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Abstract: Uncertainty quantification and sensitivity analysis are essential for improving the modeling
and estimation of greenhouse gas emissions in livestock farming to evaluate and reduce the impact
of uncertainty in input parameters to model output. The present study is a comprehensive review of
the sources of uncertainty and techniques used in uncertainty analysis, quantification, and sensitivity
analysis. The search process involved rigorous selection criteria and articles retrieved from the Science
Direct, Google Scholar, and Scopus databases and exported to RAYYAN for further screening. This
review found that identifying the sources of uncertainty, implementing quantifying uncertainty, and
analyzing sensitivity are of utmost importance in accurately estimating greenhouse gas emissions.
This study proposes the development of an EcoPrecision framework for enhanced precision livestock
farming, and estimation of emissions, to address the uncertainties in greenhouse gas emissions and
climate change mitigation.

Keywords: greenhouse gas emission; ruminant livestock; uncertainty analysis; sensitivity analysis;
methane; carbon dioxide; nitrous oxide; EcoPrecision framework

1. Introduction
1.1. Uncertainty Quantification and Sensitivity Analysis

Uncertainty quantification and sensitivity analysis are essential for improving the
modeling and estimation of greenhouse gas emissions in livestock farming to identify of
the sources and the most significant input parameters and their impacts on the overall
model output, thus minimizing errors [1–5]. Identifying the sources of uncertainty in
modeling greenhouse gas emissions and analyzing their sensitivity can improve accuracy
in modeling emissions and support the development of effective mitigation strategies for
sustainable livestock production [1,6,7]. Different frameworks, methods, and approaches
such as Monte Carlo simulations, contribution to variance analysis, global sensitivity
methods, traditional matched filter methods, optimal estimation (OE) methods, integrated
assessment models, model intercomparison studies, scenario analysis, and expert judgment
have been used in analyzing the cause or source of uncertainties to perform uncertainty
analysis and quantification and sensitivity analysis in greenhouse gas emissions from
ruminants [5,8–11].

1.2. The Relationship between Livestock Formation, Greenhouse Gas Emissions, and Climate
Change: Implications and Mitigation Strategies

Livestock, particularly ruminants, significantly contribute to global greenhouse gas
emissions and climate change through manure management and the release of carbon diox-
ide, methane, and nitrous oxide through enteric fermentation [12–17]. The consequences of
increasing emissions include a heightened greenhouse effect and global warming, which
necessitates appropriate mitigation strategies to limit temperature rise [14,18]. The bidi-
rectional interaction between ruminant livestock emissions and climate change forms
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a positive feedback loop, impacting livestock well-being, feed availability, and disease
prevalence [19,20].

Addressing these challenges requires sustainable and adaptive livestock farming
practices that consider technological innovations, policy interventions, and behavioral
changes [21,22]. Effective sustainability strategies and policies, advanced technologies such
as big data, artificial intelligence, internet of things (IoT)-based smart farming, remote
sensing, and precision livestock farming (PLF), and good management practices such as
manure management, feed optimization, breed selection interventions, and land-based
carbon sequestration at the farm level, can reduce emissions, which is vital for reaching
the temperature goal of the Paris Agreement [13,14,23–28]. Overall, the implementation
of effective sustainability strategies, policies, and technological innovation can enhance
the accuracy of results and analysis on climatic conditions, livestock, and carbon seques-
tration [29]. However, further research is needed to understand the complex interactions
between ruminant livestock emissions, greenhouse gases, and climate change that will
eventually contribute to the development of integrated mitigation strategies [13,27].

1.3. Emission Quantification Techniques and Estimation Approaches

Emissions of greenhouse gases can be quantified directly or indirectly [12,30]. Direct
techniques demand that some instrumentation, such as remote sensing, directly measures
emissions in the atmosphere. In contrast, the indirect approach often uses an estimation
model, such as activity data and an emission factor [31]. Also, emissions can be estimated
using bottom-up and top-down methods [32,33]. Activity data and emission features are
used by bottom-up methods to calculate emissions by multiplying individual sources with
their respective emissions [32,33]. The main goal of top-down estimates is to enhance
bottom-up forecasts by providing information to connect emissions to processes, thus
supporting climate action [34]. Top-down methods that use atmospheric methane observa-
tions to estimate emissions can improve bottom-up estimates [35,36]. Tiers 1, 2, and 3 are
approaches used in calculating greenhouse gas emissions and removals by the Intergovern-
mental Panel on Climate Change (IPCC) [12,37,38]. Tier 3 is used nationally to create an
emission inventory [12,37,39]. Also, the Life Cycle Assessment (LCA) framework is used to
evaluate emission intensity and quantification through the production life cycle [40–42].
However, these techniques and approaches have uncertainties and can lead to conflicting
forecasts [35,41].

1.4. Theoretical Frameworks for Modeling the Correlation between Greenhouse Gas Emissions in
Livestock Farming

Life Cycle Assessment (LCA) is a framework that evaluates the environmental im-
pacts of livestock production at various stages, such as enteric fermentation, feeding
practices, and manure management [43,44]. The LCA framework also helps in identify-
ing specific evaluation criteria for livestock-focused assessments, including transparency,
reproducibility, completeness, fairness, and acceptability, and aids in developing tailored
mitigation strategies for livestock farming [45]. However, the LCA framework has lim-
itations like inaccuracies and robustness of sustainability in modeling greenhouse gas
emissions from livestock [43,46]. Therefore, harmonization of LCA methods is needed, and
uncertainty in input variables like milk yield affects emission estimates and the classifica-
tion of farms [44,47]. Overall, reducing critical uncertainties is crucial for effective LCA
use [48,49].

