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ABSTRACT 

This study aimed to trace the dominant sources of riverine sediments and assess climate 

change's current and future impacts on the river discharge at the critical agroecological region 

of the Simiyu catchment. Geochemical fingerprinting of the riverbed sediments and potential 

sediment sources were compared using a Bayesian mixing model (MixSIAR) to attribute the 

dominant riverine and land-use sources to the Simiyu Mainstem. The mixing model outputs 

showed that the Simiyu tributary was the dominant sediment source to the Simiyu Mainstem 

with 63.2%, while the Duma tributary accounted for 36.8%. Cultivated land was shown to be 

the main land-use source of riverine sediment, accounting for 80 % and 86.4% in the Simiyu 

and Duma sub-tributaries, respectively, followed by channel banks with 9% in both sub-

tributaries. The Soil and Water Assessment Tool (SWAT) under RCPs 4.5, 6.0, and 8.5 were 

also used to project the impacts of climate change on river discharge throughout 2030–2060. 

The selected three General Circulation Models (GCMs) predicted an increase in the annual 

average temperature of 1.4°C in 2030 to 2°C in 2060 and an average reduction of 7.8% in 

rainfall, which causes a decrease in river discharge. The simulated river discharge from the 

hydrological model under RCPs 4.5, 6.0 and 8.5 revealed a decreasing trend in annual average 

discharge by 1.6 m3s−1 from 5.66 m3s-1 in 2019 to 4.0 m3s-1 in 2060. Arbitrary, there will be an 

increase in frequent flood occurrence in the future (2030–2060) compared to the current period 

(1990–2019), with extreme discharges of 451.3 m3s−1 and 232.8 m3s−1 at exceedance 

probabilities of 0.01% and 99.99%, respectively. The demonstrated application of sediment 

source tracing provides an important pathway for quantifying the dominant sediment sources 

in the rivers flowing towards Lake Victoria. This information is vital for designing catchment-

wide management plans that should focus on buffering the projected decreases in discharge, 

reducing soil erosion and sediment delivery from farming areas to the river networks, and 

ultimately supporting food security and water quality in the Lake Victoria Basin. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

Water quality and quantity deterioration due to nutrient and sediment loading impacts lakes 

worldwide, leading to eutrophication and siltation (Søndergaard et al.,  2003). These impacts 

are driven mainly by catchment-wide changes in land use through increased fertilizer use in 

agriculture, soil erosion, and increased downstream transport of eroded sediments and nutrients 

(Quinton et al.,  2010). The interaction of climatic variability, vulnerable soils, distinct 

topography, and rapid land-use change make the East African region one of the world's hotspots 

for land and water degradation (Wynants et al.,  2019). The succession of droughts, erratic 

rainfall, and torrential rainfall explains the big inter annual differences in sediment yields 

observed in the region (Vanmaercke et al.,  2014). After a long dry period, high-intensity 

rainfalls can generate extreme amounts of eroded soil and downstream sediment transport. 

Hudson (1993) emphasized this in Zimbabwe, where about 50%of the annual soil loss was 

found to occur in only two storms and that during one year, even 75 % of the erosion took place 

in ten minutes. 

Moreover, a study by Wynants et al. (2021) in Northern Tanzania has shown that gully 

incisions can be triggered by extreme rainfall years, especially if they follow years of 

progressive soil degradation and drought. Gullying can subsequently cause positive feedback 

responses by increasing hydrological and sediment connectivity in the catchment, leading to 

the rapid removal of water, soil and nutrients from hillslopes (Wynants et al.,  2021a). This 

higher hydrological connectivity generally leads to bigger and more rapid differences between 

the peak and base flows, which increases the risks of both floods and droughts (Rwetabula et 

al.,  2007a; Van Griensven et al.,  2013b; Zhang et al.,  2020c). 

One area of interest is the Lake Victoria basin (LVB), which spans over 250 000 km2 in four 

countries and is of major importance for biodiversity, regional water, food, and livelihood 

security. The LVB is a national, regional and international natural resource asset mutually 

shared among five riparian countries: Burundi, Kenya, Rwanda, Tanzania and Uganda and a 

source of the Nile Basin (Zhang et al.,  2020b). It is also tremendously important for the 

national economy, support of local communities and biodiversity conservation. Rainfed 

smallholder agriculture, fishing and pastoralism are the main economic activities in the LVB. 

The LVB also provides water for domestic, irrigation and industrial uses in some towns around 
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Mwanza Region. The water demands in the LVB are rapidly growing and are expected to 

increase even further due to the growing population that has led to an expansion in agricultural 

areas (Amasi et al.,  2021b; Wynants et al.,  2018). However, the LVB water resources are 

deteriorating both in quantity and quality as a result of erosion, irrigation, poor human waste 

disposal, unsustainable land-use management practices, wetlands degradation, and sand mining 

in the rivers (Kimwaga et al.,  2012c; Rwetabula et al.,  2007c). These major land degradation 

drivers directly impact socio-economic development and community resilience (Blake et al.,  

2018). A reconstruction in sediment yield change over the past century in northern Tanzania 

has shown an exponential increase from 8 to 149 t km-2 yr-1 in a small lower-sloped catchment, 

and from 57 to nearly 1600 t km-2 yr-1 for a larger complex catchment (Wynants et al.,  2021b). 

The importance of event-based sediment export is expected to increase even further in the 

context of future climatic changes (Borrelli et al.,  2020a). The combination of increasing land-

use pressures and extreme climatic events thus poses an acute threat to the soil and water 

resources of East African rivers and lakes.  

The population increase in the basin is estimated at 3.5% annually, with about 50 million 

inhabitants currently (Food and Agriculture Organisation of the United Nations, 2020). The 

inhabitants of this region are generally resource-poor and heavily dependent on subsistence 

agriculture, leading to a rapid expansion of agricultural land area (Wynants et al.,  2019). A 

study by Wasige (2013) reported a reduction of forest land from 7% to 2.6%, savannas 35% to 

19.6%, and woodland from 51% to 6.9% in the LVB from 1901 to 2010, whereas farmland 

grew by 60%. Increasing agricultural and deforestation activities in the basin influence surface 

runoff, evapotranspiration, infiltration, groundwater flow, and river discharge dynamics. This 

has been shown to make catchments more vulnerable to both floods and droughts (Kimwaga 

et al.,  2012c; Natkhin et al.,  2015b; Zhang et al.,  2020d).  

Moreover, changing runoff and discharge dynamics majorly impact soil erosion and 

downstream sediment transport dynamics. Increased transport of sediments and associated 

nutrients has contributed to the eutrophication and recurrent blooms of water hyacinth and 

cyanobacteria in Lake Victoria (LV), which poses a direct threat to the biodiversity, fisheries, 

and water security of the communities around the lake (Dutton et al.,  2018; Jacobs et al.,  2018; 

Olokotum et al.,  2020; Tamatamah, 2003). Increasing erosion following land use and rapid 

downstream transport of eroded sediment is thus one of the biggest threats to the sustainability 

of LV (Zhang et al.,  2020a), necessitating soil and water management plans. However, 

sediment control strategies require information on sediment's relative and absolute 

contributions from different sources (Amasi et al.,  2021b; Collins et al.,  2017). In the LVB, 
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a lack of water quality monitoring and empirical data on soil erosion prohibits an assessment 

of the scale of the problem.  

In addition, the LVB has experienced flooding in the last decades, which has impacted both 

human safety and agricultural yields (Cecinati, 2013). In 2007, the study area received intensive 

rains that culminated into floods, eventually leading to loss of life and property, disruption of 

the local infrastructure and involuntary resettlement (Amasi et al.,  2021b; Byerlee et al.,  2014; 

Foley et al.,  2005). Studies in the area assume that the increased flood peaks are caused by 

increased urbanization, deforestation, and wetland degradation due to livestock keeping and 

farming (Bamutaze et al.,  2010; Bingwa, 2013). Therefore, there is a need to understand the 

contributions of current land-use change and future climate variability to changes in discharge 

in the rivers draining towards Lake Victoria (LV).  

Although some empirical findings have been reported on the potential impacts of land-use and 

climate change in LVB (Mulungu & Kashaigili, 2012; Myanza et al.,  2005), there has been no 

monitoring of sediment flux or water quality in the basin river tributaries. Little is, therefore, 

known about the main sources of eroded sediment to the LV, nor have the effects of land 

degradation in the catchment been evaluated. In this context, the Simiyu catchment was used 

as a case study to fill gaps in our understanding of soil erosion and sediment transport 

dynamics, which are faced in all LV catchments.  

Soils and sediments in the catchment were geo-chemically fingerprinted, allowing the 

comparison of the physical or chemical (dis) similarities (Collins et al.,  2017). Sediment 

tracing techniques are crucial for evaluating the magnitude of siltation problems by elucidating 

the dominant sediment sources of the main river (Dutton et al.,  2019; Wynants et al.,  2021a). 

These techniques evaluate the similarities and dissimilarities between downstream sediments' 

physical or chemical traits and the potential sediment sources of the catchment (Collins & 

Walling, 2004; Nosrati et al.,  2019). Since eroded sediment carries the parent material's 

conservative properties downstream, downstream reservoir sediments' geochemical 

composition depends on the tributaries' relative contributions and geo-chemical properties 

(Haddadchi et al.,  2013; Walling, 2013). Therefore, the proportional attribution of the tributary 

sources to downstream sediment can be obtained by integrating the multivariate source and 

mixture of geo-chemical fingerprints within mixing models (Blake et al.,  2018a). Integrating 

geo-chemical tracers within mixing models has proved a robust technique for sediment source 

tracing because it integrates multivariate tracer signals encompassing various distinctive 
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signatures affected by different environmental factors, thus improving the validity of 

discrimination of sediment sources (Smith et al.,  2018). 

In addition, there’s currently no empirical evidence about the impacts of land use and climatic 

variability on the Simiyu River discharge. Also the impacts of future climate change on Simiyu 

River discharge is not known. Hydrological models can be instrumental in simulating the 

effects of land-use and climate change using existing hydrological data and subsequently 

reconstruct and forecast river discharges (Devia et al.,  2015; Ullrich & Volk, 2009a). They are 

based on the water balance equation of the main components of the water cycle (such as 

precipitation, infiltration, evapotranspiration) and the physical catchment characteristics (e.g., 

topography, soil type, landuse) that affect runoff (Ullrich & Volk, 2009b).  

In this study, the Soil and Water Assessment Tool (SWAT) was used because it has been shown 

to perform well in semi-arid environments with distinct rainfall seasonality and climate 

conditions that are characteristic of the Simiyu catchment (Arnold et al.,  2012b; Gassman et 

al.,  2007). The model is semi-distributed, wherein the smallest defined sub-catchments are 

routed using the stream network. The sub-catchments are built on hydrological response units 

(HRUs), which are classes of overlapping land-uses, soils, and slopes within the sub-

catchment. This dissertation aimed to quantify the relative contribution of sediment sources to 

the Simiyu River using a scientifically robust sediment source tracing technique (Blake et al.,  

2018a). 

Furthermore, the dissertation aimed to assess the current and future impacts of climate and 

land-use change on the river discharge at the critical agroecological region of the Simiyu 

catchment. The results on the dominant sediment sources will aid the Lake Victoria Basin 

Water Board (LVBWB) in designing targeted management interventions for reducing soil 

erosion and sediment yield in the Simiyu catchment (Owens, 2022). Moreover, the work can 

be an example of applying sediment source tracing studies in other catchment draining to LV. 

Furthermore, the study's results will give insights into developing and implementing adaptation 

and mitigation measures to minimize the impacts of climate change and land use on water 

resources for sustainable economic development. 

1.2 Statement of the problem 

The Simiyu catchment in LVB is experiencing rapid land degradation and water resources. The 

deterioration of water quality and quantity in the LVB restricts sustainable socioeconomic 

development in the Simiyu catchment. This is hypothesized to be caused by increasing 
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anthropogenic activities in the catchments, which amplifies the effects of climate change and 

climate variability, affecting the hydrological cycle. For instance, high levels of deforestation 

and the loss of permanent vegetation through the fast expansion of agricultural land and urban 

areas have accelerated soil loss rates and downstream siltation (Dutton et al.,  2019; Kimwaga 

et al.,  2012d; Mulungu & Munishi, 2007; Ndomba et al.,  2005a). The changing demographics 

in LVB are increasing the demand for land, food, and water, leading to land and water use 

changes. The lack of agricultural intensification and livelihood options outside of agriculture 

has resulted in expansion of farming areas in the catchment (Kimwaga et al.,  2012d; Rwetabula 

& De Smedt, 2005). Unsustainable agricultural practices and increased livestock densities in 

the catchment have led to the degradation of the soils and increased surface and gully erosion. 

These changes influence surface runoff, evapotranspiration, infiltration, groundwater flow, and 

river discharge dynamics and making catchments more vulnerable to both floods and droughts 

(Kimwaga et al.,  2012b; Natkhin et al.,  2015c; Zhang et al.,  2020c). Despite the 

socioeconomic importance of the Simiyu catchment and LV, there is little or no empirical 

evidence available on the relative contribution of various sediment sources to the infilling of 

LV. In addition, there are no studies on how land-use and climatic changes impact discharge 

and flood regimes in Simiyu river catchment. The lack of these data meant that relatively little 

is presently known about the scale of the problem. 

1.3 Rationale of the study 

The lack of adequate and sufficient data on sediment sources in the LVB represents a key 

restriction for sustainable land use and effective water management practices, especially in 

vulnerable, arid and semi-arid environments of the Simiyu catchment and for the catchment-

wide management plans on mitigation strategies with an emphasis on decreasing soil erosion 

rates. Data scarcity and limited studies have posed a significant challenge for designing 

improved water resource management and adaptation strategies to land use and climate change. 

The sediment fingerprinting technique provides an important pathway for quantifying the 

dominant sediment sources in the rivers flowing towards LV.  

On the other hand, the SWAT model has proved to be a robust tool for predicting the 

hydrological response of semi-arid tropical catchments to changes in climate and land use. The 

integration of the ArcGIS-based hydrological model ArcSWAT with the site-specific ensemble 

of the General Circulation Models (GCMs) under different Representative Concentration 

Pathways (RCPs 4.5, 6.0 and 8.5) simulated the impacts of land-use and climate change on 

overland flow and river discharge in the Simiyu catchment. The three RCPs predict how 
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greenhouse gas concentrations in the atmosphere will change due to human activities, whereby 

the RCP 8.5 (high emission scenario) represents very high emission and low implementation 

of climate policies. In contrast, RCP 6.0 (medium–high emission scenario) represents moderate 

emission and medium implementation of climate policies and RCP 4.5 (low–medium emission 

scenario), represents low to moderate emission with the introduction of strict intervention of 

implementation of new climate policies. The summary of the major issues that make an 

annotated bibliography is discussed in the context of the logical framework depicted in Fig. 1. 

 
Figure 1:  Sediment delivery in the complex catchment and assessment approach for

  impacts of climate and land-use change 

1.4 Objectives of the study 

1.4.1 General objective 

Assessment of the impact of land-use and climate change on the river discharge and sediment 

dynamics in the Simiyu riverine sediment flowing towards Lake Victoria. 

