1
dt

= −∂H
∂Sc

= −A1u
∗
1 (t) + (λ1 − λ3) ∆1 + λ1 (µ+ u∗1 (t)− Λ1)− λ4u∗1 (t)

dλEc

dt
= − ∂H

∂Ec
= −λ1Λ1 − λ3γ + (µ+ γ)λ2 + (λ1 − λ3)

ψS∗c (t) (N∗c (t)− I∗c (t))

N2
c (t)

dλ3
dt

= −∂H
∂Ic

= −A2u
∗
2 (t)− λ1Λ1 + (λ1 − λ3)

ψS∗c (t) (N∗c (t)− I∗c (t))

N2
c (t)

+ λ3 (δc + µ+ u∗2)

− λ9αc
dλV
dt

= −∂H
∂V

= −λ1Λ1 + µλ4 − (λ1 − λ4)φ− (λ1 − λ2)
ψI∗c (t)S∗c (t)

N2
c (t)

dλ5
dt

= − ∂L
∂Sb

= −λSb
Λ2 + µλSb

+
(λ1 − λ2) bI∗r (t)S∗c (t)

N2
b (t)

+ ∆2

dλEb

dt
= − ∂H

∂Eb
= −λ1Λ2 + λ6 (γ + µ)− λIrγ − (λ7 − λ8) γρ−

(
λS∗

c
− λEc

)
bI∗r (t)S∗c (t)

N2
b (t)

−∆3

dλ7
dt

= −∂H
∂Ib

= −λ5Λ2 − λ9αb + λ7 (δb + µ)− (λ1 − λ2) bI∗r (t)S∗c (t)

N2
b (t)

+ ∆4

dλ8
dt

= −∂H
∂Ir

= −λ5Λ2 − αbλH + λ8µ+

(
bS∗c (λ1 − λ2)

N2
b

)
+ (λ5 − λ6)Sb (t)

(
a(N∗b (t)− I∗r (t))− ϕI∗b (t)

N2
b (t)

)
dλ9
dt

= −∂H
∂H

= (λ1 − λ2)
dκS∗c (t)

(κ+H∗ (t))2
+ (λ5 − λ6)

dκS∗b (t)

(κ+H∗ (t))2
+ (µv + u∗3)λ9

(113)

where as;

∆1 =
(
ψ I∗c (t)(N

∗
c (t)−S∗

c (t))
N2

c (t)
+ bI∗r (t)

N2
c (t)

+ dH∗(t)
κ+H∗(t)

)
, ∆2 = (λ5 − λ6)

(
(N∗

b (t)−Sb(t))(ϕIb(t)+aIr(t))
N2

b (t)

)
∆3 =

(λ5−λ6)(ϕI∗b (t)+aI∗r (t))S∗
b (t)

N2
b (t)

, ∆4 = (λ5 − λ6)Sb (t)
(
Nb(t)ϕ−(ϕIb(t)+aIr(t))

N2
b (t)

)

With the Pontryagin’s Maximum Principle, we prove the optimality condition and find

the optimal solution of the optimal control model.
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Theorem 3.10

An optimal control u∗i (t) ∈ Rm that minimizes J (u∗i (t)) over the region U is given by

u∗i (t) = min
ui(t)∈U

{max (0, u∗ (t)) , 1}

Proof: To prove this we apply the optimality condition:

∂H
∂ui

= 0 for i = 1, 2, 3 (114)

Now, using equation (109) and (112), the Lagrangian function evaluated at u∗i (t) gives the

following optimal control solutions:

u∗1 (t) =
1

L1

((λ1 − λ4)− A1)Sc (t) (115)

u∗2 (t) =
1

L2

(λ3 − A2) Ic (t) (116)

and

u∗3 (t) =
1

L3

(λ9Hc (t)− A3) (117)

By using the transvesality condition λi (tf ) = 0 (for i = 1, 2, ..., 9) and the boundedness

condition of our control variables, U = {u∗i (t) | 0 ≤ u∗i (t) ≤ 1} (with i = 1, 2, 3), the char-

acterization of optimal control, u∗i (t), is bound below by zero and by one above. Now, lets

consider the control bound , 0 ≤ u∗1 (t) ≤ 1, this means that u∗1 (t) is bound below by zero and

by one above. By using the bounds for the control u1 (t), we get the following solution:

u∗1 (t) =


0 if 1

L1
((λ1 − λ4)− A1)S

∗
c (t) ≤ 0

1
L1

((λ1 − λ4)− A1)S
∗
c (t) if 0 ≤ u∗1 (t) ≤ 1

1 if 1
L1

((λ1 − λ4)− A1)S
∗
c (t) ≥ 1

(118)

Hence, u∗1 (t) is explicitly expressed as:

u∗1 (t) = min
{

max
(

0,
1

L1

((λ1 − λ4)− A1)S
∗
c (t)

)
, 1

}
(119)

like the boundedness in u∗1 (t) , the rest of the control variable will be bound as follows:

u∗2 (t) =


0 if 1

L2
(λ3 − A2) Ic (t) ≤ 0

1
L2

(λ3 − A2) Ic (t) if 0 ≤ u∗1 (t) ≤ 1

1 if 1
L2

(λ3 − A2) Ic (t) ≥ 1

(120)
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u∗3 (t) =


0 if 1

L3
(λ9H

∗ (t)− A3) ≤ 0

1
L3

(λ9H
∗ (t)− A3) if 0 ≤ u∗1 (t) ≤ 1

1 if 1
L3

(λ9H
∗ (t)− A3) ≥ 1

(121)

and the controls u∗2 (t) and u∗3 (t) are therefore expressed explicitly as follows:

u∗2 (t) = min
{

max
(

0,
1

L2

(λ3 − A2) Ic (t) , 1

)}
u∗3 (t) = min

{
max

(
0,

1

L3

(λ9H
∗ (t)− A3) , 1

)} (122)

From the equation (119) and (122), it is noted that, the optimality system consists of the state

equations, the adjoint system together with the initial and transvesality conditions and the opti-

mality conditions. The optimal control solutions will be shown numerically in Chapter four of

the Thesis.

3.4 Cost-Effectiveness Analysis (CEA)

In this section, the cost-effectiveness analysis (CEA) for control measures of the ND in the

village chicken is done. CEA is an economic evaluation that allows the comparison of the costs

and the consequence of two or more strategies that competes for the limited available resources.

The results of this analysis informs decision-makers who have to plan for the allocation of

the limited health care resources. Cost effectiveness analysis can be done in various ways

depending on the objectives and the nature of the problem. According to (Okosun et al., 2013;

Kinene et al., 2015; Bornaa et al., 2015), there are three types of cost-effectiveness ratios:

(i) The Average Cost-Effectiveness Ratio (ACER)

This ratio deals with a single intervention and evaluates the intervention against its base-

line option.

(ii) The Marginal Cost-Effectiveness Ratio (MCER)

Is used to study the specific costs and effects when a programme is expanded or con-

tracted.
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(iii) The Incremental Cost-Effectiveness Ratio (ICER) is usually used for comparing between

the costs and effects of two interventions which competes under the scarcity of resources.

In this thesis, the Incremental Cost-Effectiveness Analysis is employed to analyse a couple of

strategies as in the Table 4:

Table 4: A list of Control Strategies and their combinations

Variable Description of the control strategy

Strategy A
Vaccination of the susceptible village

chicken

Strategy B
Culling of the infected village chicken

from the flock

Strategy C Environmental hygiene

Strategy D
Vaccination of the susceptible chicken

and culling of the infected

chicken from the flocks

Strategy E
Vaccination of the susceptible chicken

and cleanliness of the flocks

Strategy F
Culling of the infected village chicken

from the flock and cleanliness

of the flocks

Strategy G
Combination of vaccination, culling and

environmental hygiene strategies

3.4.1 Incremental Cost-Effectiveness Analysis (ICER)

When using the ICER method, two control strategies are compared while looking for the

cheaper and most cost-effective intervention to users (Okosun et al., 2013; Rodrigues et al.,

2014; Hove-Musekwa et al., 2014). The ICER is represented as the ratio of the difference in

cost between two interventions to the difference in outcomes between the two interventions,
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thus,

ICER =
Net change in cost

change in the total number of infections averted
(123)

In the ratio (123), the net change in the intervention costs is the difference between the costs

of the two interventions and the change in the number of infections averted is the difference

between the total number of infection cases without control and the number of cases of the two

competing control strategies.