Integrated assessment models (IAMs) are comprehensive frameworks that help to
understand the correlation between greenhouse gas emissions and livestock farming, and
models to assess the impacts of different factors on emissions [50,51]. They combine
knowledge from various domains, thus allowing for policy evaluation based on economic,
climatic, and interdisciplinary components analyzing emissions from different stages,
evaluating mitigation strategies, and simulating scenarios, thus providing insights into
policy interventions [52–54]. However, IAMs are limited in modeling greenhouse gas
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emissions in livestock farming due to uncertainties and errors in input variables [54].
Classifying farms into adopters and non-adopters of mitigation measures is prone to errors
and also fails to account for equity and fairness concepts, which are crucial for policy
decisions [48].

Precision Agriculture (PA) frameworks are used to understand greenhouse gas emis-
sions in livestock farming using IoT, sensors, and data analytics [55]. Future research should
integrate multidisciplinary approaches, deep learning, machine learning, and intelligent
technologies for sustainable development [56]. However, PA frameworks face challenges
in modeling greenhouse gas emissions due to a lack of data and a gap between modeled
scenarios and reality in the agricultural sector [48,57,58].

The utilization of Monte Carlo simulation and sensitivity analysis frameworks is
essential in evaluating the uncertainty and sensitivity of emission estimates within models
and for devising effective strategies to combat climate change, particularly in the con-
text of reducing greenhouse gas emissions from livestock [3,59]. Nevertheless, Monte
Carlo simulation and sensitivity analysis frameworks face challenges in modeling green-
house gas emissions such as uncertainty in parameters and assumptions, and the need
for accurate quantification of uncertainties [60]. The choice of sampling strategies and
interpretation methods also affects the accuracy of results, necessitating further research
and development [61].

A theoretical framework for modeling greenhouse gas emissions from ruminants is
essential for understanding and mitigating their contribution to climate change. These
frameworks play a crucial role in deciphering the primary contributors to emissions and
pinpointing specific areas for targeted mitigation efforts.

Thus, this review aimed to (1) assess the source of uncertainties in the estimation of
greenhouse gas emissions from ruminant livestock, (2) investigate the techniques used
in uncertainty quantification and sensitivity analysis in the estimation of greenhouse gas
emissions from ruminant livestock, and (3) propose the development of an EcoPrecision
framework for enhanced precision livestock farming and emission estimation, to address
the uncertainties in greenhouse gas emissions from livestock and climate change mitigation.

2. Materials and Methods

A comprehensive search strategy was devised and implemented to identify relevant
articles on greenhouse gas emission modeling in the ScienceDirect, Google Scholar, and
Scopus databases. Google Scholar serves as a comprehensive repository of citation data
across various academic disciplines, providing users with direct access to pertinent sources.
Scopus is an abstract and citation database that adheres to strict controls, complements
the Web of Science, and grants access to exceptional author and affiliation identifiers.
ScienceDirect, an expansive collection encompassing over 9.5 million articles and book
chapters, presents a multitude of search options, allowing for refinement by content type,
subject matter, or journal. Moreover, it permits users to customize their search ordering.
These data sources provide researchers with comprehensive and exhaustive coverage.
The following query was used: “uncertainty”, “sensitivity analysis”, “greenhouse gas
emission”, and “ruminant livestock” or beef or dairy or cattle or sheep or goat or livestock
or ruminants. A search in Google Scholar generated 11,300 results. After a thorough
review, only 316 of these results were deemed relevant and selected for further analysis.
Pages 17 and 18 were inaccessible on Google Scholar during the article retrieval process.
A search via ScienceDirect yielded 392 results, and only 298 were selected for analysis.
A search on Scopus yielded 289 initial results. After a thorough evaluation, 112 relevant
results were selected for further analysis.

Inclusion and Exclusion Criteria

Only studies that met the following criteria were included:

i. Greenhouse gas emissions from livestock or ruminants;
ii. Uncertainty analysis and sensitivity analysis;
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iii. Articles published between 2019 and 2023 in English.

This study concentrated on the past five years to deliver the most current and relevant
information, thus emphasizing recent developments in greenhouse gas emission estimation.
The rationale for this was the aim to provide readers with the latest insights, considering the
significant developments and changes observed in this field over the specified timeframe.

A set of exclusion criteria was formulated to narrow down the focus and maintain rele-
vance. Studies not directly related to greenhouse gas emissions from livestock or ruminants,
aligning with our selection of the specific scope of this research, were deliberately excluded
in the review. Additionally, the exclusion of papers not written in English aimed to ensure
linguistic consistency and facilitate a comprehensive understanding of the content. Fur-
thermore, the exclusion of papers older than five years prioritized recent information, thus
capturing the latest developments in the field. These exclusion criteria were thoughtfully
designed to enhance the precision and topical relevance of the study, hence enabling a
focused exploration of the recent and pertinent literature on greenhouse gas emissions
from livestock farming.

All 726 search results were exported to RAYYAN for screening, and 75 duplicates were
detected. After the removal of duplicates, title and abstract screening was performed, and
148 articles qualified for full-text screening. As a result of this extensive search effort, a total
of 20 published articles were identified and included for further analysis in this review.

3. Results

Figure 1 illustrates the PRISMA flow diagram, showcasing the inclusion of 20 articles
that met the predetermined criteria from a total pool of 1603 articles initially considered for
this review. A summary of the articles can be found in Table 1.
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Table 1. Summary of reviewed articles.

Author Objective and Results Uncertainty and Sensitivity
Analysis and Techniques Used Source of Uncertainty

Ribeiro et al. [62]

The study aimed to construct a methane
emissions database, formulate predictive
models, and validate their accuracy using

data from 38 studies.