1.4.2 Specific objectives 

(i) To assess the current impacts of land-use and climate change on the Simiyu River 

discharge. 
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(ii) To assess the future impacts of climate change on the Simiyu River discharge. 

(iii) To assess  the dominant sources of the sediments and their relative contributions from 

the Simiyu River catchment flowing towards Lake Victoria by using geochemical 

fingerprinting. 

1.5 Significance of the study 

Although climate change is predicted to cause adverse impacts on freshwater resources, 

especially in the dry sub-tropical regions (Pervez & Henebry, 2015; Serdeczny et al.,  2017), 

there is a little consideration given to the impacts in the process of planning of future water 

resource use and management (McCartney et al.,  2012). Studies of the impacts of climate 

change on water resources are encouraged to ensure its sustainability. The findings from this 

study will improve understanding of different spatial sources of sediments and their relative 

contribution to the Lake Victoria. The findings from this research will also support the design 

of improved water resource management and adaptation strategies to climate change. A better 

understanding of the sediment dynamics will contribute to effective sediment control strategies, 

including remedial actions for mitigating the impacts of excessive sedimentation in LV and 

developing soil erosion management plans. Understanding the impact of land use and climatic 

changes on river discharge dynamics will also support the effective water management 

practices, especially in vulnerable, arid and semi-arid environments of the Simiyu catchment. 

Such knowledge will also provide the pre-requisite information to policymakers to mitigate the 

future risks associated with land-use and climate change river discharge.  

Additionally, the result of this study will aid authorities in designing appropriate sustainable 

land-use and water resources management measures to achieve the following UN Sustainable 

Development Goals: SDG 3, aiming at improving water quality, SDG 6.6 protect and restore 

water-related ecosystems, SDG 13.3 build knowledge and capacity to meet climate change, 

and SDG 15.3 combat desertification, restore degraded land and soil, including land affected 

by desertification, drought and floods, and strive to achieve a land degradation-neutral world 

respectively. In addition, the study was aimed to achieve the Tanzania Land Degradation 

Neutrality (LDN) through reducing soil erosion, soil and water conservation practices, water 

pollution and deforestation. 
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1.6 Research questions 

(i) What are the current impacts of land-use and climate change on the Simiyu catchment 

river discharge? 

(ii) How will future climate changes affect the Simiyu River discharge? 

(iii) What are the dominant sediment sources from the Simiyu River catchment and their 

relative contribution to the infilling of Lake Victoria? 

1.7 Delineation of the study 

This study used geochemical fingerprinting to trace the sediments' dominant sources and their 

relative contributions from the Simiyu River catchment flowing towards LV. The study also 

assessed the impacts of land-use and climate change on the river discharge. The geo-chemical 

fingerprints and the Bayesian mixing model (BMM) for source apportionment are discussed. 

This dissertation is divided into 5 Chapters whereby parts of this thesis are published in peer-

reviewed scientific journals: 

Chapter one consists of the background statement information, study rationale, objectives, 

research questions and the significance of the study. Chapter two presents the literature review 

on which the factors responsible for soil erosion and river discharge processes, sediment 

connectivity, hydrological models, Global circulation models and downscaling methods are 

discussed. Chapter three covers the techniques to establish the proportions of the dominant 

sediment sources (the Bayesian mixing model (BMM) using the geo-chemical tracers and the 

SWAT model for establishing the current impacts of land use and climate change and 

forecasting the future impacts of climate change on river discharge. Chapter four presents the 

results and discussion of the changes in proportional sediment contributions of different land-

use and tributary rivers. Chapter five presents the conclusion and recommendations 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Overview 

Soil erosion is a global environmental challenge that threatens human survival and 

development. It threatens one of humanity's most vital resources, dating back to Cain and Abel 

(Panagos et al., 2016c). It causes both on-site and off-site problems. The on-site problems 

include the deterioration of soil's physical, chemical and biological properties (Lal et al.,  

2000), loss of nutrients (Lal, 2003), reduction of agricultural productivity (Lal, 1999), and even 

cropland loss (Pimentel, 2006), while the off-site damages include silting of water bodies, 

deterioration of water quality, loss of reservoir capacity, and damages to infrastructure (Mullan, 

2013). Eroded sediment also transports attached nutrients and contaminants such as heavy 

metals, fertilizers and pesticides, which impact the water quality of rivers and lakes around the 

world, leading to eutrophication (Søndergaard et al.,  2003) and may even negatively affect the 

global cycles of carbon, nitrogen, and phosphorus (Chen et al.,  2010; Quinton & Catt, 2007). 

Vegetation, rainfall, soil, and topography are the main factors controlling soil erosion rates. 

Various studies have asserted that different soil bulk densities are caused by different types of 

vegetation, which can also lower the soil erosion index, the efficiency of rainfall, and the kinetic 

energy of raindrops and runoff (Chen et al.,  2019; Wang et al.,  2013; Wu et al.,  2019; Zhang 

et al.,  2019; Zhou et al.,  2016; Zokaib & Naser, 2011). When raindrops splash against the soil 

surface, they can erode the soil's structure by dislodging soil particles (splash erosion) and 

allowing runoff to move the soil. To understand how water erosion and soil loss occur, it is 

important to understand how soil properties such as particle size, bulk density, initial water 

content, and infiltration play a significant role (Defersha & Melesse, 2012; Ekwue & Harrilal, 

2010; Fernández et al.,  2008; Martinez-Mena et al.,  2000; Mathys et al.,  2005; Mohammad 

& Adam, 2010).  

Topography impacts soil erosion through gravity, runoff generation and runoff pathways, 

thereby influencing water erosion and soil loss (Chaplot & Le Bissonnais, 2003; Mathys et al.,  

2005; Nadal-Romero et al.,  2013; Taye et al.,  2013). On steep slopes, there is less water 

infiltration and, thus, more runoff and soil erosion. Moreover, neutral soil detachment 

processes such as ploughing and rain splash erosion will move the soil particles downhill due 

to gravity. Apart from natural factors, the main drivers of increased soil erosion are 

unsustainable land-use, climate changes and climatic variability (Yasir et al.,  2014). The most 
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significant factors influencing soil erosion are land-use/cover and management, particularly in 

the semiarid regions (Li et al.,  2015; Mohammad & Adam, 2010; Wilcox et al.,  2003; Zhu et 

al.,  2015). Major determinants of land-use/cover and management are land disturbance and 

restoration (Brunbjerg et al.,  2014; Malowerschnig & Sass, 2014; Mohr et al.,  2013; Ungar 

et al.,  2010; Vanacker et al.,  2014). 

2.2 Soil erosion processes and river discharge  

The loss of permanent vegetation through the fast expansion of agricultural land (Fleitmann et 

al.,  2007; Kiage, 2013; Maitima et al.,  2009; Wynants et al.,  2018) has accelerated erosion 

and downstream sediment transport (Awulachew et al.,  2009; Hathaway, 2008). Land 

disturbance/restoration practices like trampling and ploughing have a significant impact on the 

vegetation, root system, soil properties, and topography (Dunne et al.,  2011; Herrick et al.,  

2010; Pohl et al.,  2012; Vanacker et al.,  2014). All these factors are extremely crucial to 

runoff and sediment yield. Moreover, overgrazing and deforestation reduce vegetation cover 

and soil organic carbon content in the soil, increasing the likelihood of producing runoff and 

erosion (Lin et al.,  2010; Ludwig et al.,  2005; Taye et al.,  2013; Zhao et al.,  2013). Trampling 

can increase runoff production by lowering the soil's hydraulic conductivity and macro-

porosity (Herrick et al.,  2010; McDowell et al.,  2003). Additionally, trampling can harm plant 

roots, reduce vegetation cover, and destroy soil structure, making the soil surface more prone 

to erosion (Dunne et al.,  2011; Pohl et al.,  2012). 

Land degradation is the human-induced reduction or loss of land's biological or economic 

productivity and complexity, often attributed to poor land management practices and 

unsustainable land-use. Land degradation consists of a multitude of processes, including 

deforestation, soil erosion, drying, and salinization. These processes interact to cause severe 

environmental impacts such as reducing biomass and biodiversity, nutrient depletion of soils, 

loss of organic matter in soil, and reduction in soil structure and quality. Land degradation is 

increasing in severity and extent in many parts of the world, with more than 20% of all 

cultivated areas, 30% of forests and 10% of grasslands undergoing degradation (FAO, 2008). 

The effects of land degradation, both onsite and offsite, are widespread and linked. The onsite 

consequences include loss of productivity, reductions in resilience leading to higher variability 

in yields and vulnerability to extreme weather conditions, and reduced capacity to adapt to 

climate change. The off-site consequences are global or regional, such as increased carbon 

emissions and poor water regulation, resulting in floods, sedimentation and reduced base flow 

downstream. Land degradation negatively impacts over three billion people, costing the world 
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an estimated loss of more than 10% of the Global Domestic Product (GDP) per annum (IPBES, 

2018). Land degradation is a major environmental issue that affects rural livelihoods and the 

well-being of inhabitants by substantially impacting the sustainability of food production and 

other ecosystem services, as well as rural infrastructures that are essential to the prosperity of 

these communities (Kelly et al.,  2022). 

One of the main causes of land degradation in the pastoral and agricultural landscapes of East 

Africa is an increase in soil erosion (Wynants et al.,  2019). Disruptions to co-adapted agro-

pastoral systems in the past have been the source of this wicked problem. Soil erosion is a 

natural phenomenon which has been accelerated due to anthropogenic factors. Soil erosion is 

a gradual process that occurs when the impact of water or wind detaches and removes soil 

particles, causing the soil to deteriorate (Morgan, 2005; Vercruysse et al.,  2017). Eroded 

topsoil is transported by water into streams and other waterways. Sediment is a product of land 

erosion and derives largely from sheet and rill erosion from upland areas, and, to a lesser 

degree, from cyclic erosion activity in gullies and drainage ways (Collins & Walling, 2004; 

Fryirs, 2013; Vercruysse et al.,  2017). It reduces crop productivity by limiting water 

infiltration and loss of nutrients (Pimentel, 2006). A significant amount of the global arable 

land has become unproductive due to soil erosion, particularly in Sub-Saharan Africa (SSA), 

where most of the rural population relies on rain-fed agriculture (Kendall & Pimentel, 1994). 

Most rural residents in SSA won't be able to feed themselves if soil erosion remains unchecked 

and the pressure from population growth continues to rise (Nearing, 2013). This has already 

happened in some countries in the African region, where there is a food shortage due to soil 

erosion and degradation (Kendall & Pimentel, 1994). Soil erosion and sedimentation have been 

a major challenges facing communities in the LVB for a long time, leading to water quality 

deterioration and eutrophication of the LV (Rwetabula et al.,  2007c). 

2.2.1 Climate change and climate variability on soil erosion  

The impacts of climate change on soil erosion include direct and indirect impacts which have 

been noticed since the 1940s (Bryan & Albritton, 1943; Langbein & Schumm, 1958; Leopold, 

1951; Raeside, 1948; Ruhe & Scholtes, 1956). The direct impacts are principally affected by 

changes in rainfall amount (Bangash et al.,  2013; Longfield & Macklin, 1999; Nearing et al.,  

2004; Pruski & Nearing, 2002), rainfall intensity (Bouraoui et al.,  2004; Tang et al.,  2015; 

Walling & Webb, 1996; Zhang, 2012) and spatio-temporal rainfall distributional patterns 

(Maeda et al., 2010). Different patterns of soil erosion are also caused by spatial variation in 

rainfall. Higher rainfall amount is commonly connected to increased runoff and soil loss 
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(Zabaleta et al.,  2014), because increased rainfall amount may increase soil moisture, soil 

sealing and crusting, subsequently decrease infiltration capacity, and therefore, increase 

saturation excess overland flow (Imeson & Lavee, 1998; Nearing et al.,  2004). If the soil 

medium is saturated with water after continued rainfall or snowmelts, excess water will not be 

able to infiltrate the soil, leading to saturation excess overland runoff. Saturation excess 

overland flow is more common in temperate regions with lower intensity but longer duration 

rainfalls and areas with lower evapotranspiration. During high-intensity events, the rainfall can 

overcome the infiltration capacity of soils, leading to excess overland runoff infiltration. Excess 

overland flow is common in semi-arid regions with high seasonality and high-intensity rainfall. 

Overland runoff can transport dislodged particles further downhill but can also join up to form 

erosive flows that can cut into the landscape.  

Land use effects and effects of changing rainfall temporal distributions are frequently 

combined. For instance, the soil is more sensitive to erosion by heavy rainfall events at the start 

of the rainy season when vegetation cover is lower, and fields are prepared for planting 

(Garbrecht & Zhang, 2015; O'Neal et al.,  2005; Serpa et al.,  2015; Zhang & Nearing, 2005). 

In addition, prolonged rainfall may decrease or become less predictable, resulting in less 

vegetation cover and more soil erosion (Wang et al.,  2015). A wet year following a dry period 

might thus disproportionately impact soil erosion dynamics (Wynants et al.,  2021). 

Water erosion mainly includes rain splash, rill, and gully erosion (McCool & Williams, 2008). 

Rain splash erosion takes place under erosive raindrops. Rill erosion is caused by overland 

flows concentrating on fields to erosive energies high enough to dislodge and transport soil 

particles. Gully erosion occurs when runoff accumulates in depressions and removes the soil 

from narrow channels to considerable depths (Poesen et al.,  2003). Rain splash erosion mainly 

causes soil detachment within a certain distance of the raindrop, while rill and gully erosion 

can cause off-site sediment transport and deposition. The close relationship between high 

rainfall intensity and water erosion is due to the high erosivity of raindrops in convective storms 

causing detachment of soil particles and subsequently rain splash erosion (Mohamadi & 

Kavian, 2015) high-intensity rainfall causes infiltration excess runoff that transports detached 

particles downhill, but also have high enough flow energy to remove the soil from the surface 

or subsurface, thus leading to rill and gully erosion (Poesen et al., 2003). Infiltration excess 

runoff, or Hortonian runoff, occurs when high-intensity rainfall arrives at a rate more 

significant than the soil's infiltration capacity. Areas susceptible to gully erosion caused by 

Hortonian runoff are generally in semi-arid and sub-humid zones. In these climatic regions, 

Hortonian runoff is often responsible for the majority of soil erosion (Baartman et al.,  2012). 
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Similarly, Ran et al.  (2012) compared sediment concentration patterns among three 

combinations of rainfall durations and reported that erosion was transport-limited for prolonged 

gentle rainfall while detachment-limited for high-intensity rainfall. Thus, if the rainfall duration 

is long enough or the rainfall amount is great enough, more soil particles will likely be eroded 

by saturation excess runoff because of the kinetic energy provided. Also, soil loss tends to be 

higher from the soil that is shallow or without vegetation cover. More significant soil erosion 

can be generally expected if the frequency of extreme rainfall events is higher in areas where 

Hortonian runoff is dominant or if the rainfall duration is longer in areas where saturation 

runoff is common. Greater rainfall amount can also facilitate runoff generation and lead to 

higher erosivity. Unfortunately, more intense rainfall and increased runoff events in East Africa 

are expected at the end of the century (Miao et al.,  2023). This result will substantially 

influence global water security and could worsen the harm brought on by the unequal 

distribution of water resources (Baker, 2012). 