Table 5: The Cost and Infection averted for different controls Strategies

Strategy Infection averted Total cost in US Dollar

No control 0 0

Strategy A 2.3234× 109 2.1457× 103

Strategy B 1.6624× 109 2.0286× 106

Strategy D 2.3405× 109 4.9651× 105

Strategy E 2.3319× 109 3.5456× 104

Strategy F 1.9659× 109 1.3938× 106

Strategy G 2.3488× 109 5.0648× 105

Table 6: The arrangement of the Control strategies in ascending order of the total

Infection averted

Strategy Infection averted Total Cost in US Dollar

No control 0 0

Strategy B 1.6624× 109 2.0286× 106

Strategy F 1.9659× 109 1.3938× 106

Strategy A 2.3234× 109 2.1457× 103

Strategy E 2.3319× 109 3.5456× 104

Strategy D 2.3405× 109 4.9651× 105

Strategy G 2.3488× 109 5.0648× 105
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From Table 6, the ICER values are computed as follows:

ICER(Strategy B) =
2.0286× 106

1.6624× 109
= 0.00122

ICER(Strategy F) =
1.3938× 105 − 2.0286× 106

1.9659× 109 − 1.6624× 109
= −0.0062

ICER(Strategy A) =
2.1457× 103 − 1.3938× 106

2.3405× 109 − 2.3319× 109
= −0.009389

ICER(Strategy D) =
5.0648× 105 − 4.9651× 105

2.3488× 109 − 2.3405× 109
= 2.82× 10−7

ICER(Strategy G) =
1.3525× 106 − 1.3495× 106

2.3488× 109 − 2.3234× 109
= 0.00012

ICER(Strategy E) =
1.958× 104 − 1.3525× 106

2.3319× 109 − 2.3488× 109
= 0.07887

Table 7: The Cost and Infection averted for Control B, F, A, D, G and E

Strategy Infection averted
Total Cost in US

Dollar
ICER

No control 0 0 -

Strategy B 1.6624× 109 3.7193× 106 0.00122

Strategy F 1.9659× 109 3.484× 106 −0.0062

Strategy A 2.3234× 109 5.6662× 103 −0.0094

Strategy D 2.3405× 109 1.3495× 106 2.82× 10−7

Strategy G 2.3488× 109 1.3525× 106 0.00012

Strategy E 2.3319× 109 1.9580× 104 0.07887

Comparing strategy B and strategy F, the ICER of strategy F is less than ICER of strategy B.

Hence strategy B is more costly and less effective than strategy F. Therefore we omit strategy

B and recalculate ICER again for the remaining strategies.
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Table 8: The Cost and Infection averted for Control F, A, D, G and E

Strategy Infection averted
Total Cost in US

Dollar
ICER

Strategy F 1.9659× 109 1.3938× 106 0.00071

Strategy A 2.3234× 109 2.1457× 103 −0.00389

Strategy E 2.3319× 109 3.5456× 104 0.00392

Strategy D 2.3405× 109 4.9651× 105 0.05361

Strategy G 2.3488× 109 5.0648× 105 0.0012

In Table 8, the ICER values are computed as follows:

ICER(Strategy F) =
1.3938× 106

1.9659× 109
= 0.00071

ICER(Strategy A) =
2.1457× 103 − 1.3938× 106

2.3234× 109 − 1.9659× 109
= −0.00389

ICER(Strategy E) =
3.5456× 104 − 2.1457× 103

2.3319× 109 − 2.3234× 109
= 0.00392

ICER(Strategy D) =
4.9651× 105 − 3.5456× 104

2.3405× 109 − 2.3319× 109
= 0.05361

ICER(Strategy G) =
5.0648× 105 − 4.9651× 105

2.3488× 109 − 2.3405× 109
= 0.0012

Comparing strategy F and strategy A, the ICER of strategy A is less than ICER of strategy F.

Hence strategy F is more costly and less effective than strategy A. Therefore we omit strategy

F and recalculate ICER again for the remaining strategies.
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Table 9: The Cost and Infection averted for Control A, E, D and G

Strategy Infection averted
Total Cost in US

Dollar
ICER

Strategy A 2.3234× 109 2.1457× 103 9.24× 10−7

Strategy E 2.3319× 109 3.5456× 104 0.00392

Strategy D 2.3405× 109 4.9651× 105 0.05361

Strategy G 2.3488× 109 5.0648× 105 0.0012

In Table 9, the ICER values are computed as follows:

ICER (Strategy A) =
2.1457× 103

2.3234× 109
= 9.224× 10−7

ICER (Strategy E) =
3.5456× 104 − 2.1457× 103

2.3319× 109 − 2.3234× 109
= 0.00392

ICER (Strategy D) =
44.9651× 105 − 3.5456× 104

2.3405× 109 − 2.3319× 109
= 0.05361

ICER (Strategy G) =
5.0648× 105 − 4.9651× 105

2.3488× 109 − 2.3405× 109
= 0.0012

Comparing strategy A and strategy E, the ICER of strategy A is less than ICER of strategy E.

Hence strategy E is more costly and less effective than strategy A. Therefore we omit strategy

E and recalculate ICER again for the remaining strategies.

Table 10: The Cost and Infection averted for Control A, D and G

Strategy Infection averted
Total Cost in US

Dollar
ICER

Strategy A 2.3234× 109 2.1457× 103 9.24× 10−7

Strategy D 2.3405× 109 4.9651× 105 0.02891

Strategy G 2.3488× 109 5.0648× 105 0.0012

In Table 10, the ICER values are computed as follows;

ICER (Strategy A) =
2.2826× 105 − 3.6979× 106

2.3818× 109 − 2.3488× 109
= 2.44× 10−6
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ICER (Strategy D) =
4.9651× 105 − 2.1457× 103

2.3405× 109 − 2.3234× 109
= 0.02891

ICER (Strategy G) =
5.0648× 105 − 4.9651× 105

2.3488× 109 − 2.3405× 109
= 0.0012

Comparing strategy A and strategy D, the ICER of strategy A is less than ICER of strategy D.

Hence strategy D is more costly and less effective than strategy A. Therefore we omit strategy

D and recalculate ICER again for the remaining strategies.

Table 11: The Cost and Infection averted for Control A and E

Strategy Infection averted
Total Cost in US

Dollar
ICER

Strategy A 2.3234× 109 2.1457× 103 9.24× 10−7

Strategy G 2.3488× 109 5.0648× 105 0.0199

In Table 11, the ICER value of strategy E is computed as follows;

ICER (Strategy G) =
5.0648× 105 − 2.1457× 103

2.3488× 109 − 2.3234× 109
= 0.0199

In Table 11, it is noted that strategy A (vaccination only) is less costly and more effective than

strategy G (combination of vaccination and environmental hygiene and sanitation) and the rest

of other strategies.

3.5 Economic Burden of Newcastle Disease

An economic burden is a total loss in output that the investor can get compared to the expected

turn-over (Asante and Asenso-Okyere, 2003; Rist et al., 2015; Ding et al., 2016). In health

perspectives, the economic burden is considered as the total medical costs associated with the

disease illness of the host as well as some measures of the income which are foregone as a result

of disease morbidity and mortality (Sachs and Malaney, 2002; Asante and Asenso-Okyere,

2003; Bloom et al., 2012; Hailu et al., 2017). Depending on the nature of the disease, medical

costs includes expenditures on prevention, diagnosis, treatment and care of the disease while
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employing the prospective costing approach at micro and macro levels (Singh et al., 2014; Rist

et al., 2015). The occurrence of diseases in a particular area normally affects the health of the

hosts and may cause loss as well as the re-allocation of resources at household level to cover

some of the medical expenses related to the disease.

In this case, the analysis address the economic consequences of the ND due to loss incurred

through the re-allocation of resources at microeconomic level. In the analysis we consider both

direct and indirect costs of production which are presented by the constraint equationQ defined

by;

Q = f (K,L, ϑ,N ) (124)

where variables in the function Q are defined as;

K = Capital stock or investment

L = Labor force (Workers)

ϑ = Indirect costs

N = Newcastle disease prevalence

Capital stock includes the costs for buying the feed staffs, buying vaccine, access to vaccine and

administering the vaccines, identification (laboratory tests), veterinary experts, transportation

and the disposing area as well as the official permit for killing the infected chicken, buying

and administering vaccines, and the culling processes. It also includes the costs of buying the

cleaning equipments. Indirect costs cover other emerged costs for prevention of other diseases

in the flock

3.5.1 Data Collection and Operational Costs

Data collections were basing mainly in monthly death cases and the operational costs for pre-

vention of ND and were collected from ten villages of Bagamoyo and Kibaha in a Pwani

Region. The data collected are micro data that involving costs of preventions of ND at the

household level. In Bagamoyo District, data were collected from Dunda, Kibinda, Lugoba and

Zinga villages while in Kibaha District data were collected from: Gwata, Soga, Janga, Ki-

langalanga, Ruvu and Mlandizi wards. A total of 357 local chicken farmers were involved in
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data collection where 308 which is 86.27% were women and the remaining population sample

(that is, 13.73%) were men. The average chicken in the flocks per individual chicken grower

was 80 chicken which made a total of 28560 chicken in the two areas of the study. Data col-

lection only recorded the population of mature/older chicken, with a population of 3, 256 cocks

and 25, 304 hens. Informations collected were basing on the number of eggs obtained per year,

disease prevalences and the amount of money that a household spent to prevent the emergence

of ND and other diseases in chicken flocks. The costs included the monthly capital for feeding

chicken, laborers, and other indirect costs a chicken grower can incur for treatments of other

diseases in the flocks.