Various prediction equations
(54 in total) were assessed for

methane production, revealing
diverse approaches and potential

uncertainty; cross-validation
gauged accuracy and precision.

Nutrient intake, diet composition,
methane emission measurement

techniques, and use of different data
collection methods introduce

variability and uncertainty in the
measurements.
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Table 1. Cont.

Author Objective and Results Uncertainty and Sensitivity
Analysis and Techniques Used Source of Uncertainty

Xu et al. [63]
The study aimed to compile an up-to-date,

high-resolution methane emission
inventory to address uncertainty.

Existing inventories of
methane emissions from China’s

livestock sector involve
significant uncertainty.

N/A

Xu et al. [8]

The study develops a regional agricultural
life cycle assessment database, revealing a
mean greenhouse gas emission reduction
of 179.10 kgCO2eq per USD 100 through

Monte Carlo simulations, addressing
previous limitations.

Monte Carlo simulations gauged
Life Cycle Assessment

uncertainty; sensitivity analysis
confirmed input parameter

changes insignificantly affected
results, ensuring robustness with

≤3% variations.

Variability in input data,
assumptions made in the Life Cycle

Assessment model, and potential
data collection and measurement

errors.

Vinković et al. [64]

The study employed an Unmanned Aerial
Vehicle-based system to measure dairy

cow farm methane emissions, highlighting
the necessity for additional research to

refine estimates.

N/A

Variabilities in wind speed and the
angle between the wind and the

flight transect were the dominant
sources of uncertainty in estimating

methane emissions from dairy
farms using Unmanned Aerial
Vehicle-based measurements.

Kumari et al. [65]

The objective of the paper was to review
methane measurement and estimation

techniques, as well as mitigation
approaches, for livestock farming.

N/A

Variations in animal diets, animal
breeds, management practices,

top-down and bottom-up
approaches, sampling methods, and
measurement equipment contribute

to uncertainty in methane
emission estimation.

Sykes et al. [9]

The study pinpoints key factors affecting
model uncertainty in greenhouse gas

accounting, suggesting refinement
for enhanced accuracy and policy

decision support.

Monte Carlo, simulation, and
sensitivity analyses are methods

used to assess and analyze
uncertainty in greenhouse gas

accounting models for
livestock systems.

Variability in input data, model
scope inherent in the modeling
process, and allocation methods
contribute to the uncertainties in

greenhouse gas accounting models
for livestock systems.

Bühler et al. [66]

The study compared methane emissions
from dairy housings using the inverse

dispersion method (IDM) and the
in-house tracer ratio method (iTRM).

The study conducted an
uncertainty analysis to determine

the measurement duration
required for the inverse

dispersion method (IDM) to
accurately determine methane
emissions from dairy housings.

The spatial distribution of sources
(animals, housing areas), variable

air exchange, and inverse dispersion
method (IDM) introduce

uncertainties in determining
gaseous emissions from

stationary sources.

Thiruvenkatachari et al.
[67]

The study aimed to estimate methane
emissions from manure lagoons in two

California dairies using dispersion models
and compare results from two models,

revealing significant differences in their
emission rates.

Two dispersion models,
numerical Eulerian (EN) and

backward Lagrangian stochastic
(bLS) models, were used to

estimate emissions’ uncertainty
and sensitivity.

Differences in the formulation
of dispersion models and variability

in methane concentrations
measured at the two dairies

contribute to uncertainty in the
emission estimates.

Park et al. [5]

The study successfully developed a
method to analyze uncertainty in

greenhouse gas emission models. It
effectively addressed input variables

contributing to model uncertainty,
providing a valuable approach for

greenhouse gas emission modeling.

Contribution to variance (CTV)
analysis, data quality analysis,

Monte Carlo simulation, and the
global sensitivity method

techniques were employed to
assess and reduce uncertainty in

the greenhouse gas emission
model output.

Uncertainty in model output arises
from technological, geographical,

and time-related representativeness,
as well as completeness, precision,

and methodological appropriateness.

Ndao et al. [68]

The study evaluated input parameter
uncertainty in estimating West African
cattle methane emissions, identifying

crucial factors and emphasizing research
for accuracy improvement.

Uncertainty analysis
methodologies were used to

evaluate and quantify the
uncertainty associated
with estimating enteric

methane emission.

The IPCC default input parameters,
such as the coefficient for
calculating net energy for

maintenance (Cfi), digestible energy
(DE), and the methane conversion

rate (Ym), were found to be
significant sources of uncertainty.
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Table 1. Cont.

Author Objective and Results Uncertainty and Sensitivity
Analysis and Techniques Used Source of Uncertainty

Marklein et al. [7]

The research focuses on developing a
dairy database to analyze methane

emissions, employing sensitivity analysis
for accuracy and emphasizing data

resolution’s crucial role in
emissions management.

Sensitivity analysis was
performed on each method used

to estimate facility-scale
manure emissions.

The uncertainty in facility-scale
manure emissions is propagated

using the sum of the squared
partial derivatives of each

variable’s variance.

Harmsen et al.
[69]

The study analyzed diverse models,
comparing methane emission projections
in deep mitigation scenarios, emphasizing
uncertainties, particularly in agriculture
emissions, necessitating further research

for clarity.

Techniques used in uncertainty
analysis were integrated

assessment models, model
intercomparison studies, literature
review, sensitivity analysis, and
scenario analysis to identify and

quantify the uncertainties
associated with different factors

and emission assumptions.

The sources of uncertainty in
methane emission projections

include model-specific assumptions,
the comparison of models’

predictions to the literature, the
effectiveness of different mitigation
measures, and the increasing share
of agriculture methane emissions.