On the other hand, the indirect impacts are associated with the increase in temperature. When 

atmospheric CO2 concentration and temperature increase, evapotranspiration rates increase and 

soil moisture decreases, which increases the soil's infiltration capacity and reduces runoff and 

soil erosion (Jiongxin, 2003). In addition, in tropical areas of East Africa, increased 

temperatures will probably decrease plant growth due to increased evapotranspiration and 

reduced soil moisture (Adhikari et al.,  2015). Since vegetation buffers soil erosion by 

increasing canopy interception and reducing climatic impacts on vegetation growth, it is likely 

to influence soil erosion (Nearing et al.,  2004). The impacts of climate change can either be 

positive or negative, however, the extent of the impacts and the offset effect of different factors 

still remain uncertain and problematic to forecast with accuracy.  

2.2.2 Land use and climate change on river discharge 

Land use/cover and climate changes have a great influence on the hydrological response of a 

watershed (Kashaigili & Majaliwa, 2013; Kirby et al.,  2016) through influencing 

evapotranspiration, infiltration, surface runoff, groundwater flow and stream discharge regime 

(Natkhin et al.,  2015a). The effects of land use/cover and climate change on hydrological 

processes are set to increase in the future due to the increased deforestation for agriculture and 

increased manifestation of the changing climate (Fischer, 2013). Thus, how the future climate 

will interact with the land use changes and affect the water balance in the watersheds requires 

more attention. The East-African region is forecasted to be highly impacted by climate change 

through increased rainfall intensity, runoff, and erosion vulnerability (Borrelli et al.,  2020b; 
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Miao et al.,  2023). Further, it is anticipated that the farming sector will experience more 

impacts, resulting in decreased production of different crops due to reduced water availability 

and the shift of growing seasons (Kangalawe & Lyimo, 2013; Läderach et al.,  2012).  

2.3 Catchment soil-sediment continuum from hillslope to river discharge 

The passage of water and sediment through different landscape compartments and through the 

drainage basin is described by the term connectivity, which is increasingly used as a research 

framework in hydrology and geomorphology (Borselli et al.,  2008; Bracken & Croke, 2007; 

Fryirs et al.,  2007; Harvey, 2012). There are three main "types" of connectivity (Bracken & 

Croke, 2007) or linkages (Fryirs et al.,  2007) recognized and broadly categorized as Landscape 

Connectivity, which refers to how different landforms are physically connected within a 

drainage basin (e.g., hillslope to channel) (Harvey, 1996; Michaelides & Wainwright, 2002). 

Hydrological Connectivity, or the movement of water from one landscape area to another, is 

anticipated to result in some catchment runoff response (Ambroise, 2004; Cammeraat & 

Imeson, 1999; McDonnell, 2003). Sedimentological Connectivity which is concerned with the 

movement of sediments and any pollutants they may have attached through the drainage basin 

(Fryirs, 2013; Fryirs et al.,  2007; Harvey, 2001; Hooke, 2003; Wainwright et al.,  2011). 

Sediment connectivity describes the physical links that sediments have between sources and 

sinks, the degree to which a system facilitates sediment transfer through the coupling between 

its components. It is a crucial characteristic when studying sediment redistribution in a 

catchment (Bracken et al.,  2013; Calsamiglia et al.,  2018; Cossart & Fressard, 2017). 

Sediment connectivity reflects the continuity and connectivity of sediment pathways at any 

given time. Identifying sediment connectivity in the catchments thus helps to locate hotspots 

or areas particularly susceptible to landform changes (Wohl et al.,  2017). Understanding how 

human activities and land planning affect soil erosion and sediment transport processes can be 

done with the help of sediment connectivity analysis that includes indices of connectivity 

(Borselli et al.,  2008; Burguet et al.,  2018; Gao & Zhang, 2016; Hooke & Sandercock, 2012; 

Jamshidi et al.,  2014; Lisenby & Fryirs, 2017) existing models ranging from empirical to 

process-based models (Baartman et al.,  2013; Cislaghi & Bischetti, 2019; Di Stefano & Ferro, 

2018; Liu & Fu, 2016; Medeiros et al.,  2010), and graph theory (Cossart & Fressard, 2017; 

Fressard & Cossart, 2019; Heckmann & Schwanghart, 2013; Heckmann et al.,  2015).  

Graph theory is used to analyze the spatial fragmentation of the sediment cascade and describe 

particular spatial assemblages within a catchment (Cossart & Fressard, 2017; Heckmann & 
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Schwanghart, 2013; Heckmann et al.,  2015). Because of their strategic locations closer to both 

sources and outlets, indices created using the graph theory framework can help pinpoint 

specific hotspots of geomorphic change on a more local level (Czuba & Foufoula‐Georgiou, 

2015). Among these techniques, the connectivity index is a well-known method for 

quantitatively assessing the transfer of sediments between catchment compartments of a 

terrestrial system (Heckmann et al.,  2018). The sediment connectivity index computes the 

existing linkage scale between sediment sources (e.g. eroded areas on hillslopes) and sink areas 

(outlets, lakes, hydrologic network). Since sediment redistribution can harm the environment 

and fluvial systems, geomorphologists and hydrologists have continuously evaluated the 

variability of soil erosion and sediment transport processes (Gay et al.,  2016). 

Understanding the concept of sediment connectivity is necessary to account for the flux of 

sediment particle movement within the catchment. Sediment connectivity addresses the spatio-

temporal flexibility in sediment delivery and storage and the potential for eroded soil particles 

to move through the system (Bracken & Croke, 2007; Croke et al.,  2013; Fryirs, 2013; Hooke, 

2003). In catchments, hydrological connectivity is one of the main determinants of 

Sedimentological connectivity and is influenced by the climate, hillslope runoff potential, 

delivery pathway, lateral buffering, landscape position, and sediment propagation (Bracken et 

al.,  2013; Bracken & Croke, 2007; Wynants et al.,  2020). First and foremost, the climate is 

the most important factor because it affects the catchment's antecedent conditions, including 

the extent, duration, and intensity of the rainfall. Due to their complex geological, pedagogical, 

and management histories, hillslopes the primary unit of the landscape-display spatially 

variable hydrological properties (Fitzjohn et al.,  1998). Hillslope runoff is influenced by a 

number of variables, including slope gradient, soil properties, surface roughness, vegetation 

type and density, land-use, etc. (Lal, 1990a; Puttock et al.,  2013; Singer & Le Bissonnais, 

1998; Wynants et al.,  2020). Anthropogenic land-use impacts can mutually escalate hillslope 

connectivity by accelerating run-off as a result of vegetation removal (Guzha et al.,  2018) or 

reduce connectivity by fitting terraces and implanting vegetation strips (Saiz et al.,  2016; 

Wynants et al., 2020).  

Furthermore, one factor affecting sediment connectivity is the pathway by which sediment is 

delivered from a hillslope to a river channel. However, sediment connectivity is non-linear 

controlled by key variables that must reach thresholds; for instance, in the lateral dimension, 

disruption of sediment conveyance through floodplain deposition only occurs when thresholds 
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for bank full channel capacity have been exceeded, and floodplain inundation occurs (Croke et 

al.,  2013).  

2.4 Modelling of soil erosion and river discharge  

Modelling is a common approach and practical method for quantifying the impacts of soil 

erosion and river discharge under climate change (Li et al.,  2010; Salazar et al.,  2012). 

Numerous new modelling techniques have been developed, and more models have emerged, 

including hydrological and erosional models (Francipane et al.,  2015), such as the Universal 

Soil Loss Equation (USLE) (Wischmeier & Smith, 1978), Revised Universal Soil Loss 

Equation (RUSLE) (Renard et al.,  1997), Water Erosion Prediction Project (WEPP) (Nearing 

et al.,  1989), TETIS model (Francés et al.,  2007), erosion 3D model (Schmidt, 1991), Soil 

and Water Assessment Tools (SWAT) (Neitsch et al.,  2011), Hydrologiska Byråns 

Vattenbalansavdelning (HBV), Hydrologic Engineering Center's Hydrologic Modeling System 

(HEC- HMS), Hydrologic Engineering Center's River Analysis System (HEC-RAS), Weather 

Research and Forecasting Hydrological model (WRF-Hydro), MIKE SHE and  HEC-Hydro 

(Devia et al.,  2015). 

This section provided a concise summary of the models currently used to estimate the impacts 

of climate change on soil erosion and river discharge. Not all models are considered. The 

objective is to demonstrate how some hydrological and erosion models can be implemented in 

their most fundamental forms. In this study, only hydrological model (SWAT model) was used 

to assess the impact of climate change on the river discharge. 

2.5 Hydrological models  

Hydrological models simulate water fluxes based on generalized rainfall-runoff responses and 

water balance equations constrained by the environmental conditions of the catchment. 

Hydrological models can be used to predict the impacts of land use and climate changes on 

water fluxes (Abdollahi et al.,  2018; Ivezic et al.,  2017; Pedro-Monzonís et al.,  2015) 

although each has different underlying assumptions and uses (Horton et al.,  2022; Singh & 

Frevert, 2002). However, based on structural similarities in traits and underlying assumptions, 

hydrological models can be classified into a number of distinct groups (Devia et al.,  2015).  

Empirical (black box) models are established from statistically derived relationships between 

empirically observed climatic inputs and hydrological outputs. Empirical models are simple in 

application and provide representative estimations within the range of measured observations. 
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However, the drawback of the empirical model, at watershed level, is the stationary assumption 

that underlying conditions remain constant throughout the simulation period (Kandel et al.,  

2004). Moreover, empirical models do not give any information on the individual processes 

governing the observed response and are considered black boxes. Given complex regional 

differences in hydrological processes, they are usually only applicable on smaller scales.  

Conceptual models (gray box) are considered to be between empirical models and physically 

based models. They typically consider physical laws but do so in a highly simplified manner. 

Physically-based models, also called process-based (white box) models, are defined in terms 

of key governing processes connected to the hydrological cycle and have a logical structure 

comparable to the real system being modelled (Muleta, 2003). Process-based models can, in 

theory, be applied on larger scales; however, they require local calibration of parameters based 

on observations. Hydrological models can be further divided in the way they represent spatial 

variability. Global models treat the watershed as a single entity and ignore spatial variability. 

As a result, the outputs are produced without considering the spatial variability of processes, 

inputs, boundary conditions, and geometric system characteristics (Singh, 1995).  

In contrast, distributed models represent the watershed area in small units (raster cells or 

triangulated irregular networks) so that the environmental factors, parameters, and inputs can 

vary spatially (Moradkhani & Sorooshian, 2008). However, distributed models require a lot of 

processing power and, therefore, take a long time to run, which is particularly problematic for 

large catchments and long-time series. Semi-distributed models such as SWAT have been 

suggested to combine the advantages of both forms of spatial representation referenced to a 

specific catchment or sub-catchment where the smallest defined sub-catchments are routed 

together using the stream network. The hydrological response units (HRUs), which are 

collections of similar types of slopes, soils, and land-uses within the sub-catchment, serve as 

the foundation for the sub-catchments. Because of this, these models can accurately capture a 

watershed's key characteristics while requiring less data and spending less money to run 

(Orellana et al.,  2008). 

Unfortunately, these models frequently have significant application-process uncertainties, 

which primarily consist of the following: (a) Model input uncertainty, (b) Model structure 

uncertainty, and (c) Uncertainty of model parameters. Model input uncertainty is due to 

datasets that frequently contain measurement errors and systematic errors during the process 

of model calibration and uncertainty analysis. In order to improve the results of model 

simulations, it is necessary to input a significant amount of observation data, such as 
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temperature, relative humidity, precipitation, and soil databases (Beven & Freer, 2001; Nešpor 

& Sevruk, 1999). The uncertainty in model structure, is mostly caused by the natural systems' 

assumptions and simplifications while the uncertainty of model parameters are those 

characteristics that governing the watersheds and hydrological processes, as these parameters 

are frequently challenging to measure directly (Abbaspour et al.,  2015). 

As a result, in order to identify the values of the calibrated parameters during the calibration of 

the model parameters, the empirical methods and literature are frequently referred, though may 

introduce additional errors (Wu & Chen, 2015). Furthermore, uncertainty, often referred to as 

equifinality for several parameters, can arise from correlation and interaction between 

parameters (Atkinson et al., 2010). However, choosing the right algorithm makes controlling 

the uncertainty of the parameters relatively simple (Beven & Freer, 2001). As computing 

technology has advanced, more and more optimization strategies have been put forth to address 

or lessen model uncertainty (Song et al., 2015). The more effective and often used algorithms 

for uncertainty analysis in hydrological modeling are Sequential Uncertainty Fitting (SUFI-2) 

(Abbaspour et al., 2015). Parameter Solution (ParaSol) (Duan et al., 1992). Generalized 

Likelihood Uncertainty Estimation (GLUE) (Beven & Binley, 1992) and Particle Swarm 

Optimization (PSO) (Eberhart et al., 1995). However, depending on the study region and 

location, different essential parameters must be identified, and their uncertainties (streamflow 

simulation uncertainties and parameter uncertainties) must be quantified (Wu & Chen, 2015). 

Therefore, parameter sensitivity and uncertainty analysis must be done before conducting 

additional hydrological study, particularly in some watersheds with complex terrain. For 

methodologies and approaches developed or applied to manage or mitigate uncertainty in 

hydrological modelling in data scarce environment the readers are referred to studies by 

(Arnold et al.,  2012a). 

2.5.1 Soil water assessment tool model for assessing impacts of climate change on river 

discharge 

Soil Water Assessment Tool (SWAT) is a physically based, basin-scale, continuous-time, 

computationally efficient, spatially distributed model developed for the USDA Agricultural 

Research Service (ARS) that runs on a minimum daily time step (Gassman et al.,  2007; Shawul 

et al.,  2013). The development of SWAT is a continuation of the USDA Agricultural Research 

Service (ARS) modelling experience that spans roughly 30 years (Arnold et al.,  2009). In 

SWAT, calculations happen on the sub-catchment scale, where the smallest defined sub-

catchments are routed using the stream network. The sub-catchments are built on hydrological 
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response units (HRUs), groups of similar land-uses, soils, and slopes within the sub-catchment. 

The model has proven to be a powerful tool for studying water resources, non-point source 

pollution problems, and environmental conditions (Arnold et al.,  2012a; Gassman et al.,  

2007). The SWAT model has been used to calculate the long-term effects of various land-use 

decisions on runoff, sediment loads, and nutrient loss at various scales.  

The major model geospatial data inputs include meteorological data such as daily rainfall and 

minimum and maximum temperature. The hydrological data consists of the daily river 

discharge records, soil data, and digital elevation model (DEM) and land-use/land cover data. 