Figure 6: Incidence cases of ND as for data collected from Kibaha and Bagamoyo Districts in Pwani

Region in 2017
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Figure 7: Average monthly distribution of Incidence of ND for Kibaha and Bagamoyo Districts

between January and December, 2017

The average Operational costs for the prevention of the ND among the village chicken

are estimated and converted from the local currency (T.Shillings) to US Dollar where

(1 $=2279.20 T.shillings). The average cost of buying the Newcastle vaccine is 2.46$ applied

for 100 chicken per a single dose and it is supposed to be applied up to four times a year, access

to vaccine costs an average of 1.711$, administering the vaccine to chicken costs 0.154$ once

per chicken and water cans have an average cost of 2.567$. Other estimates includes the costs

for buying sprays, blooms and litters which are 2.194$, 0.65$ and 1.053$ respectively. Paying

labors is on the average of 14.26$ per month and the average chicken price prior to the outbreak

is 5.57$. Extra expenditures per month is 23.692$.
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3.5.2 Burden of the ND at Family Level

At present the study focus on investigating the economic burden of the ND at the household level

as the leading poultry disease that cause more deaths of chicken compared to other diseases of

poultry. Economic losses due to the ND is then considered as the sum of the following loss

factors;

(i) The number of chicken that die (D) or culled due to the outbreak of the ND

(ii) Loss of production due to the decline of the number of eggs laid (LP)

(iii) Loss due to prevention costs (PC)

Therefore, the total economic Loss/ Burden is expressed as:

TEL = MVL + LP + PC (125)

where MV L is the Monentary Value Loss due to number of chicken died Loss from mortality

This refers to the loss obtained due to the death of the chicken (disease induced and culling)

are a result of contracting a ND. It is considered as the product of the total number of inci-

dence cases and the average market price of a chicken. From the Table 12, the total number

of incidence cases (I.C) due to ND in Kibaha and Bagamoyo from January to December, 2017

was as follows; Dunda 661 cases, Kilangalanga 651 cases, Kibinda 621 cases, Zinga 672 cases,

Gwata 581 cases, Soga 619 cases, Janga 678 cases, Kilangalanga 678 cases, Ruvu 681 cases and

Mlandizi had 583 cases which all made a total of 6425 Newcastle disease incidence cases for a

duration of one year. One healthy chicken can lay an average number of 60 eggs per year. Now,

the Monentary value loss (MVL) due to mortality in all locations from January to December,

2017 is given by;

MVL = The total number of incidence cases× Average price of a chicken

MVL = 6425× 5.57$ = 35, 787.25$
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3.5.3 Loss in Production due to the decline of eggs laid (LP)

Here loss in production is taken as the directly loss in eggs production due to chicken died from

ND. The production is expressed in terms of Monentary sum as follows;

LP = (T− D) M Z (126)

where as;
T = Total number of infected chicken

D = Chicken died or culled

M = Average price of an egg

Z = Annual average eggs laid

(127)

LP = (10000− 6425)× 0.132$× 60 = 28, 214$ (128)

The loss in production can also be considered as the proportional loss in productivity below the

expected turn-over from the chicken to be sold before the outbreak of the Newcastle disease. By

considering the Monentary value loss (MVL), we need first to calculate the expected turn-over

(ET) revenue per year of the chicken to be sold. The expected turn- over (ET) is mathematically

done by the following formula:

ET = Number of chicken× Average price of chicken× duration (129)

If all chicken can be sold once a year, then the duration is considered as one year. The Expected

turn-over for an average price of chicken sold at 5.57$− 8.81$ become:

Expected Turn-over = 28560× 5.57$× 1 = 159, 079.2$ (130)

for an average price of 5.57$ and Now, the proportional loss in production (LP) become;

Proportional Loss in Production =
MVL

EP
× 100% (131)

Proportional Loss in Production =
35,787.25
159,079.2

× 100% = 22.5% (132)
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3.5.4 Loss due to Prevention Costs (PC)

The loss due to prevention costs is considered as the product of number of chicken died or culled

(D) out from the population and the average prevention cost (Gi) of of the chicken before the

outbreak of the Newcastle disease. Mathematically expressed as:

PC = D
n∑
i=1

UiGi; i = 1, 2, ...5 (133)

where as:

Ui = The unit cost multiplier applied to each type of goods and services consumed

G1 = Costs of buying the vaccine

G2 = Costs for accessing vaccine

G3 = Costs for administering the vaccine

G4 = Costs for controlling other diseases in the flock

G5 = Paying laborers

(134)

Here it is assumed that vaccine is applied three times a year (by considering the age of chicken).

PC = D (Ui (G1 + G2 + G3 + G4 + G5)) (135)

PC = 6425× (2.46+0.154+1.711+3.895) = 108, 389.75$ (136)

From the equation 125, the total economic loss of Newcastle disease at family level become;

TEL =
35, 787.25$ + 28, 214$ + 108, 389.75$

357 chicken growers
= 482.89$/ chicken grower (137)

For the average chicken price of 8.81$ the total economic loss become 541.20$. This shows

that the occurrence of the ND leads to an average of 482.89− 541.20$ economic loss at family

level. This amount is huge compared to social-economical status of the family. Therefore, more

efforts should be inverted to assure the village chicken population are free from the Newcastle

disease.
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CHAPTER FOUR

RESULTS AND DISCUSSION

This chapter presents the numerical results and discussion of the study. The discussions ranges

from the simulation of the basic ND Model followed with the simulation of the model with con-

trols. Parameters values of the model were estimated depending on the ND scenarios, and some

values were found from the literature. Numerical simulations and graphical representations of

the analytical results are done using the MATLAB software.

Table 14: Parameter values of the Newcastle disease Model

Parameter Parameter value Source

a 0.01day−1 Assumed

b 0.21day−1
(Alexander et al., 2004; Dort-

mans et al., 2011)

αc 0.1667day−1 Assumed

αb 0.02virus−1chiken−1day−1 Assumed

φ 0.02day−1 Assumed

ψ 0.083− 0.1day−1 Assumed

µ 2.74− 5.48× 10−4day−1
(McDermott et al., 2001; Luc-

chetti et al., 2009)

ϕ 0.02day−1 Assumed

ρ 0.998 Assumed

d 0.001day−1 Estimate

γ 0.067− 0.2day−1
(Perry et al., 1999; Sharif et al.,

2014)

δb 0.025day−1 (Daut et al., 2016)

δc 1.99× 10−2day−1 (Hugo et al., 2017)

µv 2.19× 10−2day−1 (Chuma et al., 2018)

κ 1.0× 104 virus /m3 (Chuma et al., 2018)
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4.1 Numerical Simulations of the Basic Model

The Fig.8 represents the dynamics of ND in the village chicken, wild birds populations and

NDV in the environment in the endemic situation in the absence of any control.
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Figure 8: The Transmission Dynamics of ND in village Chicken Population, wild Birds Population and

the NDV in the Environment during the outbreak in the absence of any control with initial

state conditions
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Figure 9: The Dynamics of ND in the wild birds. (a) Shows Susceptible Population, (b) Shows the

Exposed Population, (c) Shows the Infected Population and (d) Shows the carrier population.

The Fig. 9 (a− d) and Fig. 10 (a− d) show simulations of the dynamics of ND in the vil-

lage chicken and wild birds population in the endemic situation respectively. The susceptible

population of the village chicken is exponentially decreasing due to both disease induced death

and the natural mortality rate of the chicken. The population does not reach extinction due to

a constant recruitment rate of chicken by birth. Fig. 9 (b) represents the exposed population

of the village chicken. For the first few days of the simulation, the exposed population of the

village chicken is increasing due to ND infection, then the population decreases exponentially.