Arceo-Castillo et al.
[59]

The study investigates methane
production in ruminants, assesses

emission uncertainty, and develops
mitigation strategies for accurately
estimating dairy cattle production.

Statistical modeling, sensitivity
analysis, and Monte Carlo

simulations to assess and improve
the accuracy of estimating

methane emissions and to better
understand the sources of
uncertainty in dairy cattle

production systems.

Factors such as diet composition,
animal genetics, management

practices, and the complexity of
accurately quantifying and

mitigating methane emissions were
identified as sources of uncertainty.

Hempel et al. [70]

The study compared methane emission
data between slatted and solid floor

systems. It found that extreme emission
values were more prevalent in the slatted

floor system, suggesting slurry storage
was a significant source of

methane emissions.

N/A

The study also identified
uncertainties related to sampling
strategies and deviation between

the two farm locations as the source
of uncertainty.

Kumari et al. [71]

The study aimed to assess methane
emissions from Indian livestock and their

role in climate change using
climate metrics.

GIS software for spatial mapping
and continuous analysis of

absolute global surface
temperature change potential

(AGTP) was used to assess
uncertainty in methane

emissions and their impact on
surface temperature.

Livestock population database,
emission factors, the choice of

estimation methodology (tier 1,
tier 2, or tier 3), and sampling
methodology can introduce

uncertainty in estimating
methane emissions.

Jacob et al. [72]

This paper reviews the ability of current
and scheduled satellite observations of
atmospheric methane emissions from

global-to-point sources.

N/A

Retrieval methods, instrument
precision, inverse methods,

detection thresholds, variable bias,
and factors related to wind direction

and surface reflectivity can
introduce uncertainties in

quantifying emissions.

Vechi et al. [73]

The study aimed to measure whole-farm
methane emissions from cattle farms,

finding discrepancies with IPCC
guidelines and urging model

improvements, particularly in enteric and
manure emissions.

N/A

Temporal resolution, variation in
dispersion pattern, atmospheric

conditions, time of measurement of
feeding and general cattle activity,
type of fodder, amount of manure
accumulated, and measurement

uncertainty contribute to the delay
in methane emission measurements.

Solazzo et al. [10]

The study aimed to assess structural
uncertainty in the Emissions Database for
Global Atmospheric Research (EDGAR)

emission inventory.

Assumptions and reference cases
played a significant role in

uncertainty estimation.

Activity data (AD), emission factors
(EFs), methodological choices, and
assumption of complete correlation

between subcategories and
countries were identified as a

significant source of uncertainty in
the EDGAR inventory.
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Table 1. Cont.

Author Objective and Results Uncertainty and Sensitivity
Analysis and Techniques Used Source of Uncertainty

Hempel et al. [6]

The study explores methane emissions,
revealing parabolic temperature

dependence—circadian rhythm affected
by feeding and airflow and emission

minima found at 10–15 ◦C.

The sensitivity of estimated
regression coefficients on the

selected training data indicates
potential uncertainty in the

modeling approach.

Variability in emissions, modeling
approaches, and the influence of

feeding strategies and herd
compositions were identified as

sources of uncertainty.

Huang et al. [11]

The study assessed aerosol scattering
effects on methane retrieval, revealing

biases influenced by surface albedo
aerosol properties emphasizing
methodological considerations

for accuracy.

The traditional matched filter
(MF) and optimal estimation (OE)

methods were used in
uncertainty quantification.

The sources of uncertainty in
methane retrievals from airborne

remote sensing measurements
include aerosol scattering, surface
albedo, aerosol optical depth, and

the choice of retrieval method.

3.1. Sources of Uncertainty
3.1.1. Animal Parameters

Differences in diet composition and nutrient intake, as indicated by Ribeiro et al. [62],
introduce uncertainties in predicting methane emissions. Furthermore, factors such as
animal breeds, diets, and management practices contribute significantly to this uncertainty,
as emphasized by Kumari et al. [71]. According to Arceo-Castillo et al. [59], the complexities
associated with animal genetics, diet composition, and management practices, all contribute
to variations in estimating methane emissions in different dairy cattle farming scenarios.

In the realm of modeling greenhouse emissions in livestock systems, Sykes et al. [9]
identified sources of uncertainty, such as inconsistencies in input data, methane emissions
from enteric fermentation, and feed production. Measurement uncertainties related to
cattle activity, feed type, manure levels, and other factors have also been highlighted by
Vechi et al. [73], emphasizing the need for precision in data collection methods. Additionally,
Bühler et al. [66] encountered challenges in quantifying methane emissions due to spatial
distribution and fluctuating air exchange in dairy housing facilities.

Variations in cattle breeds, feeding practices, and environmental conditions were iden-
tified as potential contributors to uncertainty in estimating enteric methane emissions [65].
This aligns with the findings of Hempel et al. [6], who established that feed intake is the
most influential factor with uncertainty in predicting carbon dioxide emissions.

3.1.2. Data Sourcing Techniques or Data Collection Tools

The various data-sourcing techniques and data collection tools employed in studying
GHG emissions reveal several challenges and uncertainties, ultimately influencing our
understanding of the impact of climate change. Firstly, Ribeiro et al. [62] point out that
methane emission measurements using techniques like SF6, Green Feed, and open-circuit
respiratory chambers can introduce uncertainties. These uncertainties may arise from the
inherent limitations and potential biases associated with each measurement method [62].
Similarly, Vinković et al. [64] draw attention to the uncertainties introduced in estimating
methane emissions from dairy farms using unmanned aerial vehicles (UAVs) measurements.
Variability in wind speed and angles between flight transects and wind are identified as
sources of uncertainty, highlighting the importance of accounting for environmental factors
in data collection. Xu et al. [8] emphasize the impact of variability in input parameters,
errors in data collection tools, and model simulations on uncertainties in greenhouse
gas emissions. This underlines the importance of rigorous data validation and accurate
parameterization in emission models.