Hydrological processes are represented in SWAT using specific parameters, which govern 

infiltration, runoff, retention, river discharge, nutrients, and sediment movement (Arnold et al.,  

2012a). The regionalization approach calibrates the model using observed data, particularly the 

discharge data, assuming catchments with similar physiographic and climatic characteristics 

would have comparable hydrologic responses. The model is employed to study climate and 

land-use land cover (LULC) change impact on water balance components with input data from 

Global Climate Models (GCMs) and hypothetical LULC change scenarios, respectively.  

Generally, the catchment’s semi-arid environments, distinct rainfall seasonality and climate 

conditions made the SWAT the best choice for this study because of its demonstrated 

performance in such conditions (Arnold et al.,  2012a; Gassman et al.,  2007; Neitsch et al.,  

2011). However, a significant barrier to using in situ observations to run the SWAT model is 

the wide range of data input, parameters, and spatial variability (Moriasi et al.,  2015). When 

simulating ground water systems, the SWAT model performs poorly in geologically 

heterogeneous basins (Nguyen & Dietrich, 2018). Applying the model to complex catchments 

with several hydrological response units (HRUs) is time-consuming because of the manual 

calibration and sensitivity analysis. Global climate models (GCMs) are thus the principal tools 

that provide information about climate on global, hemispheric and continental scales (Trzaska 

& Schnarr, 2014). Input data from the downscaled GCMs are commonly used to assess the 

impact of climate change on the hydrologic cycle. 

The SWAT model can quantify the effects of climate and vegetation change on water quantity, 

water quality or other variables of interest, and physical processes like water flows in soil and 

groundwater (Arnold et al.,  2009; Neitsch et al.,  2011). The water balance Equation (1) is the 

foundation for the hydrologic cycle that the SWAT model simulates (Arnold et al.,  2009). 

𝑆𝑤𝑡 = 𝑆𝑤𝑜 +∑ (𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑠𝑒𝑒𝑝 − 𝐺𝑤)
𝑡

𝑛=1
….……………………….….... (1) 
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Swt is the final soil water content (mm H2O), Swo is the initial soil water content on day I (mm 

H2O), t is the time (days), Rday is the amount of precipitation on day i (mm H2O), Qsurf is the 

amount of surface runoff on the day i (mm H2O), Ea is the amount of evapotranspiration on 

day i (mm H2O), Wseep is the amount of water entering the vadose zone from the soil profile on 

day i (mm H2O). The Gw is the amount of return flow on day i (mm H2O) (for each HRU). The 

main water input to the watershed system is rainfall. After entering the HRU, the rainfall is 

divided into four response categories: Surface runoff (surf), evapotranspiration (Ea), water 

infiltrating to the vadose zone (Wseep), and the volume of water released into the streams as 

return flows (Gw). The initial soil water content on the day (Swo) plus the amount of rainfall 

retained after being divided into the other components determine how much water is in the soil 

at any given time of the day (Swt). Figure 2 shows how rainwater during the SWAT simulation 

was divided into various water balance components and how it moved through the land phase 

hydrological cycle. 

 

Figure 2: Schematic presentation of water balance components and movement of 

water in the land phase hydrological cycle during SWAT simulation 

(Arnold et al., 2009) 
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2.5.2 Hydrologiska Byråns Vattenbalansavdelning model 

Hydrologiska Byråns Vattenbalansavdelning (HBV) semi-distributed hydrological conceptual 

model was developed by SMHI for a comprehensive simulation of the hydrological processes 

in the catchment with significant snowmelt contributions to discharge (Tibangayuka et al.,  

2022). The model does not apply to situations that are not predominantly influenced by 

snowmelt, but it can be modified to meet a variety of needs (Devia et al.,  2015). The entire 

watershed is divided into sub-catchments, and the catchment is further subdivided by altitude 

and vegetation zone. The required climate model inputs are daily or monthly precipitation, 

ambient temperature, and evaporation. The model uses water balance Equation (2): 

𝑃 − 𝐸 − 𝑄 = 𝑑
𝑑𝑡⁄ (𝑆𝑝 + 𝑆𝑚 + 𝑈𝑧 + 𝐿𝑧 + 𝐿)……………………………………………..(2) 

Whereby,  P is precipitation, E evaporation, Q is run-off, Sp snowpack, Sm moisture content, 

Uz and Lz are the upper and lower ground water area and L is the reservoir (Devia et al.,  2015). 

2.5.3 Integrated catchment hydrological modelling software:  Systeme hydrologique 

europeen (MIKE SHE) model 

The MIKE SHE is a physical hydrological model that comprehensively represents the 

hydrological cycle, including runoff, subsurface flow and groundwater interactions (Devia et 

al.,  2015). The physically based model permits a comprehensive simulation of fluxes and flood 

forecasting. The model applies to various hydrological environments and requires substantial 

data inputs that may be difficult to obtain for catchments or regions with limited data. It is also 

valuable for assessing the catchment’s water quality and climate variability (Keller et al.,  

2023).  

2.5.4 Hydrologic engineering center's hydrologic modeling system model 

The Hydrologic Engineering Center's Hydrologic Modeling System model (HEC-HMS) 

operates within an ArcGIS environment to delineate the catchments and subcatchment and can 

simulate discharge in a hydrograph (Keller et al.,  2023; Pascual et al.,  2023). The model's 

versatility in simulating various hydrological components makes it appropriate for large-scale 

data analyses. The model offers a vast array of functionalities, which can be a challenge, and 

requires extensive data inputs and parameter calibration, which can overwhelm basic 

assessments (Keller et al.,  2023). The model concentrates primarily on engineering and 
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planning applications, which may limit its suitability for research or studies requiring an in-

depth comprehension of hydrological processes (Devia et al.,  2015). 

2.5.5 Hydrologic engineering center's river analysis system model 

Hydrologic Engineering Center's River Analysis System (HEC-RAS) model is a rainfall-runoff 

model that simulates river and channel flow responses to rainfall events (Razi et al.,  2018). 

The model incorporates floodplain analysis and river basin management. The model explains 

river behaviour in response to precipitation, which may limit its capacity to simulate the 

hydrological cycle (Pascual et al.,  2023). 

2.5.6 Weather research and forecasting hydrological model (WRF-Hydro) model 

Weather Research and Forecasting Hydrological Model (WRF-Hydro) model is a sophisticated 

modeling system that integrates hydrological and atmospheric processes (Cerbelaud et al.,  

2022). This integration enables the simulation of surface and subsurface fluxes for flood 

forecasting and water management, making it a valuable tool for comprehensive assessments. 

The model requires extensive input data and specialized knowledge, which may limit its 

applicability in situations with limited data or resources (Nkeki et al.,  2022). 

2.6 Erosion models 

2.6.1 Universal soil loss equation model 

The US Department of Agriculture created the Universal Soil Loss Equation (USLE) model in 

the 1970s as an empirical surface erosion quantification model (Wischmeier & Smith, 1978). 

Application of the model has since grown exponentially, with several slight modifications 

added e. g. MUSLE (Modified Universal Soil Loss Equation) (Williams, 1975), and Revised 

Universal Soil Loss Equation (RUSLE) (Renard et al.,  1991). The USLE and its modifications 

have been used in studies at large and complex catchment scales despite being designed for 

application at simple agricultural catchments with gentle slopes and fine-textured soils 

(Alewell et al.,  2019). The USLE calculates the mean annual soil loss from the following 

Equation (3): 

A = R. K. LS. C. P…………….………………………………………………………..…..….(3)  

Whereby, A is the mean annual soil loss (t ha-1yr-1); R is the annual rainfall erosivity factor 

(MJmmha-1h-1yr-1); K is the soil erodibility factor (t ha h ha-1MJ-1mm-1); LS is the 
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topographical factor (slope length and slope steepness), C is the land management factor 

(dimensionless), and P represents soil conservation practice factor (dimensionless). The USLE 

factors are frequently modified in studies because it is often difficult to obtain some data. For 

instance, Maeda et al.  (2010) and Segura et al.  (2014) calculated the R factor under future 

climate change using the Fournier Index (FI) (Fournier, 1960; Renard & Freimund, 1994). 

Modification to USLE was always performed to be integrated in other models (Mukundan et 

al.,  2010) combined the SWAT and MUSLE models to forecast sediment yield under projected 

climate change. 

2.6.2 Watershed erosion prediction project model 

The WEPP model is a physically process-based model capable to simulate erosion areas and 

sediment amount in a single event. This model incorporates numerous procedures that depict 

how soil erosion is affected by climate change (Williams et al.,  1996). The WEPP model 

simulates the growth of plants and residue decay when affected by soil and temperature as well 

as soil consolidation and its impacts on infiltration rate. Due to its sensitivity to climatic 

variation, WEPP and its modification, is extensively used to assess the impact of climate 

change on soil erosion (Mullan, 2013; Savabi, 1993) for instance, used the WEPP model to 

estimate soil loss rates for six hillslopes in Northern Ireland for the 2020s, the 2050s and the 

2080s. O'Neal et al. (2005) carried out a comparable investigation.  

2.7 Model selection 

These models differ regarding data requirements and complexity, processes considered and 

implementation potential (Pandey et al.,  2016). Process-based models require large input of 

data mathematically represented on the set of equations, and calibration routines for different 

catchments (Fenta et al.,  2020). Empirical models demand less geospatial data input, while 

retaining the majority of factors, such as the physical characteristics (e.g. topography, geology, 

land-use, and climate) that have an impact on erosion (Fenta et al.,  2020; Renard et al.,  1997). 

The accuracy of the estimated soil loss rate using process-based models is also constrained 

(Fenta et al.,  2020; Tamene et al.,  2006) but they might more accurately depict process 

interaction and feedback.  

Currently, RUSLE and other empirical methods are extensively used in the East African region, 

primarily because of their average data demand and ability to integrate with GIS databases, 

which facilitates the upscaling process (Borrelli et al.,  2017; Fenta et al.,  2020; Haregeweyn 

et al.,  2017; Tamene & Le, 2015). However, the use of the RUSLE model in East Africa has 
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limitations since it was built for the US temperate climate with gentle systems that are intended 

to provide the farmers and conservation planners with a tool to estimate rates of soil erosion 

for different cropping systems and land managements (Alewell et al.,  2019; Batista et al.,  

2019). With the benefits of GIS, the RUSLE model can predict the possible erosion potential 

on a cell-by-cell basis (Shinde et al.,  2010), which is helpful when attempting to identify the 

spatial pattern of the soil loss present within area (Ganasri & Ramesh, 2016).  

The soil loss calculated by the RUSLE model for every pixel predicts the erosion related to 

runoff as well as the heterogeneity of the landscape factors (soil type, slope, topography, 

vegetation, geology, land-use, and climate) that have an impact on the soil erosion process 

(Fenta et al.,  2020; Renard et al.,  1997). Since the model was created specifically to forecast 

sheet and rill erosion, the model only fully captures one aspect of the entire erosion spectrum 

(Fenta et al.,  2020) and does not include other important erosion processes, such as gully 

erosion and stream erosion. Consequently, this model fails to accomplish the desired result in 

a locality where gully erosion, and streamline incision processes dominate (Blake et al.,  2018; 

Renard et al.,  1997), this model fails to accomplish the desired result.  

Furthermore, the RUSLE model is less useful for analyzing source-to-sink dynamics in huge 

and complex catchments and does not predict localized changes in susceptibility to erosion in 

response to process change (Wynants et al.,  2018). Moreover, the model never considers 

certain essential factors for erosion dynamics, such as sediment supply and overland flow 

initiation dynamics (Wynants et al.,  2018). The conjunction use of the RUSLE model with 

sediment tracing source techniques will offer complementary evidence to explore the 

knowledge of source-to-sink dynamics within the catchment. This combination also provides 

a reciprocal validation of the proportional contribution from areas of high erosion risk (Owens 

et al.,  2016; Wynants et al.,  2018).  

Complementing RUSLE models with other models for plotting susceptibility to other erosion 

processes (e.g. mass movements, gully, riverine and wind erosion), would enhance the 

representation of the entire erosion susceptibility (Aksoy & Kavvas, 2005; Wynants et al.,  

2018). According to Evans et al.  (2017), not all methods for assessing, monitoring, and 

estimating erosion are appropriate at all scales. For instance, since each model has unique 

assumptions and constraints, no model can accurately predict all hydrologic conditions 

(Ndomba, 2007; Ndomba et al.,  2007; Yanda, 1995). Therefore, different methods to monitor, 

assess and estimate sedimentation will be appropriate at different spatial and temporal scales. 

Since no models are specifically made for the East African conditions, their critical values for 
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current models are probably outside the bounds of many models' design parameters (Visser, 

2003). Most models assume that the catchment outlet sediment flux is in a steady state, with 

changes in the catchment environment being immediately transmitted to it (Geeraert et al.,  

2015), but disregard alterations in sediment connectivity over time. Since the amount of 

sediment entering the river network primarily depends on catchment connectivity, the concept 

of connection-disconnection between the slopes and the channel network (hillslope-sediment 

delivery ratio) is crucial (Brosinsky et al.,  2014; Vercruysse et al.,  2017). 

2.8 Global climate models for future climate change modeling  

According to the Intergovernmental Panel on Climate Change (IPCC, 2007), the temperature 

and precipitation patterns will change significantly by the end of the 21st century. As the 

primary determinants of the global hydrological cycle, precipitation and temperature changes 

will substantially impact watershed hydrology (Teutschbein & Seibert, 2010). Currently, the 

GCMs are the primary tools used to simulate the present climate and to project the future 

climate change. However, the resolution of GCM outputs (usually precipitation and 

temperature) is too coarse and biased to be used directly by hydrological models for impact 

assessment. The poor temporal and coarse spatial resolutions limit the effectiveness of GCM 

model output in providing useful information at the regional scale (Wilby & Wigley, 1997). 

Thus, there is a need to convert GCM outputs into regional high-resolution meteorological 

fields required for reliable hydrological modelling, and this process is generally referred to as 

‘downscaling’ (Hewitson & Crane, 1992a, 1992b).  

Further, hydrological models forced with regional climate change scenarios downscaled from 

GCMs are widely used to assess the impacts of climate change on hydrology (Tian et al.,  

2013). Statistical and dynamic downscaling techniques such as Simple Delta Method were thus 

established based on dynamic formulations using the initial and time-dependent lateral 

boundary conditions of GCMs and have therefore being used to fill these gaps by driving a 

Regional Climate Model (RCM) to produce higher resolution outputs (Caya & Laprise, 1999; 

Dickinson et al.,  1989; Giorgi, 1990). 

2.9 Sediment source tracing  

Sediment source tracing has been developed to connect upstream erosion measurements with 

downstream sedimentation measurements (Owens et al.,  2016; Walling & Foster, 2016; 

Walling, 2013). These methods can provide thorough details of source-to-sink dynamics within 
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the catchment, guarantee proportional source contribution, and identify high erosional risk 

areas (Owens et al.,  2016; Walling et al.,  2014). Sediment source tracing techniques were 

developed and established to strengthen the similarities between the physical, geo-chemical, or 

biochemical properties of downstream sediments with the catchment potential sediment 

sources (Collins & Walling, 2004; Nosrati et al.,  2019; Pulley et al.,  2015a, 2015b).  