Normally infections takes place between day one to day six before the the observable clinical

signs of the disease on the individual chicken. Therefore as time goes on some chicken die nat-

urally whilst others progress to the serious sickness class as shown in Fig. 9 (c). The population

of the infected chicken increase for a short period of time due to new chicken which progress

from the exposed to the infected class. The population of this class suddenly decreases expo-

nentially due to both disease induced and natural deaths. Fig. 9 (d) represents the concentration

of the NDV in the environment. The increase of the virus concentration in this compartment is

a result of the high shedding rate of virus from both infected chicken and birds as well as carrier
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birds. After reaching its maximum concentration, depending on the environmental conditions,

the concentration of active virus decreases attributed by the decrease in the number of infected

poultry. Fig. 9 (a) represents the susceptible population of the village chicken which decreases

due to the high infectious rate of the NDV. Fig. 10 (b) represents the exposed population of the

wild. The incubation of virus in this class takes few days before the poultry shows the signs of

ND infection.
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Figure 10: The Transmission Dynamics of ND in the Wild Birds. (a) Shows Susceptible Population,

(b) Shows the Exposed Population , (c) Shows the Infected Population and (d) Shows the

Carrier Population.

Then the population start to decrease exponentially due the natural death and other forces of

infections that cause a proportion of that population to become infectious to the disease as

in Fig. 10 (c) . However, the infected population of wild birds decreases exponentially by

due to the disease induced death (δc) and the natural death (µ). Since the wild birds do not

recover from the ND, then very few birds can survive (see the Fig.10 (c)). Fig. 10 (d) shows

the population of the carrier wild birds which consists of the birds which has immunity against

Newcastle disease.
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4.1.1 Variations of Population Variables Over Time.

Different initial values are used to illustrate numerical stabilities of both disease free DFEP and

the EEP of the model system (22a) to (24). With different starting points, the initial values

converges to a common point which assures the existence and stability of both disease free and

endemic equilibrium points. The Fig. 11 − 18 and Fig. 19 − 26 shows the stability of the

disease free and endemic equilibrium points respectively. In the Fig. 11 − 18, different initial

values of the model variables converges to constant value along the time axis which assures us

that at this point R0 < 1. Fig. 19− 26 shows the stability of endemic equilibrium point which

converges above zero which reveals that the point is atR0 > 1. Hence, all equilibria points are

asymptotically stable.
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Figure 11: Variations of Susceptible Population of Village Chicken at Disease Free

Equilibrium Point
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Figure 12: Variations of Exposed Village Chicken at Disease Free Equilibrium point
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Figure 13: Variations of Severe Infected Village Chicken at Disease Free Equilibrium Point
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Figure 14: Variations of the Susceptible Wild Birds at Disease Free Equilibrium Point
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Figure 15: Variations of Exposed Wild Birds at Disease Free Equilibrium Point
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Figure 16: Variations of Severe Infected Wild Birds at Disease Free Equilibrium Point
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Figure 17: Variations of mild Infected Wild Birds at Disease Free Equilibrium Point
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Figure 18: Variations of NDV in the environment at Disease Free Equilibrium Point

84



0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Time(days)

P
ro

p
o

rt
io

n
 o

f 
su

sc
ep

ti
b

le
 v

ill
ag

e 
ch

ic
ke

n

 

 

S
c
(0)=300

S
c
(0)=500

S
c
(0)=800

S
c
(0)=1200

Figure 19: Variations of susceptible village chicken at EEP
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Figure 20: Variations of exposed village chicken at EEP
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Figure 21: Variations of severe infected village chicken at EEP
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Figure 22: Variations of susceptible wild birds at EEP

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time(days)

E
xp

o
se

d
 w

ild
 b

ir
d

s 
p

o
p

u
la

ti
o

n

 

 

E
b
(0)=400

E
b
(0)=800

E
b
(0)=1400

E
b
(0)=2000

Figure 23: Variations of exposed wild birds at EEP
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Figure 24: Variations of severe infected wild birds at EEP
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Figure 25: Variations of mild infected wild birds at EEP
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Figure 26: Variations of NDV in the environment at EEP

4.1.2 Sensitivity Analysis of the Basic Model

The sensitivity analysis of R0 helps to understand the behavior of parameters on the model

output as well as their influence in the spread of the disease in the population (Ostermann,

2005). In order to get the sensitivity value of a parameter in the model system in equation (22a)

to (24), we apply the normalized forward sensitivity analysis index as discussed in Chitnis et al.

(2008). In this method, a function R0 should be differentiable at a parameter q, where q being

any parameter inR0. A normalized forward index of a variable q is defined by

ΥR0
q =

∂R0

∂q
× q

R0
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Parameter values to be used are taken from the field study, the related literatures and others

are assumed. The population of village chicken in Bagamoyo and Kibaha districts of a Coastal

region (Tanzania) is estimated to be four hundred thirty one thousand seven hundred and fifty

(431, 750) with 90% death cases on absence of any control during the outbreak of Newcastle

disease. This gives an estimate of the ND induced death δc = 7.5× 10−2day−1.

Wild birds are assumed to be five hundred thousand (5.0× 105) and its disease induced death is

assumed to be δb = 2.5× 10−3day−1. We estimate an average lifespan of village chicken to be

five to ten years which yields a mortality rate µ = 1.678× 10−3day−1 (Lucchetti et al., 2009).

The saturation constant (κ) of the NDV in the soil is not known hence is assumed in cubic meter

as 1× 104 cellsm−3 which that yields 50% chance of infections. The assumed parameters have

its base in the epidemiological phenomenon in the transmission dynamics of Newcastle disease

among village chicken with wild birds and environment as primary reservoir of the NDV.

Using the basic reproduction number in 83 and the parameter values given in Table 14, compu-

tation gives

YR0
φ =

∂R0

∂φ
× φ

R0

= +0.00647; YR0
µ =

∂R0

∂µ
× µ

R0

= −0.07953

YR0
γ =

∂R0

∂γ
× γ

R0

= +0.00811 : YR0
ψ =

∂R0

ψ
× ψ

R0

= +0.38706

Now, through the same procedures we obtain the Sensitivity indices for parameter values of the

model system in Table 22a to 24 summarized in the bar chart diagram here below;

Figure 27: Sensitivity analysis of the basic Reproduction Number
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In these results, the positive indices show that the basic reproductive number increases as the

value of the parameter a, b, d, αb, αc, ψ, ϕ and γ increases (see Fig. 27). All of these parameters

have a positive influence on the basic reproductive number,R0. The transmission coefficient of

NDV between from the environment and the hosts (d) is the most positive sensitive parameter

followed by transmission coefficient between the severely infected village chicken and their

susceptible population (ψ). The least positive sensitive index values is the transmission coeffi-

cient between the mild infected population of wild birds and the susceptible population of wild

birds (a). However the negative index values implies the inverse relationship between the basic

reproduction number and the parameter value. The parameter δb, δc, µ, κ and µv have negative

sensitivity index values. The ND induced death rate (δc) in village chicken is the most negative

sensitive parameter in the model. This tells us that the more deaths of the village chicken during

the outbreak of the disease reduce interactions and hence lower the basic reproduction number

of the NDV model. The least negative sensitive index values is the natural death of the village

chicken population (see Fig. 27).

4.1.3 Numerical Solution for the Optimal Control Problem

In this part we analyze numerically various combinations of the control efforts on the spread

of ND among the village chicken population. The single control efforts and their combinations

makes a total number of seven control efforts namely strategyA; strategyB; strategyC; strategy

D as the combination of strategy A and B; strategy E as the combination of strategy A and C;

strategy F as the combination of strategyB andC; and strategyG as the combination of strategy

A, B and C as discussed in section 3.5.

We solve the optimal control problem consisting of the state variables, the adjoint or co-state

system and the characterization system in equation (113), (119) and (122) by using Forward-

Backward Sweep method which is the Runge-Kutta of order four as explained in (Lenhart and

Workman, 2007; Kar and Ghosh, 2012; Sagamiko et al., 2015; Kahuru et al., 2017b). The state

system is solved using a MATLAB software and the forward in time Runge-Kutta method of

order four with initial conditions Nc(0) = 2000; Nb(0) = 3000; Sc(0) = 2000; V (0) = 200;

Ec(0) = 1200; Ic(0) = 1800; Sb(0) = 3000; Eb(0) = 1000; Ib(0) = 900; Ir(0) = 700;
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E(0) = 5000. The adjoint system is solved by the using the backward in time fourth order

Runge-Kutta method with terminal conditions λ1(tf ) = λ2(tf ) = ... = λ9(tf ) = 0 where

tf = 365days. The controls are bounded in the interval 0 ≤ ui ≤ 1 for (i = 1, 2, 3) and the

weights in the objective functional associated with disease status are chosen to be A1 = 200,

A2 = 300 A3 = 500 while those associated with each control are assumed to be L1 = 30;

L2 = 20; L3 = 10 as chosen from Hugo et al. (2017). These weights are theoretically chosen

just to reveal the control strategies proposed in this study. Other parameter values used in the

simulations are given in Table 14.