Bühler et al. [66] highlight the uncertainties introduced by the inverse dispersion
method (IDM) when estimating greenhouse gas emissions from stationary sources. The
choice of measurement methods can significantly affect the accuracy of emission estima-
tions. Huang et al. [11] emphasize the uncertainties associated with using airborne remote
sensing measurements for methane retrieval. Factors such as aerosol scattering, surface
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albedo, retrieval method choice, and aerosol types can introduce biases, impacting the
reliability of methane data obtained through remote sensing [11]. According to Arceo-
Castillo et al. [59], uncertainties in methane emission measurements arise from analyzing
ducting efficiency, particularly in assessing flow within the duct connecting chambers to
methane analyzers. This emphasizes the need for precision in the measurement setup.
Jacob et al. [72] identify various sources of uncertainty in methane emission estimation
from satellite observations, including retrieval methods, instrument precision, detection
thresholds, and the influence of atmospheric conditions. These uncertainties collectively
affect the reliability of methane emission estimates derived from satellite data.

The findings of Vechi et al. [73] indicate that measurement campaigns throughout
the year may have limited temporal resolution, potentially introducing uncertainty in
capturing short-term emission variations. Dispersion models’ assumptions and variations
in measuring methane concentrations can also contribute to uncertainties, as highlighted
by Thiruvenkatachari et al. [67]. Moreover, Hempel et al. [70] point out uncertainties in
artificial and natural tracer measurement approaches, which influence the observed differ-
ences in methane emissions between farm locations. Sampling strategies for determining
indoor methane concentrations also contribute to uncertainties in emission estimates.

3.1.3. Quantification and Estimation Approaches and Techniques Used in Greenhouse
Gas Emissions

Utilizing both top-down and bottom-up methods, as highlighted by Kumari et al. [71]
and Vechi et al. [73], introduces complexities and uncertainties in assessing methane
emissions. Additionally, the impact of assumptions in LCA and default parameters in IPCC
Tier 2 methodology, emphasized by Xu et al. [63] and Ndao et al. [68], further contributes
to the overall uncertainty in emission factor accuracy. Hempel et al. [70] draw attention
to the limitations of livestock population databases and the potential overestimation of
emissions using default factors, underscoring the need for improved data coverage and
parameter refinement.

3.1.4. Environmental Factors

Vinković et al. [64] and Vechi et al. [73] emphasize the significance of environmental
variables such as wind speed, flight transect angles, and turbulence intensity as sources
of uncertainty. The variability in these atmospheric conditions introduces challenges in
obtaining precise measurements and necessitates a nuanced understanding of how en-
vironmental factors influence emission estimates [64,73]. Bühler et al. [66] shed light on
spatial challenges, indicating that the spatial distribution of emission sources (e.g., ani-
mals and housing areas), and the fluctuating air exchange in dairy housing facilities also
contribute to uncertainties. This spatial dimension adds another layer of complexity to
emission quantification, requiring methodologies that account for the dynamic nature of
emissions within the farm environment [66]. Park et al. [3] identify sources of uncertainty in
model outputs, including geographical, time-related, and technological representativeness,
completeness, precision uncertainty, and methodological appropriateness and consistency,
which underscore the importance of robust modeling practices for enhancing the accuracy
of emission estimates.

3.1.5. Greenhouse Gas Inventories

Xu et al. [63] and Solazzo et al. [10] both highlight that uncertainties in activity data
and emission factors significantly contribute to the overall uncertainty in greenhouse
gas inventories. Activity data refers to the information on human activities that result
in emissions, while emission factors represent the average emission rates per unit of
activity [10,63]. The uncertainty in these components can arise from various sources,
including discrepancies in spatial and temporal variability of emissions and the distribution
of manure in different manure management systems [10]. These uncertainties have broader
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implications for understanding the increase or decrease in GHG emissions and their impact
on climate change [10].

3.1.6. Other Sources

Harmsen et al. [69] identify several contributing factors to the variability and uncer-
tainty in forecasting future methane emissions from livestock. Model-specific assumptions
play a significant role, as different models may adopt varying assumptions, leading to
divergent predictions [69]. The comparison of model projections to the existing literature
introduces uncertainty, which emphasizes the need for consistency and accuracy in data
and assumptions [69]. The efficacy of diverse mitigation measures further contributes
to variability, since the effectiveness of these measures can vary based on factors like im-
plementation and adoption rates [69]. The growing proportion of agricultural methane
emissions adds another layer of complexity, reflecting the dynamic nature of emissions from
this sector [69]. Sykes et al. [9] highlight inconsistencies in input data, allocation methods,
and inherent uncertainties in the modeling process (epistemic uncertainty) as sources of
uncertainty in estimating greenhouse gas emissions from livestock systems. The skew-
ness in key modeling coefficients, particularly those related to nitrous oxide and methane
emissions, significantly contributes to uncertainty [9]. Specific coefficients associated with
methane emissions from enteric fermentation and feed production introduce variability
and emphasize the importance of accurate parameterization in emission models [9].