The technique can generate valuable evidence on the relative importance of particular potential 

sources contributing to the downstream sediment flux of a river and reservoir (Chalov et al.,  

2017). Such details are essential for bolstering evidence regarding the relationships between 

upstream potential sediment sources and downstream sediment yield (Walling & Collins, 

2008), necessary for precise sediment control measures. Additionally, the method offers crucial 

details about sediment movement through the landscape at various temporal and spatial scales 

(Guzmán et al.,  2013).  

2.9.1 Sediment tracers 

Different soil and sediment characteristics can be used as tracers to discriminate between 

various land-use types and erosion processes at the catchment scale. According to Caitcheon 

et al.  (2012) and Walling  (2005), fallout radionuclide (FRN) activities are typically greater in 

topsoil materials and less in subsoil materials, which enables them to be useful in differentiating 

between surface and subsurface materials as well as between cultivated and uncultivated 

agricultural surface soils (Smith & Blake, 2014). Consequently, sediment source 

apportionment using FRNs (Collins et al.,  2017; Collins & Walling, 2007; Collins et al.,  2001; 

Smith & Blake, 2014) tends to be at a more generic surface-subsurface level. The most used 

tracers include the broad spectrum of geo-chemical concentrations (Douglas et al.,  2009; Lin 

et al.,  2015), concentrations of fallout radionuclide (FRNs) (Wilson et al.,  2012) and 

biochemical tracers, i.e., specific stable isotope (CSSI) (Laceby et al.,  2015; Schindler 

Wildhaber et al.,  2012). 

The use of a single component signature in this context has a high degree of uncertainty and 

can occasionally produce false associations between the source and the sediment (Collins & 

Walling, 2002). The majority of fingerprinting studies make use of multivariate and composite 

fingerprints, which include a variety of distinct diagnostic signatures influenced by various 

environmental factors, improving the validity of discrimination of sediment sources (Walling 

et al.,  2006). A multivariate fingerprint is created when numerous parameters are combined 

(Walling et al.,  1993) that, enables the modelling of a greater number of sources and is thought 
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to be more reflective of the relationships between sediments and their sources (Laceby et al.,  

2017). This lessens the possibility of unlikely matches, which are predicted to happen with 

specific tracer properties (Collins et al.,  1996; Laceby et al.,  2017). Consequently, a 

quantitative analysis is carried out to determine the relative contributions of all potential 

sources from collected the target sediment, and these frequently relies on frequentist or 

Bayesian un-mixing models (Nosrati et al.,  2019).  

2.9.2 Conservative tracers 

For source tracing, these models employ multivariate fingerprints, and they determine the 

relative importance of various sediment source types under various conditions (Collins & 

Walling, 2007; Motha et al.,  2003; Russell et al.,  2001; Walling & Woodward, 1995). These 

models usually need tracer data that interprets the sources and mixture; these qualities are 

expected to be conservatively transferred from sources to mixtures through a mixing process 

(Stock et al.,  2018). Tracers need to act independently and conservatively in the environment 

to directly compare the properties of the sediment samples and those of the potential source 

materials. This suggests that the tracers' chemical makeup does not change during detachment, 

transportation, or after deposition. Range test for the tracer screening process is usually 

performed for source apportionment that only excludes tracers on the basis of non-conservative 

behavior based on their performance from the model (Smith et al.,  2018). Ultimately, the 

modeler's choice of error assumptions and model structural options will determine whether a 

mixing model can faithfully represent source contributions to a mixture.  

2.9.3 Mixing models 

Bayesian methods typically couple parameter optimization with Monte Carlo-based stochastic 

sampling to represent uncertainties related to source area and target sediment variability 

(Collins et al.,  2013; Wilkinson et al.,  2013a); while Frequentist models frequently minimize 

the sum of squared residuals as described by Collins et al.  (1997). The representation of 

uncertainty in these frequentist models is inconsistent, and they lack the structural flexibility 

needed to incorporate all possible sources of error into model output coherently. Subsequently, 

Bayesian mixing models have grown in popularity over the past decade as a more reliable 

substitute for fully incorporating uncertainty into models (Blake et al.,  2018a; D’Haen et al.,  

2012; Dutton et al.,  2013; Massoudieh et al.,  2012; Nosrati et al.,  2014). Its flexible 

likelihood-based structure, which enables better representation of the inherent variability in 

source and mixture tracer data caused by environmental processes, is a key advantage of 
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Bayesian over conventional frequentist models in quantifying environmental fluxes of 

sediments or nutrients (Cooper & Krueger, 2017; Cooper et al.,  2015; Stock & Semmens, 

2016).  

Additionally, Bayesian models allow for the combination of previously known information in 

the form of "prior" probability distributions with fresh tracer data to produce "posterior" 

probability distributions for updated parameter estimates (Stock et al.,  2018). Fundamentally, 

the Bayesian approach is superior to Frequentist methods because it enables all known and 

residual uncertainties related to the mixing model and the data set to coherently translate into 

parameter probability distributions in a coherent hierarchical framework. Since the Frequentist 

optimization lacks the structural flexibility to coherently translate all sources of uncertainty 

into mixing model results, Bayesian inference is preferred to the more widely used Frequentist 

approach in sediment fingerprinting studies (Cooper & Krueger, 2017). 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Overview 

This Chapter describes the study area, sampling strategies, and a comprehensive narration of 

the analytical methods. The fundamentals of the Bayesian mixing modelling from which the 

model is draws to quantitatively compare different sources with the river sediments and the 

assumptions from which the model was built in the MixSIAR framework are given in details. 

Data analysis that includes geo-chemical and SWAT analysis are also presented in this Chapter. 

3.2 Description of the study area 

The Simiyu River catchment is located southeast of Lake Victoria, and its altitude ranges 

between 1100 and 2000 M.a.m.s.l. The catchment covers ca. 11 000 km2 and receives water 

from two tributaries, the Simiyu and the Duma Rivers (Fig. 3).  

 
Figure 3: Location of the Simiyu River catchment detailing the elevations, rainfall 

and hydrometric stations 

The Simiyu sub-catchment covers ca. 5540.67 km2, and the Duma ca. 5435.11 km2 covers the 

total catchment. The Simiyu and the Duma sub-tributaries drain from the Maswa Game 
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Reserve and the Serengeti National Park plains, respectively, joining together into the Simiyu 

Mainstem about 2 km before the inlet in Lake Victoria. The catchment has a semi-arid climate, 

experiencing seasonal rainfall fluctuations, wherein most rainfall occurs in two wet seasons, 

with long rains from March through May and short rains from October through December. The 

dry season occurs between June and September, and the transition period between the two 

seasons occurs in the intermediate months of January and February (Lubini & Adamowski, 

2013). The rainfall also varies spatially in the catchment, wherein the hydrological mean annual 

rainfall is around 750 mm in the lower parts and 1100 mm in the upper part. The rainfall 

intensity follows a similar pattern and is shown in Fig.  4a. 

Furthermore, the area also experiences high interannual variability in rainfall, with drier and 

wetter years. For example, in 1988, an annual rainfall of 1312 mm was recorded in one of the 

climate stations in the catchment, while in 1989, it was only 774 mm. The most distinct slopes 

are in the northeastern catchment, with other sloped areas spread out more evenly (Fig.  4b). 

The major land cover types include natural forests, bushland, grassland, wetlands and 

woodlands that do not form a thickly interlaced canopy (Fig. 4d). Rainfed agriculture, fishing, 

wildlife tourism, and pastoralism are the main economic activities in the catchment. The 

Serengeti National Park/game reserve covers the upstream part of the catchment in the east and 

is dominated by natural grassland and bushland. The geology in the catchment is mainly 

dominated by granite with smaller intercalations of Magmatite, sedimentary, metamorphic and 

volcanic rocks (Fig. 4c). The main soil types are sandy loam (63.8%), sandy clay loam (13.5%), 

clay loam (12.9%), clay (5%), loam (2.9%), and sandy clay (1.9%) (Rwetabula et al.,  2007b). 
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Figure 4:  (a) The rainfall intensity, (b) slope, (c) geology, and (d) land-use distributions of the Simiyu catchment
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Modelling studies of the Simiyu catchment estimated sediment yield between 0 to 38.83 t ha-

1yr-1 for the period 1980-2009, and between 0.50 to 11.86 t ha-1 yr-1 for the period 2010-2016 

(Kimwaga et al.,  2012b; Ndomba et al.,  2005b; Van Griensven et al.,  2013a). A study by 

Kimwaga et al. (2012b) revealed a dramatic expansion of agricultural land from 19.33% in 

1975 to 73.44% in 2006 at the expense of bushland, forests, grassland and woodlands. The 

Tanzania Participatory Poverty Assessment conducted in 2002-2003 also reported high 

deforestation rates in the Meatu district to clear land for cultivation (Kimwaga et al.,  2012a). 

The domestic animal and wildlife populations have been increasing since the eradication of 

rinderpest in the 1960s (Food and Agriculture Organisation of the United Nations, 2020; Ogutu 

et al.,  2016). Anecdotal evidence from the area indicates that the catchment has experienced 

dramatic changes over the past decades through increased agriculture, livestock-keeping, 

deforestation, and urban and rural settlement (Zhang et al.,  2020a). Several studies also report 

high densities of gullies in the area (Ndomba et al.,  2005b; Zhang et al.,  2020a) and this was 

also observed during the fieldwork campaign at Ng’hanga village a border to Serengeti 

National Park (UTM arc 1960 658475E, 9667580N) as shown in Fig. 5. 

 
Figure 5: A plate of gully incision in the Simiyu River catchment taken at Ng’hanga 

village  



33 

3.3 Assessing the impacts of land-use and climate change on the stream flow in the 

Simiyu catchment  

3.2.1 Data preparation  

The SWAT requires spatial, hydrological, and meteorological data for building, calibrating, 

and forcing the model. The required input data were collected from different sources and 

prepared in the ArcGIS 10.2.1 environment to acquire the necessary setup essential for the 

ArcSWAT12 database. A digital elevation model (DEM) of the Simiyu catchment with a 

resolution of 1 arc-second (30 m × 30 m) was included in the spatial data and was acquired 

from the United States Geological Surveys (USGS) website (http://gdex.cr.usgs.gov/gdex/ 

accessed on 28 March 2020), and was used to delineate the watershed and the stream networks 

following the procedures by Gassman et al.  (2007),  and Neitsch et al.  (2011). The land-

use/cover map of 1990 and 2019 (Fig. 6a and b, respectively) were downloaded from Earth 

Explorer in May 1990 with Landsat 5 (resolution 30 m) and Landsat 8 images (resolution 30 

m) captured in May 2019 and interpretation, atmospheric correction and geometric rectification 

performed using impact toolbox software (http://glovis.usgs.gov/accessed on 17 December 

2021).  

Geotagged photographs and field notes were collected from numerous ground observation 

operations (through field surveys and interviews with local people) to ensure full 

documentation of the land cover spectrum. Using these ground observations, supplemented by 

Google Earth imagery, the main land cover types in the region were mapped into a spectral 

signature file developed from training samples. According to ArchMap’s maximum likelihood 

algorithm method, the supervised classification uses these signature files to estimate predefined 

land cover classes from the entire Landsat image database. Visual inspection and comparison 

with high-resolution aerial images provided by Google Earth were used to remove potentially 

misclassified features. A raster calculator function was used to determine the appropriate 

elevation for specific land-use classes based on expert knowledge of the study area as detailed 

by Taweesuk and Thammapala (2005).  

Expert classification aims to improve the classification accuracy used to combine remote 

sensing data with other sources of georeferencing information such as digital elevation models 

(DEMs), land-use and spatial texture data. The accuracy assessment was performed to 

determine the level of agreement between classified images and ground features. Overall 

accuracy ratings for images observed in 1990 and 2019 were 87.37% and 85.74%, respectively. 

http://gdex.cr.usgs.gov/gdex/
http://glovis.usgs.gov/accessed%20on%2017%20December%202021
http://glovis.usgs.gov/accessed%20on%2017%20December%202021
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This value meets the minimum accuracy threshold of 85% required for effective and realistic 

land-use/cover change analysis and modeling (Ahmed et al.,  2013; Araya & Cabral, 2010). 

The results of this study are considered acceptable because the accuracy values are greater than 

80%, as reported by Jensen (1986). 

The Lake Victoria Basin Water Board (LVBWB) provided meteorological data such as daily 

rainfall (rainfall records for 5 stations Maswa, Sumve, Talaga, Sagata and Kisesa) and 

minimum and maximum temperature (Neitsch et al.,  2011) (Table 1), supplemented by data 

from Tanzania Meteorological Agency (TMA) (satellite data from the Earth System Grid 

Federation (ESGF)). The hydrological data included the daily river discharge records from the 

Ndagalu gauging station (−2.65299° S, 33.541930° E) between 1 January 1972 and 31 

December 1996.  

The soil data were obtained from the Harmonized global soils database at 

http://www.waterbase.org/download_data.html (Digital Soil Map of the World (DSMW) 

(Dewitte et al.,  2013) (Fig.  7). However, there were missing data in the rainfall patterns that 

could hide true patterns in the data and impede the analysis and interpretation of the flow 

variability, resulting in complexity and uncertainty in modelling. Encountering data gaps is 

unavoidable, particularly in developing countries, hence various methods for handling infilling 

of missing data have been developed. In this study, missing data was filled using the RClimtool 

software version 1.

http://www.waterbase.org/download_data.html
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Figure 6:  Land cover maps of (a) 1990 and (b) 2019, detailing the changes in land-use land cover from 1990 to 2019
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Table 1:  Meteorological stations in the Simiyu catchment

Station ID 
Meteorological 

Stations 

Latitude 

° S 

Longitude 

° E 
Elevation Daily Rainfall 

Percentage Missing 

(NA%) 

933305 Maswa −3.182 33.79098 1334 1971–2019 7.182 

923301 Sumve −2.751 33.2265 1243 1971–2019 30.814 

923240 Talaga −2.932 33.46581 1237 1971–2019 0.691 

923401 Sagata −2.75 34.25 1394 1971–2019 17.227 

933406 Kisesa −3.05 34.15 1343 1971–2019 45.915 
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Figure 7:  Soil water assessment tool soil reclassified map of the study area 

3.2.2 Soil water assessment tool model setup, sensitivity analysis, calibration and 

validation 

Two main categories of statistical evaluations are used to assess the performance of the best 

parameter sets chosen in the sensitivity analysis, i.e., model performance evaluation and 

uncertainty in model predictions. The statistical analysis parameters proposed by Moriasi et al.  

(2007), such as the Nash–Sutcliffe efficient (NSE), a ratio of the root mean square error to the 

standard deviation of measured data (RSR) and the percentage bias (PBIAS), were used to 

assess the model performance in predicting the catchment conditions (Wang et al.,  2011). The 

r-factor and the p-factor were used for model prediction uncertainty (Arnold et al.,  2012a). 