4.1.4 Numerical Algorithm

The numerical approximation of the optimal solution of the optimal state problem is performed

using the Forward-Backward sweep method (FBSM) which is the Runge-Kutta method of order

four (Kar and Ghosh, 2012; Mwanga et al., 2014). The Forward-Backward Sweep method has

the following successive steps;

(i) The total time is divided into r sub-intervals irrespectively to the state

X = (X1, X2, ..., Xr+1) and the co-state variables as λ = (λ1, λ2, ..., λr+1)

(ii) The controls are assumed to take zero intervals for starting an iteration such that

u = [0, 0, .., 0].

(iii) With the initial condition X (0) = X0, the state solutions in the ODE with the controls

are solved by using the forward in time Runge- Kutta method of order four.

(iv) With the transvesality condition λN+1 = λ (tf ) where tf is a final time, the values for u

and values for X , the co-state variables from co-state differential equation are solved by

the backward in time Runge- Kutta method of order four.

(v) The Update of the control is done by entering the new X and λ through the rule

u∗ = min {umax,max (usig, umin)} (138)
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where the boundedness of controls is defined as;

u∗ =


umin if ∂H

∂u
< 0

umin < usig < umax if ∂H
∂u

= 0

umax if ∂H
∂u

> 0

(139)

(vi) If last preceding iterations are negligible close, then the last iteration is the complete

solution otherwise return to step (iii) above.
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Figure 28: The Graph shows the effects of Vaccination in the Chicken Population

In this strategy, only vaccination (u1) is used to optimize the objective functional J in (7)

while u2 and u3 are set to zero. The control strategy have shown a significant difference in the

dynamics of the susceptible chicken, infected chicken and the concentration of the NDV in the

environment when compared with the case without any control measure (see Fig. 28 (a)− (d)).

Using this control strategy, the number of severely infected chicken in Fig. 28 (b) and the

concentration of NDV in the environment (Fig. 28 (c)) have been significantly reduced. In Fig.

28 (d) the control (u1) is maintained at its maximum value for about 396 days and thereafter

decrease to zero. This mean that using this control strategy the vaccination needs to be applied

at 100% effort almost throughout the control period.

91



0 50 100 150 200 250 300 350 400
1

2

3

4

5

6

Time (days)

S
us

ce
pt

ib
le

 v
ill

ag
e 

ch
ic

ke
n

(a)

 

 

with control
without control

0 50 100 150 200 250 300 350 400
2

2.5

3

3.5

4

4.5

5

5.5

Time (days)

S
ev

er
el

y 
in

fe
ct

ed
 v

ill
ag

e 
ch

ic
ke

n

(b)

 

 

with control
without control

0 50 100 150 200 250 300 350 400
3

3.5

4

4.5

5

Time(days)

N
D

V
 in

 th
e 

en
vi

ro
nm

en
t

(c)

 

 
with control
without control

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 P
ro

fil
e

Time(days)

(d)

 

 

u
1
=0

u
2
≠ 0

u
3
= 0

Figure 29: The Graph shows the effects of Culling in the Chicken Population

Here, the culling control (u2) is used to optimize the objective functional J in (7) while u1 and

u3 are set to zero. The strategy have shown a significant increase in the number of susceptible

chicken (see Fig. 29 (a)) and a significant reduction in the number of infected chicken and the

concentration of the NDV in the environment (Fig. 29 (b) and 29 (c)) when compared with the

case with no control measure. In the Fig. 29 (d) the control u2 is maintained at its upper bound

for about 375 days and thereafter decreases sharply to zero. This shows that the control strategy

can be used to reduce the rate of ND in the population but also needs to be applied at 100%

effort almost throughout the control period which may be unachievable goal.
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Figure 30: The Graph shows the effects of Environmental Hygiene and Sanitation in the Chicken

Population

In this strategy, the environmental hygiene and sanitation (u3) alone is used to optimize the

objective functional J in (7) while u1 and u2 are set to zero. The results show that there is

no any significant difference for this control and the case without any control measure in either

of the populations as shown in Fig. 30(a-c). This results reveal that when the environmental

hygiene and sanitation is applied singly, it is not a suitable control strategy for the control of

Newcastle disease.
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Figure 31: The Graph shows the effects of Vaccination and Culling in the Chicken Population

In this strategy, the vaccination (u1) and culling (u2) controls are applied together to optimize

the objective functional J in (7) while u3 is set to zero. We observed in Fig. 31(a-c) that due to

the combination of these control strategies, the population of the susceptible chicken increases

since the population is free from the disease as in Fig. 31(a), while in Fig. 31(b) the number

of the infected chicken decrease. A Similar decrease is seen in the concentration of NDV in

the environment as in Fig. 31(c). Its control profile in Fig. 31(d) shows that all controls works

effectively when applied together and it is shown that vaccination (u1) works for 396 days much

longer and maintain its upper bound throughout a year than the culling control (u2) which works

effectively for the first 49 days of a year before start to decline gradually to its lower bound at

375 days. The result here shows that the vaccination control protects the chicken population for

100% and by culling out the infected chicken from the population it takes 49 days for the virus

to be eliminated from the population.
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Figure 32: The Graph shows the effects of Vaccination and Environmental hygiene and sanitation in

the chicken population

In this strategy, the vaccination (u1) and environmental hygiene and sanitation (u3) controls

are applied together to optimize the objective functional J in (7) while u2 is set to zero. The

controls have shown a significant difference in the susceptible chicken, the infected chicken and

the concentration of the NDV in the environment. The susceptible chicken in Fig. 32 (a) have

94



increased since the population is well controlled. However, there is a decline in the infected

population of chicken and the concentration of NDV from the environment as seen in the Fig.

32 (b) and 32 (c) respectively. The control profile in Fig. 32 (d) shows that, the vaccination (u1)

remains at its upper bound throughout the year while the environmental hygiene and sanitation

control (u3) is maintained at its upper bound for the first 41days and thereafter it steadly decline

to its lower bound. From these results we can conclude that to control Newcastle disease it is

important to emphasize on the provision of the vaccines than the sanitation and hygiene of the

environment.
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Figure 33: The Graph shows the effects of Culling and Environmental Hygiene and Sanitation in the

Chicken Population

In this strategy, the culling (u2) and Environmental hygiene and sanitation (u3) controls are

used together to optimize the objective functional J in (7) while u1 is set to zero. In Fig.

33(a) we observe that, the number of susceptible chicken increases while in the Fig. 33(b) and

33(c) there is significant decrease of both infected chicken and the NDV in the surroundings

respectively. Fig. 33(d) shows the control profile for u3 is not stable as it drop to zero from the

beginning of the control which make its practical implementation to be rather challenging.
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Figure 34: The Graph shows the effects of Vaccination, Culling and Environmental hygiene and

sanitation

In this strategy, all controls (u1), (u2) and (u3) are used together to optimize the objective func-

tional J in (7). Under this control strategy, the combination shows a significant difference in

comparison before and after the control. In the Fig. 34(a) it is shown that the susceptible popu-

lation of chicken is increasing while the infected population of chicken and the concentration of

NDV decline as in Fig. 34(b) and Fig. 34(c) respectively. In Fig. 34(d), the vaccination control

(u1) is maintained at its maximum value for the whole year while the culling control (u2) main-

tains its maximum value for 49 days and then starts to decline slowly for 373 days and further

decline to zero. The environmental and sanitation strategy (u3) have very little contributions in

this combination for controlling of the Newcastle disease as it reduces to zero after only 5 days.

This strategy managed to reduce the rate of transmission of the disease to a very low level and

maintain it at this same level for the entire period of the control program.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, I have presented and analyzed the mathematical model for the transmission dy-

namics and the control of Newcastle Disease (ND) among the village chicken population. The

aim was to get an insight of the transmission dynamics of ND by considering the unhygienic

environment and wild birds as the vital sources of NDV to the village chicken population. The

main tasks of the present work were: (1) to formulate and analyze a basic mathematical model

for ND, (2) to formulate and analyze a mathematical model of ND with vaccination, culling and

environmental hygiene and sanitation control strategies, (3) to evaluate the cost-effectiveness in

the control of ND, and (4) to analyze the economic burden of ND at the family level.

Using the Next Generation Method approach of Van den Driessche and Watmough (2002), the

basic reproduction numberR0 which represents the number of secondary cases which one case

would produce in a completely susceptible population is derived. Stability analysis of the model

equilibria showed that the disease-free equilibrium exists and is globally asymptotically stable

(GAS) when R0 < 1 and unstable when R0 > 1. Similarly, the model endemic equilibrium

exists and is GAS stable if and only ifR0 > 1. This basic model undergoes the phenomenon of

forward bifurcation and the requirement R0 < 1 is a necessary and sufficient condition for ND

disease elimination in village chicken population.