3.2. Techniques Used in Uncertainty and Sensitivity Analysis

Xu et al. [8] utilized Monte Carlo simulations in LCA, revealing relatively low un-
certainty with a low coefficient of variation. Their sensitivity analysis emphasized the
robustness of the results, showcasing minimal effects from changes in input parameters.
Sykes et al. [9] employed Monte Carlo simulation and sensitivity analysis in livestock
systems and identified a notable 8.3% discrepancy attributable to skewness in key mod-
eling coefficients. Park et al. [5] utilized analytical and stochastic approaches, including
Monte Carlo simulation and variance-based methods to assess GHG emissions uncertainty.
Thiruvenkatachari et al. [67] employed numerical models, obtained confidence intervals,
and highlighted the impact of variability in methane concentrations, dispersion models,
and measurement uncertainties. Bühler et al. [66] conducted relative uncertainty analysis
for the inverse dispersion method, revealing uncertainties in measurements.

Ndao et al. [68] applied uncertainty analysis to enteric methane emission factors,
determining the importance of each input parameter. Marklein et al. [7] employed a novel
approach for facility-scale manure emissions, extending sensitivity analysis to the state level.
Harmsen et al. [69] used integrated assessment models, inter-comparison studies, literature
reviews, sensitivity analysis, and scenario analysis to identify and quantify uncertainties in
methane emission projections. Huang et al. [11] discovered method-dependent biases in
methane retrieval and emphasized the influence of aerosol optical depth and aerosol types.
Kumari et al. [71] utilized geographical information systems (GIS) for spatial mapping and
provided insights into uncertainty at different levels, while Solazzo et al. [10] performed
sensitivity analysis and emphasized the impact of methodological choices on emission
inventory uncertainty. Furthermore, Xu et al. [8] employed linear mixed models to assess
emission variations from individual cows, feeding periods, and times of the day.

4. Discussion

The challenges associated with estimating GHG emissions from ruminant livestock
reveal a complex interplay of interconnected factors, including diet, genetics, manage-
ment practices, environmental conditions, modeling uncertainties, and measurement chal-
lenges [29,74–76]. This intricate web of elements contributes to the difficulties in accurately
estimating emissions [29,74,75]. The identified uncertainties in animal parameters highlight
the urgency of addressing the challenges to refine emission models and devise effective
mitigation strategies [48,68,75]. The present study underscores the significance of improv-
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ing precision in data collection, advancing modeling techniques, and cultivating a holistic
understanding of the diverse factors influencing emissions [74].

In data sourcing and collection techniques, complexities and uncertainties significantly
impact the accuracy of GHG emission estimations [30,48]. Therefore, addressing these un-
certainties is crucial for refining emission models and gaining an enhanced understanding
of their implications for climate change [74]. Similarly, continuous efforts are needed to im-
prove data collection methods, refine emission models, and implement accurate parameters
to comprehensively grasp the contribution of ruminants to greenhouse gas emissions [74].
The intricacies in estimating emissions from ruminants further underscore the challenges
arising from multiple interconnected sources of uncertainty. Hence, advocating a holistic
approach that considers environmental, spatial, and modeling dimensions becomes im-
perative [77]. The present study emphasizes the interdisciplinary efforts required to refine
measurement techniques, improve modeling approaches, and advance the understanding
of emissions from ruminants [30].

Accurate GHG inventories play an integral role in assessing sector contributions to
emissions and formulating effective mitigation strategies [27,74,78]. However, uncertainties
related to activity data and emission factors compromise the accuracy of these inventories,
impacting climate change projections and mitigation policies [79,80]. Thus, continuous
refinement in data collection methods, emission factor determinations, and overall inven-
tory methodologies is essential for identifying, justifying, and adjudicating national-level
mitigation commitments [74].

The collective impact of uncertainties on the accuracy of GHG emission predictions is
highlighted, emphasizing the potential discrepancies arising from inaccuracies in model
assumptions, comparisons to the existing literature, and modeling coefficients [11,66]. This
discussion underscores the implications for decision-makers and policymakers in designing
effective mitigation strategies [27,75,81] The identified uncertainties suggest variations
and potential biases in our understanding of future emission trajectories, underscoring
the importance of addressing these uncertainties for informed decision-making [82,83].
Diverse techniques, such as Monte Carlo simulations and sensitivity analysis, showcase
the complexity of GHG emission estimation, emphasizing the need for a combination of
methods for a comprehensive understanding [10,60].

This review significantly contributes to the field of GHG emissions estimation in
livestock farming. It offers a comprehensive understanding of the multifaceted sources
of uncertainty in estimating GHG emissions, covering animal parameters, data sourcing
techniques, environmental factors, and quantification approaches. This study underscores
the interconnected nature of these factors, advocating for a holistic approach to address
uncertainties. This review has implications for developing effective mitigation strategies
and influencing policy decisions, highlighting the need for continuous refinement in data
collection methods and emission models. The importance of interdisciplinary collaboration
is emphasized to tackle the complexity of uncertainties effectively. This work is crucial as it
disseminates knowledge about greenhouse emissions challenges, contributes to the global
understanding of livestock farming’s impact in climate change, and offers practical solutions
and innovations for sustainable agricultural practices and climate change management.

This review concludes with the proposition of an EcoPrecision framework for en-
hanced precision livestock farming, emission estimation, addressing uncertainties in GHG
emissions from livestock, and climate change mitigation. The proposed framework draws
inspiration from various existing frameworks and methodologies, such as PA frameworks,
LCAs, IAMs, GIS-based approaches, Monte Carlo simulation, and sensitivity analysis.
The proposed framework adds value by providing an integrated solution, emphasizing
methodological choices, and guiding researchers and practitioners in decision-making. The
framework aims to enhance the accuracy and reliability of emission estimates by focus-
ing on capturing on-farm dynamics using real-time data for input variables rather than
relying on fixed values. It promotes cross-disciplinary collaboration, establishes validation
processes, and ensures the comparability and reliability of the greenhouse gas emission



Sustainability 2024, 16, 2219 11 of 15

framework. Additionally, the framework prioritizes education and capacity building to
empower stakeholders to implement best practices and contribute to improving livestock
farming sustainability. Innovative strategies and advanced methodologies, such as Monte
Carlo simulation and sensitivity analysis, are embraced within the proposed framework to
address uncertainties effectively.