The p-factor is the percentage of observations covered by the 95% prediction uncertainty, while 

the r-factor refers to the thickness of the 95% prediction uncertainty (95PPU) envelope. The p-

factor value ideally falls between 0 and 100%, while the r-factor falls between 0% and infinity 

(Teklay et al.,  2022). An exact simulation of the measured data has a p-factor of 1 and an r-

factor of zero (Abbaspour, 2007). The extent to which model results deviate from these values 

can be used to assess the model’s representativeness and the need for further calibration. A p-
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factor value of >70% and an r-factor value of around 1 are suggested in semi-arid regions 

(Abbaspour, 2015). 

In this study, the catchment’s hydrological responses to land-use and climate changes were 

quantified using the climate scenario and the annual runoff coefficients of each land-use. This 

enables the evaluation of the water resource dynamics, which are controlled by the succession 

of wet and dry years in the studied catchment. The multi-decadal climate prediction was 

analyzed in accordance with (Krysanova et al.,  2016) using 30-year average annual and 

monthly results to obtain river discharge predictions for reference and future scenario periods. 

All the elements of the water balance in the study catchment were estimated using the 

hydrological component of the SWAT model. The model was built by partitioning the 

catchment into sub-catchments that are composed of several HRUs with relatively uniform 

combinations of land-use/land cover, soil types, and topography. It is assumed that each HRU 

has similar hydrological processes (Arnold et al.,  2012a; Neitsch et al.,  2011; Winchell et al.,  

2013). The required climatic driving variables (daily rainfall, minimum and maximum 

temperature) were subsequently fed into the model, consequently determining the 

evapotranspiration rate by using the Hargreaves method (Hargreaves & Samani, 1985). 

After completing all the above processes, the model was calibrated, validated, and assessed 

with historical hydro-meteorological datasets for performance accuracy and efficiency. 

Validation was carried out using the split sample test, whereby two time periods were selected 

for this analysis (Santos et al.,  2018),  a calibration period of 1972–1982 and a validation 

period of 1988–1992. The daily river discharge data from 1972 to 1982 and 1988 to 1992 from 

the Ndagalu gauging station were used to calibrate and validate the SWAT model. The 

SWATCUP SUFI-2, a semi-automatic calibration and uncertainty program, was used for the 

calibration and validation (Arnold et al.,  2012a). Model initialization was carried out during 

model calibration over a four-year warm-up period from 1988 to 1992. Validation used the 

same number of calibration iterations as before; however, the sensitivity analysis was first 

performed then, followed by the calibration process. The number of iterations used for 

calibration was maintained for validation (Abbaspour, 2013).  

According to Mutenyo et al.  (2015), sensitivity analysis entails identifying the parameters that 

are most sensitive for a given basin and calculating the rate at which model outputs change as 

a result of changing model inputs. Sensitivity analysis was performed in ArcSWAT with and 

without discharge data from gauging stations and in SWAT-CUP using the SUFI procedures 

by running the model 1000 times. The t-statistic and p-values are used to rank the sensitivity 
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of the parameters. The most sensitive parameters are those with the lowest p-value and the 

highest absolute value of the t-stat. Readers can be referred to for the details on the whole 

calibration and validation of the model (Abbaspour, 2007, 2015). 

3.2.3 Simulating the impacts of land-use and climate change on stream discharge 

The baseline land-use/cover of 1990 was replaced in the calibrated SWAT model with the 2019 

land-use/cover of the Simiyu catchment. The 2019 land-use/cover scenario was then used to 

simulate the impact of the change in land cover on river discharge without changing the other 

SWAT input data (soils, slope and weather). The major assumption of this study is that the 

calibrated parameter set is still valid under changing land-use and climatic conditions. The 

potential combined effect of land-use and climate change on river discharge was evaluated 

using scenarios derived from a suite of 3 GCM models under the RCPs 4.5, 6.0 and 8.5 

Greenhouse Gas Emission scenarios, which represent a wide range of simulated future (2030–

2060) climate conditions. Scenario 1 (S1) is the baseline with land use from 1990 and climate 

data from 1972 to 1990. Scenario 2 (S2) represented river discharge under land-use change 

only. Scenario 3 (S3) was climate change only. Finally, scenario 4 (S4) represented the 

combined effect of land and climate change. 

To quantify the impacts of land-use and climate change on river discharge in the Simiyu 

catchment from 1990 to 2019, the four scenarios (S1) to (S4) were used to run the calibrated 

SWAT model, and their outputs were compared. For future simulations of climate change 

impacts to discharge (2030–2060), only S1 and S3 were considered since no predictions were 

made on future land-use. 

3.4 Assessing the impacts of future climate change on the Simiyu river discharge  

3.4.1 Calibration and validation of future climate data 

General Circulation Models (GCMs) are useful for describing and forecasting future climate 

change patterns. In this study, the 1990–2019 period was used as the baseline and the near 

future (2030–2060) was accounted for in climatic projections. Considering expansive numbers 

of accessible climate models and computational and human resource constraints, detailed 

climate change impact studies cannot incorporate all projections. In practice, one climate model 

or a small ensemble of climate models that covers more climatological variables using cluster 

analysis algorithms (Cannon, 2015; Houle et al.,  2012) is usually selected for the assessment 

based on their skill to simulate the present and near-future climate (Biemans et al.,  2013; Pierce 
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et al.,  2009). In addition, the poor temporal and coarse spatial resolutions of GCM outputs 

(usually precipitation and temperature) might be biased, limiting the effectiveness of GCM 

model outputs in providing useful information at the regional scale (Wilby & Wigley, 1997), 

and are thus downscaled to convert GCM outputs into regional high-resolution meteorological 

fields required for reliable hydrological modelling of particular catchments.  

For this study, four climate models from the Coupled Model Intercomparison Project 5 

(CMIP5), i.e., CMCC.CM, ACCESS 1.3, MIROC5 and CNRM.CM was downscaled and 

compared to find the most representative of the Simiyu catchment's climatological patterns and 

spatial variations (Kang et al.,  2009) (Fig.  8). The three climate models (MIROC5, 

CNRM.CM5 and ACCESS 1.3) replicated climate variability of the Simiyu catchment 

(Northern Tanzania) with high accuracy coefficient correlations of 0.96, 0.97 and 0.98, 

respectively (Fig. 9); thus, three climate models were assumed to be the most representative in 

simulating spatial patterns in the decadal change of climate zones (Bodian et al.,  2018) in the 

catchment (Fig. 8). Forecasting climate change impacts on water resources is cumbersome 

(Hyandye, 2019) and requires using viable scenario changes detailed by the Intergovernmental 

Panel on Climate Change (IPCC) (Hyandye, 2019). As shown in the Fig. 10, the IPPC’s fifth 

assessment report from 2014 presented four Representative Concentration Pathways (RCPs) 

emission scenarios: RCP 2.6 (low emission scenario), RCP 4.5 (low–medium emission 

scenario), RCP 6.0 (medium–high emission scenario) and 8.5 (high emission scenario). In this 

study, three RCPs (4.5, 6.0 and 8.5) were used to analyze the future (2030–2060) climate 

change impacts because they assume an increase in GHG emissions until 2080, followed by a 

decline (Mfwango et al.,  2022). The steps outlined in the Guide for Running AgMIP Climate 

Scenario Generation Tools with R were used to create the near-future climate scenario of 

precipitation and temperatures (Hudson & Ruane, 2013; Mfwango et al.,  2022; Zhang et al.,  

2020d). The RCPs 4.5, 6.0 and 8.5 with ensemble GCM (ACCESS1.3, MIROC5 and 

CNRM.CM5) models were subsequently downscaled to the watershed level (Shrestha et al.,  

2013) using the Simple Delta Method, as it retains the historical patterns of the gridded 

observations (Zhang et al.,  2020d).  

To statistically downscale the selected models, the delta change algorithm that was acquired 

(Hyandye, 2019), along with the CMIP5-GCMs, was used to calculate the change factor or the 

ratio between a mean value in the future and historical run (Hyandye, 2019). To create a time 

series that represents the future climate, this change factor was then applied to the observed 

time series 2030–2060 (Hyandye, 2019). The downscaled and selected 3 GCMs climatic data 
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points under RCPs 4.5, 6.0, and 8.5 were used as forcing data to forecast the river discharge 

under a future climate. 

 
Figure 8: General Circulation Models (GCMs) were sourced from the Coupled 

Model Inter-comparison Project 5 (CMIP5) 

 
Figure 9: Correlation of the selected GCMs model used in this study (https://esgf-

node.llnl.gov/search/cmip5/) 
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Figure 10:  Four Representative Concentration Pathway (RCPs) emission scenarios 

(IPCC, 2014) 

3.5 Assessing the dominant sources of the Simiyu riverine sediment using geo-

chemical fingerprinting 

3.5.1 Sampling strategy 

Due to the challenging environment and logistical constraints, samples could only be taken 

from the exposed river beds in the dry season, so only deposited river bed sediments (RS) were 

included in the analysis. The RS samples were taken from the downstream reaches of the sub-

tributaries and main rivers (Fig. 11). Because of these logistical constraints, this study works 

from the assumption that RS samples provide a time-integrated and representative mixture 

from their respective sources throughout the catchment area (Phillips et al., 2000 & Maarten et 

al., 2020), implications of this assumption are discussed in Chapter 4.  

Thirty-two composite samples of RS, each composed of 10 to 12 sub-samples, were collected 

from the main Simiyu River over a range length of about 300 m to include potential spatial 

differences in riverine sediment deposition (Gellis & Noe, 2013; Wilkinson et al.,  2013b). The 

RS samples were collected at the mouth of the inflow, at the point of confluence of the two 

tributaries. Fifteen and 16 sub-tributary RS samples were also collected from lower reaches of 

the two major tributaries, Duma and Simiyu, respectively, at points where reciprocal influence 

through flooding could be excluded. Surface soil samples as potential sediment sources were 

collected from the catchment’s dominant land-use types, which include bushland (BS), 

agricultural land (CU) and forest land (FL). Subsurface soil as potential sediment sources were 
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sampled from channel banks (CB) and the mainstream river banks (RB). Surface soils from all 

major land-use types were sampled using composite samples from 0–5 cm depth from areas 

susceptible to soil erosion based on visual evidence of erosive features and landscape locations. 

Channel bank materials were sampled in the upstream regions of the catchment characterized 

by exposed banks devoid of vegetation with actively eroding bank sections. The main river 

(RB) banks were also sampled further downstream. Sampling locations depended on 

accessibility, necessary permits and safety. At each site, samples comprised 10 to 15 random 

scoops pooled into a single composite sample to ensure the representativeness of the 

corresponding fingerprint property datasets. A total of 69 samples were collected to 

characterize five main potential sediment sources: (a) Forest (FR, n = 13), (b) Bushland (BS, n 

= 11), (c) Channel banks (CB, n = 14) (d) Cultivated agricultural land (CU, n = 15) and (e) 

Mainstream river banks (RB, n = 16), all collected in the same year.  

 
Figure 11: A detailed map of the Simiyu catchment showing locations of sediment 

sampling and the potential sediment sources from different land-use 

3.5.2 Geochemical laboratory sample preparation 

Prior to analysis, all dried soil and sediment samples were oven-dried at 55–60°C, disintegrated 

using a mortar and pestle, and subsequently sieved at < 63 µm fraction to minimize particle 

size effects on tracer signals that can bias fingerprint property (Laceby et al.,  2017). The 
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elemental concentrations are generally enriched in the fine, < 63 µm, particle size fraction 

compared to the < 2 mm bulk fraction of the soil (Rawlins et al.,  2010). Subsequently, about 

four grams of dried and sieved sample material was mixed with about 0.9 g of cellulose binder 

(FLUXANA®), homogenized in a pulverizer and pressed into a pellet of approximately 32 mm 

diameter. The method was validated using the IAEA Soil 7 certified reference materials (CRM) 

as described in (Amasi et al.,  2021b). The dried soil and tributary potential sediment sources 

were analyzed as pressed pellets for minor and major elemental geochemistry by an energy-

dispersive X-ray fluorescence (EDXRF) spectrometer (Spectro Xepos, Spectro Analytical 

Instruments, Boschstrasse 10, D-47533 Kleve, Germany) coupled with Xlab ProTM software. 

Triplicates were made from arbitrarily selected samples about once every 3 samples for 

assessment of the analytical variability and sample homogeneity. Only those elements 

returning measurements above the detection limit were employed in the analysis. The detection 

limit varies with the element and depends upon several factors, including the sample matrix. 

The geochemical analysis of sediment and soil samples was done at the Tanzania Atomic 

Energy Commission (TAEC). 

3.5.3 Data analysis 

(i) Bayesian mixing model for source apportionment 

The yielded tracer concentrations from the RS mixtures and the potential soil and riverbed 

sources were represented as multivariate elemental concentration matrices. The Bayesian 

Mixing Model (BMM) draws upon these matrices to quantitatively compare the multivariate 

fingerprints between different sources and determine the relative contribution to the sediment 

mixture. A Bayesian mixing model was built in the open-source MixSIAR framework (Stock 

et al.,  2018), as Blake et al. (2018a) first demonstrated for sediment source apportionment in 

river systems. The MixSIAR methodology was used to unmix the Duma and Simiyu tributary 

sediment sources and land-use potential sediment sources from the Simiyu Mainstem riverbed 

sediment mixture after confluence downstream. For accurate use of the BMM model, the 

following four assumptions must be met: (a) The model includes all dominant sources 

contributing to the sediment, (b) The value of the tracers is known in both sources and mixture, 

(c) Tracers behave conservatively throughout the mixing processes and (d) Fingerprint 

variability between sources is larger than within sources, and the different sources are geo-

chemically distinct. In addition, the major advantage of BMM is based on its flexibility in 
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model structure tailored to the following specifications as described by Stock et al. (2018). The 

following specifications were built into the model runs: 

In large, complex catchment systems, capturing the entire variability of the sediment flux by 

time-specific sampling events is difficult, creating a sampling error. In view of this, the 

“residual error” formulation was incorporated into the model. A “process error” was not 

included as sediment transport from hillslopes to the river/lake in this river system is not based 

on targeted processes such as reservoir release (Stock & Semmens, 2016). Uninformative prior: 

Since there is no empirical information on the dominant sources of sediments contributing to 

the significant tributary, an uninformative prior was used: (1, 1, 1, 1, 1) and (1, 1) for land-use 

and tributary sources, respectively.  

A mixture of sediment samples was analyzed without fixed or random effects to infer the 

proportions of the tributaries and land uses to the bed river sediment. The BMM model outputs 

were evaluated under different scenarios of covariate structure. The following provisions were 

used for all model runs: A residual error term only and an uninformative Dirichlet prior (= 1). 