The bifurcation analysis of the ND model revealed that the equilibrium points of the basic model

undergo the forward bifurcation and the endemic equilibrium point is locally asymptotically

stable for R0 < 1 with R0 close to one. However, the sensitivity analysis of the basic model

indicate that the transmission coefficient of NDV between the environment and the hosts is the

most positive sensitive parameter in the transmission of the ND.

The basic model is then extended to include three time-dependent control variables: vaccination

of the susceptible chicken u1; culling of the infected chicken u2; and environmental hygiene and

sanitation u3. The study established and proved the existence of an optimal control solution. The
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necessary conditions for optimality were determined using Pontryagin’s maximum principle

(PMP). Based on the numerical results, The study reveal that the combination of the vaccination

u1 and environmental hygiene and sanitation u3 controls reduce the number of the infected

chicken and concentration of the NDV in the environment more than applying these control

measures are applied singly. Thus, the most effective way to reduce the transmission of ND

infection is to encourage the village chicken farmers to vaccinate their chicken regularly against

ND infections and take preventive measures to improve environmental hygiene and sanitation

around their poultry farms.

Further, the cost-effectiveness analysis shows that, the vaccination of the chicken population

is less costly than any other control measure followed by the combination of vaccination and

environmental hygiene and sanitation. The study reveals that, the economic loss at family level

is due to the number of chicken which die due to the ND, the loss of production resulting from

the reduction in the number of laid eggs, and the cost incurred to finance the control measures

to prevent new infections and the spread of the ND and other chicken diseases in the chicken

yards.

5.2 Recommendations

Population of the infected chickens can be reduced ifR0 < 1, which is possible when vaccina-

tion is combined with maintaining a clean environment. We thus recommend the following to

the chicken farmers, the government, and the policy makers:

(i) In order to avoid the economic losses due to the occurrence of the ND at family level, the

village chicken farmers should be encouraged to timely vaccinate their chicken and make

the area around the chicken yards as clean as possible through environmental hygiene and

sanitation. These practices will help to increase the immunity to chicken but also prevent

them from other bacterial and fungi disease that are caused by unhygienic environment.

(ii) The Government should initiate the education programmes to educate chicken farmers on

how they can intensively manage their chicken as well as increasing their productivity.
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(iii) Policy makers should enforce laws that restricts movements of chicken and their products

from other countries especially during the outbreaks.

5.2.1 Limitations of the study

The studied model might not be perfect to some results due to the following limitations:

(i) The model under this study considered only three aspects: the horizontal transmission,

environment and the environmental hygiene and sanitation for the transmission dynamics

of Newcastle disease under the free range system.

(ii) The assumptions used to formulate the model limits some of the epidemiological factors

for the dynamics of ND to the village chicken under the free range system.

(iii) The study investigated the economic consequence of the Newcastle disease only for two

Districts of Bagamoyo and Kibaha, Pwani Region.

5.2.2 Future Work

Efforts were made to formulate and analyse a comprehensive mathematical model of the trans-

mission dynamics of ND, however, this study is not exhaustive. Not all aspect of the trans-

mission dynamics of ND among the village chicken population were included. Consequently,

future research will potentially include some or all the following: age structure of the chicken

population, seasonal variations (temperature and humidity), trans-ovarial transmission, human

sub-model and other diseases in the chicken yards.
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APPENDICES

INDEX 1: MATLAB code for the Bifurcation analysis diagram

Bifurcation diagram codes Recall the file served as ’mark2.m’file R0value = 0.01 : 0.01 : 2;

Rootarray = zeros(length(R0value), 2);

Parameter values used

t = 5;

psi = 0.0083 : 0.000001 : 1; gamma = 0.067;mu = 0.000548; deltac = 0.01984; deltab =

0.025; a = 0.01; d = 0.025; alphac = 0.01667; alphab = 0.002;muv = 0.00219; rho =

0.9; phi = 0.02; b = 0.021; kappa = 10000;Nb = 200000;Nc = 300000;holdonfori = 1 : 1 :

length(R0value);R0 = R0value(i); varpi = −kappa∗mu3∗phi∗rho∗gamma∗Nb∗(muv+

gamma2)∗kappa∗mu2∗Nb∗deltac∗muv−gamma∗a∗kappa∗mu3∗Nb∗(muv−gamma2)∗

mu∗Nb∗alphab∗d∗Nb∗(deltab−gamma)∗mu2∗Nb−alphab∗d∗Nb∗(deltab−gamma2)∗a∗

kappa∗mu2∗Nb∗muv+gamma2∗a∗mu∗Nb∗alphac∗d∗Nc+gamma
2∗a∗Nb∗alphac∗d∗Nc∗

deltab+gamma
2∗mu∗rho∗alphac∗b∗Nc∗d∗Nb−gamma2∗mu∗Nb∗alphab∗d∗Nb∗deltac+

gamma2∗rho∗alphac∗b∗Nc∗d∗Nb∗deltab−gamma2∗Nb∗alphab∗d∗Nb∗deltab∗deltac−

gamma∗mu2∗Nb∗alphab∗d∗Nb∗deltac−gamma∗mu2∗Nb∗alphac∗d∗Nc∗deltab+kappa∗

mu3 ∗Nb ∗deltab ∗deltac ∗muv +2∗gamma∗kappa∗mu3 ∗Nb ∗deltab ∗muv +2∗gamma∗

kappa∗mu3∗Nb∗deltac∗muv−gamma2∗mu∗Nb∗alphac∗d∗Nc∗deltab+gamma2∗kappa∗

mu2∗Nb∗deltab∗muv+kappa∗mu5∗Nb∗muv+gamma∗a∗kappa∗mu∗rho∗Nb∗deltab∗

deltac ∗muv−kappa∗mu2 ∗phi∗rho∗gamma∗Nb ∗deltac ∗muv +gamma2 ∗kappa∗mu∗

Nb∗deltab∗deltac∗muv+2∗gamma∗kappa∗mu2∗Nb∗deltab∗deltac∗muv−gamma2∗a∗

kappa∗mu∗Nb∗deltac∗muv−gamma2∗a∗kappa∗Nb∗deltab∗deltac∗muv−gamma2∗a∗

mu∗rho∗Nb∗alphac∗d∗Nc−gamma2∗a∗rho∗Nb∗alphac∗d∗Nc∗deltab+gamma2∗rho∗

Nb∗alphab∗d∗Nb∗deltab∗deltac−gamma∗a∗kappa∗mu2∗Nb∗deltac∗muv+gamma∗mu∗

phi∗rho∗gamma∗Nb∗alphac∗d∗Nc−gamma∗mu∗Nb∗alphab∗d∗Nb∗deltab∗deltac+

gamma2∗a∗kappa∗mu2∗rho∗Nb∗muv+gamma∗a∗kappa∗mu3∗rho∗Nb∗muv−gamma2∗

a∗kappa∗mu∗Nb∗deltab∗muv+gamma2∗mu∗rho∗Nb∗alphab∗d∗Nb∗deltab−gamma∗

a∗kappa∗mu2 ∗Nb ∗deltab ∗muv−gamma∗kappa∗mu2 ∗phi∗rho∗gamma∗Nb ∗muv +

gamma∗mu2∗rho∗Nb∗alphab∗d∗Nb∗deltab+gamma2∗a∗kappa∗mu∗rho∗Nb∗deltab∗
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muv+gamma∗a∗kappa∗mu2∗rho∗Nb∗deltab∗muv+gamma2∗a∗kappa∗mu∗rho∗Nb∗

deltac∗muv+gamma2∗a∗kappa∗rho∗Nb∗deltab∗deltac∗muv+gamma∗a∗kappa∗mu2∗

rho∗Nb∗deltac∗muv−gamma∗a∗kappa∗mu∗Nb∗deltab∗deltac∗muv−gamma∗kappa∗

mu∗phi∗rho∗gamma∗Nb∗deltac∗muv+gamma∗mu∗rho∗Nb∗alphab∗d∗Nb∗deltab∗

deltac+kappa∗mu4∗Nb∗deltac∗muv−gamma∗mu3∗Nb∗alphac∗d∗Nc−gamma2∗mu∗

alphac∗b∗Nc∗d∗Nb−gamma2∗alphac∗b∗Nc∗d∗Nb∗deltab+gamma2∗kappa∗mu3∗Nb∗

muv+2∗gamma∗kappa∗mu4∗Nb∗muv−gamma2∗mu2∗Nb∗alphac∗d∗Nc−gamma2∗

mu2∗Nb∗alphab∗d∗Nb−gamma∗mu3∗Nb∗alphab∗d∗Nb+kappa∗mu4∗Nb∗deltab∗muv;

tau = gamma ∗ (a ∗ gamma ∗ kappa ∗mu ∗ rho ∗muv + a ∗ gamma ∗ kappa ∗ rho ∗ deltab ∗

muv − a ∗ gamma ∗ kappa ∗mu ∗muv − a ∗ gamma ∗ kappa ∗ deltab ∗ (muv + gamma ∗

kappa) ∗mu2 ∗muv + gamma ∗ kappa ∗mu ∗ deltab ∗ (muv + gamma) ∗ rho ∗ alphab ∗ d ∗