In the data collection stage, the framework will utilize remote sensing technology to
gather real data from farms. These data will include animal-related metrics and geospatial
information. All of the collected data will be integrated into a digital platform, where
a machine learning model will analyze the vast amount of data and uncover hidden
patterns in emission data. This will allow for the creation of more accurate and robust
estimation models, enabling continuous monitoring and updating of emission estimations
to improve precision. The framework will also employ Monte Carlo simulation to model
uncertainties and perform sensitivity analysis to identify critical parameters that affect
emission estimation. After conducting the uncertainty and sensitivity analysis, the model
will evaluate and simulate the environmental impact, projecting the long-term effects
on climate change mitigation strategies and different management practices within the
entire livestock production system or processes. The framework will generate reports,
visualizations, and recommendations for farms and decision-makers, providing insights
for precision livestock farming, emission estimation, and climate change mitigation.

5. Conclusions

In addressing the complexities of estimating GHG emissions from livestock, this study
underscores the critical need for a comprehensive approach that considers interconnected
factors. It emphasizes refining emission models, improving data collection precision, and
fostering holistic understanding as key strategies. By tackling uncertainties in data sourcing,
collection techniques, and emissions estimation techniques, this research contributes to a
greener environment. The proposed EcoPrecision framework integrates various method-
ologies and offers practical solutions that can guide decision-makers and practitioners in
adopting sustainable agricultural practices for effective climate change mitigation. This
study highlights the challenges in GHG inventories and the importance of continuous
refinement in data collection methods. By addressing uncertainties related to activity
data and emission factors, this research aimed to improve the accuracy of inventories and,
consequently, inform more effective climate change policies. The emphasis on interdisci-
plinary collaboration and the proposed EcoPrecision framework signifies a commitment to
advancing sustainable practices that can contribute to a greener and more environmentally
conscious future.

The future will encompass the practical application of the proposed framework, specif-
ically within ruminant livestock farms that employ a diverse range of management prac-
tices. Our objective is to adapt the framework to accommodate the varied management
approaches utilized in ruminant farming, utilizing real-time data for input variables. This
implementation phase seeks to validate the applicability and effectiveness of the pro-
posed framework across a spectrum of management practices within ruminant livestock
farms, contributing to the ongoing effort to improve sustainability practices in the broader
livestock industry.

One potential limitation in the future could be the variability and complexity of
management practices used on different ruminant livestock farms. Although the proposed
framework is adaptable to various approaches, it may face challenges when dealing with
highly unique or unconventional strategies. Some farming systems may have specialized
practices that could make it difficult to seamlessly integrate the framework. Additionally,
regional differences, farm size, and resource availability could also impact the effectiveness
of implementation, potentially limiting the framework’s universal applicability. To ensure
practicality and success across a range of management practices on ruminant livestock farms,
it will be important to address these variations and customize the framework accordingly.
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Continuous refinement and customization may be necessary to overcome these potential
limitations and improve the framework’s adaptability to different farming scenarios.
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64. Vinković, K.; Andersen, T.; de Vries, M.; Kers, B.; van Heuven, S.; Peters, W.; Hensen, A.; Bulk, P.v.D.; Chen, H. Evaluating the use
of an Unmanned Aerial Vehicle (UAV)-based active AirCore system to quantify methane emissions from dairy cows. Sci. Total.
Environ. 2022, 831, 154898. [CrossRef]

https://doi.org/10.1007/s11027-021-09947-4
https://doi.org/10.1016/j.compag.2021.106645
https://doi.org/10.1016/j.clpl.2023.100035
https://doi.org/10.46909/alse-552067
https://doi.org/10.1016/j.animal.2023.100794
https://doi.org/10.20517/cf.2022.11
https://doi.org/10.1016/j.jobe.2020.101454
https://doi.org/10.3390/ani13060974
https://doi.org/10.3390/ani13132096
https://www.ncbi.nlm.nih.gov/pubmed/37443894
https://doi.org/10.3389/fchem.2022.848320
https://www.ncbi.nlm.nih.gov/pubmed/35615311
https://doi.org/10.20937/ATM.52839
https://doi.org/10.3390/en13184965
https://doi.org/10.5194/acp-20-1795-2020
https://doi.org/10.1017/S1751731120001743
https://doi.org/10.1016/j.agrformet.2019.03.022
https://doi.org/10.1016/j.scitotenv.2022.154898


Sustainability 2024, 16, 2219 15 of 15

65. Kumari, S.; Fagodiya, R.K.; Hiloidhari, M.; Dahiya, R.P.; Kumar, A. Methane production and estimation from livestock husbandry:
A mechanistic understanding and emerging mitigation options. Sci. Total. Environ. 2020, 709, 136135. [CrossRef]

66. Bühler, M.; Häni, C.; Ammann, C.; Mohn, J.; Neftel, A.; Schrade, S.; Zähner, M.; Zeyer, K.; Brönnimann, S.; Kupper, T. Assessment
of the inverse dispersion method for the determination of methane emissions from a dairy housing. Agric. For. Meteorol. 2021,
307, 108501. [CrossRef]

67. Thiruvenkatachari, R.R.; Carranza, V.; Ahangar, F.; Marklein, A.; Hopkins, F.; Venkatram, A. Uncertainty in using dispersion
models to estimate methane emissions from manure lagoons in dairies. Agric. For. Meteorol. 2020, 290, 108011. [CrossRef]

68. Ndao, S. Analysis of Inputs Parameters Used to Estimate Enteric Methane Emission Factors Applying a Tier 2 Model: Case Study
of Native Cattle in Senegal. In Veterinary Medicine and Science; Kumar, P.A., Ed.; IntechOpen: London, UK, 2022; Volume 10.