Model convergence was assessed by the Gelman–Rubin diagnostic (variables < 1.05), rejecting 

model output if >5% of total variables were above 1.05. Model convergence indicates that the 

model found a singular solution to the problem, decreasing the chances of equifinality. Using 

the selected 10 tracers the model passed the Gelman–Rubin convergence diagnostic with the 

parameters of the Markov chain Monte Carlo (MCMC) chain run length set as follows: Chain 

length = 1 000 000, burn = 700 000, thin = 300, chains = 3.t 

(ii) Tracer conservation test and principal component analysis  

Comparing the sediment samples' geo-chemical fingerprinting with the potential source 

materials using the Bayesian mixing model requires tracers to behave independently and 

conservatively (assumption 3) in the environment (Motha et al.,  2002). The tracer 

conservatism concept implies that the chemical composition of the tracers does not change 

during detachment, transport, deposition and or after deposition (Belmont et al.,  2014). The 

tracer screening process for source apportionment only excluded tracers on the basis of non-

conservative behavior based on their performance from the range test (Smith et al.,  2018). 

Before tracer screening, the samples' elemental concentrations below the detection limit were 

dropped. Subsequently, Blake et al. (2018a) adopted the basic tracer screening approach with 

additional evaluation of geo-chemical behavior. Furthermore, the tracers found to have higher 

intra-source variance than inter-source variance were removed. Finally, the normality 
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assessment using the Shapiro–Wilk test for the individual tracer mixtures was done because 

the model assumes a normal distribution of the mixture tracer data (Stock et al.,  2018).  

One of the BMM model assumptions is that the inter-source differences in fingerprints have to 

be larger than the intra-source differences in fingerprints. In this context, a principal component 

analysis (PCA) was applied to reduce the dimensionality of the entire multivariate tracer 

dataset, allowing a visual scrutinization of the variance between and within the different 

sources and the mixture (Blake et al.,  2018a). This allows us to evaluate whether the different 

land-use classes and sub-tributaries are grouped into distinct geochemical groups. A mixture 

of the sediment at the river confluence point was used to attribute the sub-tributary sediment 

sources, and soil samples from different land use classes upstream of the catchment.  



47 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Overview 

This Chapter presents the main findings of the research and a comprehensive analysis of the 

results. The Chapter detailed assessing the potential sediment sources using geo-chemical 

fingerprinting integrated within the Bayesian MixSIAR mixing mode. The Chapter further 

illustrates the necessity of incorporating the methods (geochronology and geo-chemical 

fingerprints) and stable isotope analysis that explicitly maintain sediment control strategies for 

sustainable management of food, water and energy security in Eastern Africa. In addition, the 

chapter illustrates the semi-distributed hydrological SWAT model as a robust tool for 

evaluating the impact of current land use and climate changes and assessment of the probable 

future effects of climate changes on the near future 2030-2060 on Simiyu River discharge under 

RCP6.0. The study revealed that the mutual effect of land-use and climate change is predicted 

to have increased the chances of extreme discharges more than the singular effects of climate 

change or land-use change. Furthermore, the study recommends further hydrological modelling 

with a wider range of representative concentration pathways, such as RCP2.6, 4.5 and 8.5, 

which would be useful for making more informed decisions by resource managers and water 

users. 

4.2 Assessment of the impacts of land-use and climate change on the current river 

discharge in the Simiyu catchment 

4.2.1 Sensitivity analysis 

The parameters’ rankings remained relatively stable with and without observed data. A 

significant difference was observed in CH_N2, Alpha_BF, SURLAG, and CH_K2, which 

provides insight into the most sensitive parameters. The top 20 parameters were ranked based 

on sensitivity analysis (Table 2), and the 16 most sensitive parameters (Table 3) were used for 

calibration. The sensitive parameters show that the catchment seems to be governed more 

strongly by surface runoff parameters than base flow parameters, which is expected in semi-

arid tropical systems (Moriasi et al.,  2007). 
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Table 2:  Sensitivity Analysis Parameter Ranking and fitted value after calibration 

Parameter Description 
Rank 

With Obs Without Obs 

Cn2 
Curve number for moisture condition 

11 
1 1 

Esco Soil evaporation compensation factor 2 2 

Ch_K2 
Efficient hydraulic conductivity in 

the main channel alluvium (mm/hr) 
3 13 

Surlag Surface runoff lag coefficient 4 16 

Alpha_Bf Baseflow alpha factor 5 12 

Ch_N2 Manning value for the main channel 6 15 

Canmx Maximum canopy index 7 5 

Blai Maximum potential leaf area index 8 8 

Sol_Awc 
Available water capacity of the soil 

layer 
9 4 

Sol_Z soil depth(mm) 10 3 

Slope Average slope steepness(mm) 11 7 

Revapmn 

Threshold depth of water in the 

shallow aquifer for revap or 

percolation to the deep aquifer to 

occur  

  

12 10 

Sol_K 
Saturated hydraulic conductivity 

(mm/hr) 
13 6 

Gw_Revap Ground water ''revap'' coefficient  14 11 

Gwqmn 

The threshold depth of water in the 

shallow aquifer required for return 

flow to occur  

15 9 

Epco Plant uptake compensation factor 16 14 

Gw_Delay Ground water delay 17 18 

Biomix Biological mixing coefficient 18 19 

Slsubbsn Average slope length 19 20 

4.2.2 Model calibration and validation  

The most 16 sensitive parameters indicates the catchment to be governed more strongly by 

surface runoff parameters than base flow parameters (Table 3). The Curve number (Cn 2) being 

the most sensitive parameter in the catchment with high optimal value, which denotes a low 

infiltration capacity. The NSE, PBIAS and RSR had values of 0.52, -0.53 and 0.70, 

respectively, after calibration, which was deemed good/satisfactory for NSE, PBIAS and RSR 

according to (Cardoso de Salis et al., 2019; Moriasi et al., 2007), while the p-factor was 39% 

and r–factor 65%. The p factor was 47%, r factor was 57%, and the NSE was 0.50 during the 

validation period (1988–1992) for the daily time step. A poor p-factor in validation is attributed 

to uncertainties in the data and the failure of the model to capture some hydrological catchment 
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processes typical for semi-arid tropical catchments. Moreover, the model simulations for the 

daily time step slightly underestimated the peak river discharges (Fig. 12 and 13).  

Similar results were obtained by Ndomba et al. (2008) who validated the poor SWAT 

performance on accurate estimations of the daily catchment rainfall and lack of spatial 

distribution in climate data. Nonetheless, the model performed reasonably well since the 

efficiency performance of the independent parameters RSR, NSE, and PBIAS attained during 

the calibration and validation period were within the recommended values (NSE > 0.5, PBIAS 

˂ ±25% and RSR < 0.7) (Moriasi et al.,  2007). To study the impact of future climate data on 

river discharge, the calibrated models were combined with downscaled future climate data. 

The NSE and RSR goodness-of-fit evaluation revealed that the simulated flow fitted the 

observed flow best, as indicated in Fig. 12 and 13. Precipitation was also positively correlated 

with simulated and observed flows (Fig. 12 and 13).  

Table 3:  Sensitive Parameters used in Model Calibration 

Parameter Name    Fitted Value        Min value           Max value 

 R__CN2.mgt -0.13 -0.13 -0.11 

V__ALPHA_BF.gw 0.64 0.60 0.66 

V__GW_DELAY.gw 413.55 350.39 492.33 

V__GWQMN.gw 1080.60 813.15 1092.62 

V__GW_REVAP.gw 0.17 0.16 0.19 

V__RCHRG_DP.gw 0.27 0.23 0.31 

V__SURLAG.bsn 8.94 8.70 9.56 

V__CH_N2.rte 0.16 0.16 0.17 

V__CH_K2.rte 71.18 59.67 87.27 

V__ESCO.hru 0.37 0.36 0.38 

V__CANMX.hru 0.04 0.04 1.67 

R__HRU_SLP.hru 0.46 0.40 0.48 

R__SOL_AWC(..).sol -0.12 -0.13 -0.08 

R__SOL_K(..).sol 0.51 0.40 0.51 

R__SLSUBBSN.hru 0.13 0.12 0.20 

V__EPCO.hru 0.79 0.78 0.83 
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Figure 12:  Observed and simulated daily flows for the calibration period (1988-1992) 

 
Figure 13:  Observed and simulated daily flows for the Validation period (1993-199 

4.2.3 Impacts of the current Land use and climate change on the river discharge 

The World Meteorological Organization’s recommendation to use the 18 years as a baseline 

was adopted to represent the baseline for land use and climate data from 1972 to 1990 (WMO, 

2017). The land-use change (S2) was attributed to an increased peak discharge of 0.32% from 

the baseline. The climate-change-only (S3) scenario showed an increase in peak discharge by 

3.72%. The combined impacts (S4) estimated an increase in peak discharge by 6.04%, 

indicating a synergistic impact of land use and climate change. For the discharges at a return 

period (T) of 25 years, the baseline discharge (S1) was 294.1 m3s−1, and S2 increased the 

discharge by 0.31%, S3 by 2.07%, and S4 by 5.47%. The T = 100 years discharge events 

demonstrated that S3 had a higher increase (6.55%) compared to S2 (0.29%), while S4 caused 

an increase of 9.32% (Table 4).  
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Table 4:  Scenario results for the highest discharge at return periods 5, 25 and 100 

Flow Index Peak Discharge (m3s−1) 
Difference 

Value % 

Q5    

Baseline 206.8   

LULC-Change (S2) 207.5 0.74 0.36 

Climate Change (S3) 212.2 5.36 2.59 

Combined Change(S4) 

 
213.7 6.91 3.34 

Q25    

Baseline 294.1   

LULC-Change (S2) 295.1 0.92 0.31 

Climate Change (S3) 300.2 6.09 2.07 

Combined Change (S4) 

 
310.2 16.08 5.47 

Q100    

Baseline 366.2   

LULC-Change (S2) 367.3 1.06 0.29 

Climate Change (S3) 390.2 24.01 6.56 

Combined Change (S4) 400.4 34.13 9.32 

4.3 Assessment of the impacts of future climate change on the Simiyu River discharge 

under RCPs 4.5, 6.0 and 8.5 

4.3.1 Projected future temperature and precipitation changes 

The downscaled ensemble of GCM (ACCESS1.3, MIROC5 and CNRM.CM5) models 

predicted the change in the mean annual temperature from 21.8°C in 1990 to about 22.2°C at 

the end of 2019, an increase of about 0.4°C over the past 30 years. The temperatures of the 

period between 2030 and 2060 under RCPs 4.5, 6.0 and 8.5 were predicted to increase by 0.6°C 

from 22.6°C in 2030 to 23.2°C in 2060 in response to increasing greenhouse gas (GHG) 

concentrations and a reduction in the rainfall amount (Fig. 14 and 15). The future temperature 

increases are mainly concentrated from December to August, while in September, October and 

November, the future temperature is predicted to decrease very slightly. 

According to IPCC (2021), the projection for high to moderate emission scenarios shows that 

by the middle and end of this century, the maximum and minimum temperatures over equatorial 

East Africa will rise, and there will be warmer days compared to the current situation. In the 

Simiyu catchment, this trend has begun to emerge because the first nine months of the year 

showed an increasing trend, and the final three months showed a very slight decreasing trend. 

Increasing soil evaporation and plant transpiration due to rising temperatures due to climate 

change may impact the soil–water balance, impacting crop growth and agricultural productivity 
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(Kang et al.,  2009). According to these results, the rainfall will decline over time (Fig. 20). 

The ensemble of GCMs (ACCESS1.3, CMCC.CM, MIROC5 and CNRM.CM5) under RCPs 

4.5, 6.0 and 8.5 predicted that from 2030 to 2060, rainfall over the Simiyu River catchment 

will be reduced by 7.75% on average, according to the climate change models that are currently 

available. 

 
Figure 14:  Comparison between the current 1990-2019 (baseline) and future 

temperature (2030-2060) at Simiyu catchment 

 
Figure 15: Comparison between the current 1990-2019 (baseline) and future rainfall 

(2030-2060) in the Simiyu catchment 
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4.3.2 Projected future annual and seasonal river discharge  

The results showed that the river discharge varies across the months following the spatial and 

interannual variability in rainfall across the two wet seasons, with long rains from March to 

May, short rains from October to December and two intermediate dry seasons (James et al.,  

2023). In general, the discharge increased from October through January, decreased afterwards 

up to March and then started increasing again until May, reaching its peak in April (Fig. 16). 

Seasonal precipitation and temperature changes drive these large differences between seasons. 

Mean monthly discharge forecasts during 2030–2060 under RCPs 4.5, 6.0 and 8.5 showed the 

maximum in April, which is consistent with the timing of the observed mean monthly discharge 

in the current period (1990–2019). In addition, predicted average monthly discharges are lower 

in the months from June to September, which is in line with the historical data. According to 

the model, the annual average river discharge of the Simiyu will significantly decrease (Fig. 

16) due to projected decreasing rainfall and increasing temperature in the catchment. Under 

RCPs 4.5, 6.0 and 8.5, the average annual river discharge decreased from 5.7 m3s-1 in 1990–

2019 to 4.0 m3s-1 in 2030–2060, which is equivalent to a 29% decline (Table 5).  
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Table 5:  Comparison of the extreme discharges at exceedance probabilities of 

Simiyu catchment at Ndagalu gauging station (5D1) 

Exceedance 

Probability (%) 

Extreme 

Discharge (m3s-1) 

(Baseline) 

Extreme 

Discharge (m3s-1) 

(RCP4.5) 

Extreme 

Discharge 

(m3s-1) 

(RCP6.0) 

Extreme 

Discharge (m3s-1) 

(RCP8.5) 

0.01 379.6 466.0 451.3 413.2 

1 232.8 276.9 214.3 239.7 

5 102.2 136.5 72.3 129.3 

10 34.2 65.5 32. 62.6 

20 14.8 16.8 10.9 16.8 

25 10.6 10.9 8.0 11.1 

50 6.5 3.9 5.3 3.8 

75 5.1 2.8 3.9 3.0 

90 4.0 2.0 2.8 2.6 

95 3.2 1.9 1.9 2.7 

99 1.4 0.1 0.2 0.1 

100 1.2 0.00 0.0 0.00 

The predicted low discharge in the dry season between June and September under all the land-

use and climate change scenarios is due to low rainfall and warm temperatures that lead to 

higher evapotranspiration, which often decreases runoff and discharge. The single peak 

discharges are frequently linked to vastly heavy rainfall events and likely occur on timescales 

smaller than the daily time step of the simulation period (Fig. 16). The catchment is likely to 

experience longer and more pronounced droughts in the future, which has also been highlighted 

by the IPCC (2021) in the East Africa region. However, changes in precipitation are also 

predicted to drive changes in flood regimes (Patterson et al., 2012). The ensemble GCM models 

(ACCESS1.3, MIROC5, and CNRM.CM5) under RCPs 4.5, 6.0, and 8.5 predict higher 

incidences of extreme discharge as shown in Table 5 and in the flow duration curve at Ndagalu 

gauging station (Fig. 17), which indicates frequent flood occurrence in the future (2030–2060) 

compared to the current period (1990–2019), with extreme discharges of 451.3 m3s−1 and 
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232.8 m3s−1 at exceedance probabilities of 0.01% and 99.99%, respectively. This might be 

attributed to the mutual effects of increased land use and climate change.  