Nb ∗ deltab + kappa ∗mu3 ∗muv + kappa ∗mu2 ∗ deltab ∗muv − kappa ∗mu ∗ phi ∗ rho ∗

gamma ∗muv − gamma ∗mu ∗ alphab ∗ d ∗Nb − gamma ∗ alphab ∗ d ∗Nb ∗ deltab) ∗Nb;

psi = 1/2 ∗ (varpi./tau);

H = 0; Ir = 0;A = mu ∗Nc ∗ (deltac +mu) ∗ (mu+ gamma) ∗ (kappa+H);

B = Nb ∗Nc ∗ (kappa+H) + b ∗Nc ∗ (deltac +mu) ∗ (mu+ gamma) ∗ (kappa+H) ∗ Ir +

mu ∗Nb ∗Nc ∗ (kappa+H) ∗ (deltac +mu) ∗ (mu+ gamma);

C = b ∗mu ∗Nc ∗ (kappa+H) ∗ Ir + d ∗mu ∗ gamma ∗Nb ∗ (Nc).
2 ∗ (1−R0);

p = [A,B,C]; r = roots(p); len = length(r);

for t = 1 : 1 : lenif(imag(r(t)) = 0||real(r(t) < 0));

Rootarray(i, t) = 0;

else

Rootarray(i, t) = r(t);

end; end; end; f = 1;

f = f + 1;R0valueCr = f ; forj = R0valueCr : 1 : length(R0value)Rootarray(j, :

) = sort(Rootarray(j, :)); endf1 = R0valueCr;while(Rootarray(f1, 1) = 0)f1 =

f1 + 1; endR0valueCr2 = f1;Zero1st = R0value(1, 1 : R0valueCr2− 1);

yzero = zeros(2, length(Zero1st));Unstable = R0value(1, R0valueCr :

length(R0value));

figure(1)

plot(Unstable, Rootarray(R0valueCr : length(R0value), 2),′ r −−′,′ LineWidth′, 4)
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Xlabel(′BasicReproductionnumber,R0,
′ ,′ FontSize′, 12)

Y label(′FractionofinfectedLivestock′,′ FontSize′, 12)

hold off

figure(2)

plot(R0value,Rootarray(:, 1),′ r −−′, R0value,Rootarray(:, 2),′ b′,′ LineWidth′, 4)

Xlabel(′BasicReproductionnumber,R0,
′ ,′ FontSize′, 12)

Y label(′Fractionofinfectedchicken′,′ FontSize′, 12)

INDEX 2. MATLAB Code used for the simulation of the ND basic model

clear all

close all

tspan = [0 1000];

y0 = [2000 1200 1800 3000 1000 900 700 5000];

figure(1)

plot(t, y(:, 1),′ g′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Susceptiblevillagechicken′)

hold off

hold on

figure(2)

plot(t, y(:, 2),′ r′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Exposedvillagechicken′)

hold off

hold on

figure(3)plot(t, y(:, 3),′ b′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Infectedvillagechicken′)hold off

hold on

figure(4)

plot(t, y(:, 4),′m′,′ LineWidth′, 1.5)
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Xlabel(′Time(days)′)

Y label(′Susceptiblewildbirdpopulation′)

hold off

hold on

figure(5)

plot(t, y(:, 5),′ k′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Exposedwildbirdspopulation′)

hold off

hold on

figure(6)

plot(t, y(:, 6),′ r′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Infectedwildbirdspopulation′)

hold off

hold on

figure(7)

plot(t, y(:, 7),′ .b′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Carrierwildbirdspopulation′)

hold off

hold on

figure(8)

plot(t, y(:, 8),′ .m′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′NDV intheEnvironment′)

hold off

hold on

figure(9)

plot(t, y(:, 1),′ g′, t, y(:, 2),′ r′, t, y(:, 3),′ b′, t, y(:, 4),′m′, t, y(:, 5),′ k′, t, y(:, 6),′ .r′, t, y(:, 7),

′.b′, t, y(:, 8),′ .m′,′ LineWidth′, 1.5)
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Xlabel(′Time(days)′)

Y label(′TotalPopulations′)

legend(′Susceptiblechicken′,′Exposedchicken′,′ Infectedchicken′,′ Susceptiblewildbirds′,

′Exposedwildbirds′,′ Infectedwildbirds′,′Carrierwildbirds′,′NDV inEnvironment′)

hold off

INDEX 3. Main Function for plotting the equilibrium points

functiondy = Trial1( , y)

dy = zeros(size(y));

Forthediseasefreeequilibriumpoint

psi = 0.0001;L = 0.0067; l = 0.2; deltac = 0.02; deltab = 0.075; a = 0.03; d =

0.001; alpha = 0.1; kappa = 10000;muv = 0.137; rho = 0.1; phi = 0.004; r =

0.28; sigma1 = 100; sigma2 = 200;Fortheendemicequilibriumpoint

psi = 0.0083;L = 0.067; l = 0.000548; deltac = 0.01984; deltab = 0.025; a = 0.01; d =

0.025; alphac = 0.01667; alphab = 0.002;muv = 0.00219; rho = 0.9; phi = 0.02; r =

0.021; kappa = 10000;

Sc = y(1);Ec = y(2); Ic = y(3);Sb = y(4);Eb = y(5); Ib = y(6); Ir = y(7);H = y(8);

Nb = 1000;Nc = 2000;

EquationsoftheNDbasicmodel

dy(1) = l ∗Nc − (r ∗ Ir./Nb + psi ∗ Ic./Nc + (d ∗H)./(kappa+H)) ∗ Sc− l ∗ Sc;

dy(2) = (r ∗ Ir./Nb + psi ∗ Ic./Nc + (d ∗H)./(kappa+H)) ∗ Sc− (l + L) ∗ Ec;

dy(3) = L ∗ Ec− (deltac + l) ∗ Ic;

dy(4) = l ∗Nb − (phi ∗ Ib./Nb + a ∗ Ir./Nb + (d ∗H)./(kappa+H)) ∗ Sb− l ∗ Sb;

dy(5) = (phi ∗ Ib./Nb + a ∗ Ir./Nb + (d ∗H)./(kappa+H)) ∗ Sb− (l + L) ∗ Eb;

dy(6) = rho ∗ L ∗ Eb− (deltab + l) ∗ Ib;

dy(7) = (1− rho) ∗ L ∗ Eb− l ∗ Ir;

dy(8) = alphac ∗ Ic+ alphab ∗ (Ib+ Ir)−muv ∗H;

INDEX 4. Endemic equilibrium point of the ND model

clear

close all
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tspan = [0 1000];

y0 = [1200 300 500 3000 400 900 700 5000]; [t, y] = ode45(@Trial1, tspan, y0);

figure(5)

plot(t, y(:, 5),′ g′,′ LineWidth′, 1.5)

legend(′I ′c)

Xlabel(′Time[days]′)

Y label(′Exposedwildbirdspopulation′)

hold on

tspan = [0 1000]

y0 = [1200 300 500 3000 800 900 700 5000]; [t, y] = ode45(@Trial1, tspan, y0); plot(t, y(:

, 5),′ b′,′ LineWidth′, 1.5)

xlabel(′Time[days]′)

ylabel(′Exposedwildbirdspopulation′)

tspan = [0 1000]; y0 = [1200 300 500 3000 1200 900 700 5000]; [t, y] =

ode45(@Trial1, tspan, y0);

plot(t, y(:, 5),′m′,′ LineWidth′, 1.5)

xlabel(′Time[days]′)

ylabel(′Exposedwildbirdspopulation′)

hold on

tspan = [0 1000];

y0 = [1200 300 500 3000 2000 900 700 5000];

plot(t, y(:, 5),′ r′,′ LineWidth′, 1.5)

Xlabel(′Time(days)′)

Y label(′Exposedwildbirdspopulation′)

legend(′Eb(0) = 400′,′Eb(0) = 800′,′Eb(0) = 1400′,′Eb(0) = 2000′)

hold off

INDEX 5. MATLAB Code used for Numerical Simulations of the ND Model with control

measures

The main file for calling the state and the adjoint systems

clc
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clear all

close all

t0 = 0; tf = 400;N = 8000; time = linspace(t0, tf,N);

y0 = [200000 12000 5000 0 300000 10000 400 500 5000 0];