69. Harmsen, M.; van Vuuren, D.P.; Bodirsky, B.L.; Chateau, J.; Durand-Lasserve, O.; Drouet, L.; Fricko, O.; Fujimori, S.; Gernaat,
D.E.H.J.; Hanaoka, T.; et al. The role of methane in future climate strategies: Mitigation potentials and climate impacts. Clim.
Chang. 2019, 163, 1409–1425. [CrossRef]

70. Hempel, S.; Janke, D.; Losand, B.; Zeyer, K.; Zähner, M.; Mohn, J.; Amon, T.; Schrade, S. Comparison of Methane Emission
Patterns from Dairy Housings with Solid and Slatted Floors at Two Locations. Agronomy 2022, 12, 381. [CrossRef]

71. Kumari, S.; Hiloidhari, M.; Naik, S.N.; Dahiya, R.P. Methane Emission Assessment from Indian Livestock and Its Role in Climate
Change Using Climate Metrics. In Climate Change and Agriculture; Hussain, S., Ed.; IntechOpen: London, UK, 2019.

72. Jacob, D.J.; Varon, D.J.; Cusworth, D.H.; Dennison, P.E.; Frankenberg, C.; Gautam, R.; Guanter, L.; Kelley, J.; McKeever, J.; Ott, L.E.;
et al. Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric
methane. Atmospheric Chem. Phys. 2022, 22, 9617–9646. [CrossRef]

73. Vechi, N.T.; Mellqvist, J.; Scheutz, C. Quantification of methane emissions from cattle farms, using the tracer gas dispersion
method. Agric. Ecosyst. Environ. 2022, 330, 107885. [CrossRef]

74. Ghassemi Nejad, J.; Ju, M.S.; Jo, J.H.; Oh, K.H.; Lee, Y.S.; Lee, S.D.; Kim, E.J.; Roh, S.; Lee, H.G. Advances in Methane Emission
Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies. Animals
2024, 14, 435. [CrossRef]

75. Króliczewska, B.; Pecka-Kiełb, E.; Bujok, J. Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and
Issues. Agriculture 2023, 13, 602. [CrossRef]

76. Bilton, T.P.; Hickey, S.M.; Jonker, A.J.; Bain, W.; Waller, E.; Hess, M.; Pile, G.; Agnew, M.; Muetzel, S.; Reid, P.; et al. Differences in
Milk Composition Associated with Enteric Methane Emissions; ICAR Technical Series; ICAR: Leeuwarden, The Netherlands, 2021.

77. Karmakar, S. Inverse Modeling of Atmospheric Measurements from Surface Observation Sites to Understand Trends in Global
Methane Emissions Over More Than Three Decades. Master’s Thesis, Portland State University, Portland, OR, USA, 2022.

78. Slayi, M.; Kayima, D.; Jaja, I.F.; Mapiye, C.; Dzama, K. Enteric methane output and weight accumulation of Nguni and Bonsmara
cows raised under different grazing conditions. Pastoralism 2023, 13, 12. [CrossRef]

79. Elguindi, N.; Granier, C.; Stavrakou, T.; Darras, S.; Bauwens, M.; Cao, H.; Chen, C.; Denier van der Gon, H.A.; Dubovik, O.;
Fu, T.M.; et al. Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions from Bottom-Up Inventories,
Top-Down Estimates, and Emission Scenarios. Earth’s Future 2020, 8, e2020EF001520. [CrossRef]

80. Elzen, M.G.J.D.; Dafnomilis, I.; Hof, A.F.; Olsson, M.; Beusen, A.; Botzen, W.J.W.; Kuramochi, T.; Nascimento, L.; Rogelj, J. The
impact of policy and model uncertainties on emissions projections of the Paris Agreement pledges. Environ. Res. Lett. 2023,
18, 054026. [CrossRef]

81. Wallace, R.J. Impact and legacy of the highly cited paper by Blaxter and Clapperton (1965) Prediction of the amount of methane
produced by ruminants. Br. J. Nutr. 1965, 19, 511–522, Erratum in Br. J. Nutr. 2022, 127, 1774–1777. [CrossRef]

82. del Prado, A.; Lynch, J.; Liu, S.; Ridoutt, B.; Pardo, G.; Mitloehner, F. Animal board invited review: Opportunities and challenges
in using GWP* to report the impact of ruminant livestock on global temperature change. Animal 2023, 17, 100790. [CrossRef]

83. Della, R.M.; Waghorn, G.C.; Ronaldo, V.; Arjan, J. An assessment of global ruminant methane-emission measurements shows bias
relative to contributions of farmed species, populations and among continents. Anim. Prod. Sci. 2022, 63, 201–212. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scitotenv.2019.136135
https://doi.org/10.1016/j.agrformet.2021.108501
https://doi.org/10.1016/j.agrformet.2020.108011
https://doi.org/10.1007/s10584-019-02437-2
https://doi.org/10.3390/agronomy12020381
https://doi.org/10.5194/acp-22-9617-2022
https://doi.org/10.1016/j.agee.2022.107885
https://doi.org/10.3390/ani14030435
https://doi.org/10.3390/agriculture13030602
https://doi.org/10.1186/s13570-023-00275-7
https://doi.org/10.1029/2020EF001520
https://doi.org/10.1088/1748-9326/acceb7
https://doi.org/10.1017/S0007114522000678
https://doi.org/10.1016/j.animal.2023.100790
https://doi.org/10.1071/AN22051