Constant = [0.4 0.067 0.00058 0.002 0.025 0.01 0.1 0.001667 0.000002 0.00219

0.998 0.02 0.21 1000000 0.0001 0.0001 0.01 202 20 10 10 0.0001];

psi = Constant(1); gamma = Constant(2); l = Constant(3); deltac = Constant(4);

deltab = Constant(5); a = Constant(6); d = Constant(7); alphac = Constant(8);

alphab = Constant(9);muv = Constant(10); rho = Constant(11); phi = Constant(12);

q = Constant(13); kappa = Constant(14);Lambda1 = Constant(15);

Lambda2 = Constant(16);A1 = Constant(17);A2 = Constant(18);A3 = Constant(19);

D1 = Constant(20);D2 = Constant(21);D3 = Constant(22); varphi = Constant(23);

lf = [0 0 0 0 0 0 0 0 0];

TEST SECTION

u1 u2 u3

U = [0 0 0];

time0 = linspace(t0, tf,N + 1);

init = y0;h = (tf − t0)./N ;

uu = linspace(0, 0, N + 1);

u1 = uu′;u2 = uu′;u3 = uu′;

U = [u1u2u3];

Uu = [u2′u2′u3′];

break

FORWARD RUNGE KUTTA FOR STATES

[Tx,X] = rk4foward(@Mark1State, t0, tf,N, init, U, Constant);

X = X ′;

Tx = Tx′;

figure(1)

subplot(2, 3, 1)

plot(Tx, (X(:, 1)),′−r′,′ Linewidth′, 1.5);

hold on

115



plot(Tx, (Y (:, 1)),′−− b′,′ Linewidth′, 1.5);

hold off

set(gca,′ FontSize′, 20)

title(′A′,′ FontSize′, 30)

Xlabel(′Time(indays)′,′ FontSize′, 15);

Y label(′Susceptiblechicken′,′ FontSize′, 15);

subplot(2, 3, 2)

plot(Tx, (X(:, 2)),′−r′,′ Linewidth′, 1.5);holdon

plot(Tx, (Y (:, 2)),′−− b′,′ Linewidth′, 1.5);holdoff

set(gca,′ FontSize′, 10)

title(′B′,′ FontSize′, 10)

Xlabel(′Time(indays)′,′ FontSize′, 10);

Y label(′Latentinfectedchicken′,′ FontSize′, 10);

subplot(2, 3, 3)

plot(Tx, (X(:, 3)),′−r′,′ Linewidth′, 1.5);holdon

plot(Tx, (Y (:, 3)),′−− b′,′ Linewidth′, 1.5);holdoff

set(gca,′ FontSize′, 10)

title(′C ′,′ FontSize′, 10)

Xlabel(′Time(indays)′,′ FontSize′, 10);

Y label(′Severelyinfectedchicken′,′ FontSize′, 10);

subplot(2, 3, 4)

plot(Tx, log10(X(:, 4)),′−r′,′ Linewidth′, 1.5);

hold on

plot(Tx, log10(Y (:, 4)),′−− b′,′ Linewidth′, 1.5);

hold off

set(gca,′ FontSize′, 10)

title(′D′,′ FontSize′, 10)

Xlabel(′Time(indays)′,′ FontSize′, 10);

Y label(′V accinatedchicken′,′ FontSize′, 10);

subplot(2, 3, 5)

plot(Tx, (X(:, 9)),′−r′,′ Linewidth′, 1.5);
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hold on

plot(Tx, (Y (:, 9)),′−− b′,′ Linewidth′, 1.5);

hold off

set(gca,′ FontSize′, 10)

title(′E ′,′ FontSize′, 10)

Xlabel(′Time(indays)′,′ FontSize′, 10);

Y label(′Environmentalhygiene′,′ FontSize′, 10);

subplot(2, 3, 6)

plot(Tx, Uu(:, 1),′ y−′, Tx, Uu(:, 2),′−− b′, Tx, Uu(:, 3),′ k′,′ LineWidth′, 3);

set(gca,′ FontSize′, 10)

title(′F ′,′ FontSize′, 10)

Xlabel(′Time(indays)′,′ FontSize′, 10);

Y label(′controlprofiles′,′ FontSize′, 10);

init = y0;

init2 = lf ;

h = (tf − t0)/N ; u = linspace(0.5, 0.5, N + 1); u1 = u′;u2 = u′;u3 = u′; U = [u1u2u3];

break

IMPLEMENTATION OF THE ALGORITHM

Test 1 topping condition 1 delta = 0.01;

X=init;

i=0; mm=size(X);

NumXX =10e10;

Xnew = rand(N+1,mm(2)).*(repmat(X,N+1,1));

DenXnew=norm(Xnew);

while NumXX/DenXnew¿delta

Xold = Xnew;

oldu = U;

FORWARD RUNGE KUTTA FOR STATES

[Tx,X] = rk4foward(@Mark1State, t0, tf,N, init, U, Constant);
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BACKWARD RUNGE-KUTTA FOR CO-STATES

[Tp, P ] = rk4back(@Mark2Costate, t0, tf,N, init2, U,X,Constant);

UPDATE THE CONTROLS

Sc = X(1, :);Ec = X(2, :); Ic = X(3, :);V = X(4, :);Sb = X(5, :);Eb = X(6, :); Ib = X(7, :

); Ir = X(8, :);H = X(9, :);L1 = P (1, :);L2 = P (2, :);L3 = P (3, :);L4 = P (4, :);L5 =

P (5, :);L6V = P (6, :);L7 = P (7, :);L8 = P (8, :);L9 = P (9, :); g1 = Sc +Ec + Ic +V ; g2 =

Sb + Eb + Ib + Ir;

Control cases of Newcastle disease transmission

case1 : u1 6= 0, u2 = 0, u3 = 0,

u1 = min(1,max(0, Beta1));

u2 = zeros(1, N + 1);

u3 = zeros(1, N + 1);

Uu = [u1′u2′u3′];

U = 0.5 ∗ Uu+ 0.5 ∗ oldu;

Xnew = X ′;

NumXX = abs(norm(Xnew −Xold));

DenXnew = norm(Xnew);

i = i+ 1end

PLOTTING

X=Xnew;

Tx =Tx’;

XX=X(:,1); YY=X(:,2); VV=X(:,3); ZZ=X(:,4); EE=X(:,5);MM=X(:,6);GG=X(:,7);

QQ=X(:,8);KK=X(:,9);

Up =[0 0 0]; [T, Y ] = ode45(@Mark1State, time, y0, [], Up, Constant);

save Category2

save(’case1State’,’X’);

save(’case1Control’,’Uu’);

clf figure(1)
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subplot(2,2,1)

plot(Tx,log10(X(:,1)),’r’,T,log10(Y(:,1)),’–b’,’LineWidth’,2);

Xlabel(’Time (days)’);

Ylabel(’Susceptible village chicken’);

title(’(a)’,’FontSize’,10)

legend(’with control’,’without control’,2);

subplot(2,2,2)

plot(Tx,log10(X(:,3)),’r’,T,log10(Y(:,3)),’–b’,’LineWidth’,2);

Xlabel(’Time (days)’);

Ylabel(’Severely infected village chicken’);

title(’(b)’,’FontSize’,10)

legend(’with control’,’without control’,2);

subplot(2,2,3)

plot(Tx,log10(X(:,9)),’r’,T,log10(Y(:,9)),’–b’,’LineWidth’,2);

Xlabel(’Time(days)’);

Ylabel(’NDV in the environment’);

title(’(c)’,’FontSize’,10)

legend(’with control’,’without control’,2);

subplot(2,2,4) plot(Tx,Uu(:,1),’c’,Tx,Uu(:,2),’b’,Tx,Uu(:,3),’–r’,’LineWidth’,2);

Ylabel(’Control Profile’);

Xlabel(’Time(days)’);

title(’(d)’,’FontSize’,10)

legend(′u1 6= 0′,′ u2 6= 0′,′ u3 6= 0′, 3)

collect all the incidence terms in the ODE U =[0 0 0];

[Tx, Y ] = ode45(@Mark1State, time, y0, [], U, Constant);

Y=(Y);

Inew=sum(Y(:,10))-sum(X(:,10))

Solution of the objective functional Ic = X(:, 3); Ir = X(:, 8);H = X(:, 9);
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u1=Uu(:,1); u2=Uu(:,2); u3=Uu(:,3); t=T; n=length(t);

for i = 1:n

g3=A1 ∗ u1(i) ∗ Sc(i) + A2 ∗ u2(i) ∗ Ic(i) + A3 ∗ u3(i) ∗H(i);

h1=(D1/2)*u1(i)*u1(i)+(D2/2)*u2(i)*u2(i)+(D3/2)*u3(i)*u3(i);

Q(i)=g3+h1;

cost=trapz(r,Q)
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