Intense precipitation events are predicted to produce a larger fraction of runoff, increasing the 

probability of Hortonian overland flow in the catchment. The higher incidence of high-intensity 

rainfall is thus predicted to cause both more intense flood and drought events. In addition, 

extreme events will occur more frequently and also intensify, with large discharge events 

(floods) generally increasing in magnitude and frequency in the wet months of March and April 

and low flows (droughts) occurring in the dry months of June to September in particular (Fig. 

14). These findings show less extreme discharge events (Kay et al.,  2020) from 1990 to 2019 

compared to the future projected river discharge (2030–2060), which shows increased extreme 

events in the catchment because of higher intensity rainfall events following dry periods due 

to land degradation and short spells of heavy rainfall and prolonged dry spells (Fig. 12). 

 
Figure 16:  Comparison of the current/baseline (1990-2019) and future (2030-2060) 

Monthly River discharge in Simiyu catchment 
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Figure 17:  Flow duration curves at Ndagalu gauging Station (5D1) for current and 

future flows 

The present climate-change-only scenario (1990–2019) caused the highest increase in 

discharge at different return periods compared to the land-use change-only scenario. The 

mutual impacts of climate and land-use changes showed a disproportional increase in discharge 

compared to the single contributions, which indicates synergistic effects of land cover and 

climate change. However, the contribution ratio of climate change was larger than that of land-

use change. The model simulations under projected climate change (2030–2060) showed a 

significant decrease in the discharge at different return periods. The dominant factor for the 

decrease in discharge was the decrease in precipitation. The observation that discharge 

dynamics were mainly controlled by precipitation variability rather than temperature is realistic 

due to the smaller relative differences in temperature between the seasons and future climate 

scenarios compared to those in rainfall. These results align with the IPCC (IPCC, 2011, 2021)  

projected impacts of climate change in developing countries.  

According to the IPCC (IPCC, 2011, 2021) developing countries are the most vulnerable to 

climate change and variability (Santos et al., 2018). As such, the availability and variability of 

fresh water will be greatly impacted by climate change in response to global warming, thus 

significantly affecting developing countries' economies that heavily depend on agricultural 

production (Parry et al., 2007; Worqlul et al., 2017). Most likely, the anticipated changes in 

the rainfall patterns and intensity in the river discharges will impact crop growth and put 

farmers at risk from floods, soil erosion and drought. These findings underline the vulnerability 
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of river discharge to rising greenhouse gas concentrations resulting from alterations in the 

climate system and stress the significance of global emission reduction strategies and measures 

to protect future water resources. Since 80% of the Tanzania population is largely dependent 

on agriculture (Kassie et al.,  2018; Kassie et al.,  2015) anticipate further increases in water 

demand due to population increases. It is, therefore, important to establish adaptation and 

mitigation measures to minimize the impacts of climate change on water resources. 

4.3.3 Limitations of the methods and robustness of the model  

While the model performance was decent, there remained some challenges and weaknesses. 

The model’s underestimations of high-flow events are the main cause of uncertainty and have 

an impact on the simulations of land use and the climate. The most significant source of 

uncertainty is due to the model underestimating high-flow events, which affects land use and 

climate simulations. This underestimation can partly be explained by the absence of enough 

gauged hydrometric and rainfall stations in the catchment to capture the high spatial and 

temporal variability in rainfall, affecting simulated flow. Moreover, the discharge was 

simulated on a daily scale, but rainfall in the study area often comes in high-intensity torrential 

rains. The high intensity of the rainfall in real life often passes the soil infiltration threshold, 

leading to Hortonian overland flow. However, in the daily setting, the model might assume that 

the rainfall is distributed evenly during the day, predicting that more rainfall infiltrates.  

In this context, stream discharge models in the East African region could be improved by 

rehabilitating non-operating rainfall stations and collecting rainfall data on a higher spatial 

resolution. Discharge and rainfall monitoring should also aim to increase the resolution to 

hourly time steps for capturing high-intensity rainfall events. Herein, future modelling 

exercises can follow suit and model stream discharge on hourly time steps, allowing a better 

representation of Hortonian overland flow. This will enhance the model’s performance during 

calibration and hydrological simulations in upcoming studies. Choosing the GCM model(s) 

and defining the emission scenarios is also expected to impact future simulations significantly 

(Cannon 2015; Pierce et al., 2009; Biemans et al., 2013).  

This study used an ensemble of GCM models (ACCESS1.3, MIROC5 and CNRM.CM5) and 

three representative concentration pathways (RCPs 4.5, 6.0 and 8.5) to understand the impact 

of future climate change on the Simiyu River discharge (Fig. 3 and 20). Different GCM models 

have shown discrepancies over regional climate change (Amasi et al.,  2021), e.g., due to 

differences in the spatial domains and predictor variables, downscaling with dynamic and 
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statistical downscaling methods (Wilby & Wigley, 1997; Zhang et al.,  2019) or even within 

different statistical downscaling methods. However, this was overcome by locally validating 

the models and selecting the one with the lowest inaccuracies for discharge modelling. A 

further area of uncertainty relates to the hydrological model, which interprets how future 

climate data will affect hydrological responses (e.g., influence on streamflow). The model 

structure, parameter uncertainty, and a lack of data contribute to the hydrological model 

uncertainty (Bracken & Croke, 2007). 

The average performance of SWAT model when simulating specific peaks was probably due 

to errors in the estimation of daily catchment rainfall, spatial variability in rainfall in the 

catchment, and inadequate representation of Hortonian overland flow in the model. Other 

reasons might be water abstractions for domestic and socioeconomic activities (e.g., irrigation 

practices and mineral processing) that are not included in the modulation. Earlier studies 

reported that the SWAT model underestimates the discharge peaks (Taylor et al.,  2016). 

However, this was partly overcome with local calibration using a semi-automatic calibration 

and uncertainty program, SWATCUP SUFI-2 (Arnold et al., 2012). While the parameters are 

calibrated for a specific climate and environment, these settings are not guaranteed to remain 

optimal when climate and land-use changes occur. Despite the model’s limitations, this study 

made every effort to reduce the degree of uncertainty in the model’s prediction to reasonably 

comprehend the feasible impact of climate change on the stream flow in the Simiyu catchment.  

This study has revealed that the SWAT model is a robust method for predicting the 

hydrological response of semi-arid tropical catchments to changes in climate and land use. The 

model is thus an important tool for informing soil and water management strategies in these 

data-poor regions. Nevertheless, these findings should be hypothesized as best available 

simulations, not as empirical observations, because of the temporally and spatially simplified 

representations of the catchment environment and hydrological processes 

4.4 Assessing the dominant sources of the Simiyu riverine sediment using geo-

chemical fingerprinting 

4.4.1 Tracer conservation test and source discrimination from the principal component 

analysis 

Boxplots were produced for each set of sources and associated mixtures for all tracers, and the 

means of the mixture data were assessed to see if they largely fell within or outside the mean 
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concentrations of the different sources (Fig. 18). The mean of the mixture of the tracers that 

fell outside the mean of the source ranges was removed. 
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Figure 18:  Boxplots for tracer selection of the potential sediment sources and riverine 

sediments (mixture) 

Ten tracers qualified the range test (Al, P, K, Ti, Mn, Co, Ni, Cu, Zn, Nb), while 21 tracers 

(Na, Mg, Si, S, Cl, Ca, Cr, Fe, Ga, Br, Rb, Sr, Zr, Ba, Ce, Pb, Th, La, Y, Hf, Sn) were excluded 

from the analysis based on their indication of non-conservative behaviour or high intra-source 

variability (Fig. 6). The elimination of tracers requires some geo-chemical clarification. The 

non-conservative behaviour of soluble salt elements such as alkali metals, e.g. Na, Mg, and Ca 

and halogens such as Cl, F and Br is probably due to their tendency to enrich their concentration 

driven by evaporation (Wynants et al.,  2021a). Several elements, such as Si Cr, Y, Pb and Zr, 

are identified to undergo alterations in medium to long-term storage elements such as 

floodplains, lakes and wetlands due to changes in redox, pH, salinity and other environmental 

conditions (Owens et al.,  1999; Pulley et al.,  2015a). Changes in concentrations of Sr and Rb 

may have resulted from their irregularity in the soil depth as a function of weathering processes 

and mixing of soil horizons by cultivation (Tyler, 2004). The Ce, La and Th were removed 

because of the observed high intra-source variability potential artefacts of analytical challenges 

due to low abundance or high variability in the terrestrial source concentrations (Wynants et 

al.,  2020). Concentrations of Si and Zr may be due to wider fluvial sorting, e.g., textural 

controls on mineral composition, i.e., changing proportions of silt versus clay minerals in 
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mixtures, which has been shown to exert a strong influence on sediment concentrations (Cuven 

et al.,  2010). 

The first PCA was performed to check the differences between sediment gathered from the 

main river and tributaries and showed distinct fingerprint clusters between the two tributaries 

(Fig. 19). The sediment mixture of the main river occupies a larger cluster compared to the 

sub-tributaries. The second PCA comprised the sediment from the main river and the soils from 

the different land-use types (Fig. 20a). The land-use PCA highlighted a complex soil system 

wherein some overlap was observed between the topsoil land-use sources, mainly between 

forest and bushland. The forest cluster was very small and distinct. The agricultural cluster 

occupied the largest space on the PCA, and seemed to exist out of two subclusters, wherein the 

lower cluster was clearly driven by higher values in phosphorus (P). There was some overlap 

between the upper agriculture and bushland and forest clusters. The subsurface soil samples 

(Riverbank and Channel Bank) occupied a significantly different space on the X-axis, 

indicating a distinct difference in surface and subsurface geochemical fingerprint. The surface 

soil samples generally have higher concentrations in the metal tracers, except for K.  

The PCA of the tributaries highlights distinct differences between both tributaries, indicating a 

strong geo-chemical basis on which the model can draw. On the PCA of the land-use sources, 

the soil samples also form distinct clusters that seem to be mainly driven by geo-chemical 

differences between catchment zones and soil depth (Fig. 20a). It is important to highlight the 

differences in both principal components, wherein the X-axis represents 63% of the variance 

and the Y-axis 14%. Differences along the Y-axis, therefore, get conflated, while the main 

differences in fingerprints are along the X-axis. The forest cluster is relatively small, which is 

unsurprising and can be explained by the more constrained locations of forests in the uplands 

and their relatively undisturbed soils. The forest cluster was partly overlapped by a larger 

bushland cluster between forest and bushland, which is probably because there is no distinct 

border between those land cover types, and bushland tends to transition into forests gradually. 

However, when a third principal component is plotted, bushland and forest differences are still 

evident, showcasing the more nuanced geo-chemical difference between those two groups (Fig. 

20b). 

The forest fingerprint seems to have slightly higher concentrations of Cu and Ti, while the 

bushland is more characterized by higher concentrations of Cu, Ti, Zn and Co tracers (Fig. 20a, 

and Fig. 18). Therefore, the overlap between forest and bushland is due to surface tracers Ti 

and Cu, which are probably indicative of highly weathered soils typical for East African 
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hillslopes (Wynants et al.,  2021a). The agricultural cluster was larger and seemed to consist 

of two subclusters. This can be explained because agriculture is spread over the catchment on 

hillslopes and wetter areas closer to the river. Differences in underlying geology, soil type, soil 

management, redox conditions and climate can further explain the bigger size of the cluster. 

The hillslope agricultural soils seem more driven by Al concentrations, while the wetter areas 

seem more driven by P concentrations. Applying mineral fertilizers can explain the strong 

driving effect of P on agricultural soils. The overlap between agricultural soils and 

bushland/forest soils may be due to similarities in location, but also due to legacy effects of 

previous land cover wherein bushland/forest is converted to cultivated land and some cultivated 

land was abandoned and developed back to bushland/forest. The clear difference shown 

between the surface (FR, CU and BS) and subsurface materials (RB and CB) on the PCA plot 

can be attributed to weathering and pedogenic processes. As shown by the range tests, CB soils 

were higher in K (Fig.  18), which might be due to evaporation enrichment or lack of 

weathering (Wynants et al.,  2021a). Generally, the distinct clustering between the source 

groups on the PCA plot shows that the mixing model is a robust tool for sediment attribution 

from selected land-use types (Smith & Blake, 2014). 

 
Figure 19: Principal component analysis plot highlighting variability in geo-chemical 

fingerprints of the Duma   and Simiyu tributaries and the Simiyu Mainstem 

sediment 
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Figure 20:  (A) Principal Component Analysis & (B) 3D Principal Component 

Analysis plots highlighting variability in geo-chemical fingerprints of the 

land-use sources and mixture pool of Simiyu Mainstem sediment 
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4.4.2 Proportional sediment contribution from land-use and riverine sources 

The MixSIAR outputs for the Simiyu Main RS revealed that the Simiyu sub-tributary 

accounted for 63.2% ± 10.4% and the Duma sub-tributary for 36.8% ± 10.4% of the total 

sediment (Fig. 21a). The higher proportion of sediment from the Simiyu tributary to the main 

river was expected since its sub-catchment is slightly bigger (5540.67 km2 compared to 

5435.11 km2 in the Duma) and has higher average slopes and rainfall compared to the flatter 

and drier areas in the west of the Duma sub-catchment. Moreover, some of the headwaters of 

the Duma sub-catchment are protected as Serengeti National Park (Fig.  21b), where there is a 

more permanent vegetation cover, and only moderate sediment yield was modelled in previous 

studies (Kimwaga et al.,  2012b; Van Griensven et al.,  2013a). Although the Simiyu sub-

tributary has a higher sediment contribution to the main river than Duma, the difference is 

relatively small, indicating that high sediment yield is not limited to the Simiyu alone. Both 

sub-catchments have been modelled to have high soil erosion risk, which is attributed mainly 

to the expansion of agricultural land and overgrazing on sloped areas with high-intensity 

rainfall (Mati et al.,  2008; Zhang et al.,  2020a). Besides, surface erosion risk, unsustainable 

farming practices in both sub-catchments may also promote sediment connectivity from the 

hillslope to the channel networks (Guzha et al.,  2018). Overall, only 57% of the total catchment 

experiences low to very low soil erosion risk, while the high and very high patches of soil loss 

risk of 16.14% and 2.16%, respectively, are distributed mainly in the cultivated part of the 

catchment, characterized by gentle slopes (Zhang et al.,  2020a). The high contribution of 

eroded soils from agricultural land to riverine sediment is also found in the neighbouring Mara 

catchment (Dutton et al.,  2019; Stenfert et al.,  2020).  

 
Figure 21: Sediment source apportionment of the main Simiyu River against the 

riverine and land-use sources 
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Unmixing of the land-use types against the Simiyu Main RS revealed that cultivated land had 

the greatest contribution of sediments, accounting for 64.7% ± 4.1%, channel banks with 26.5 

% ± 5.0%, riverbanks with 5.8 % ± 3.1%, bushland with 1.6 % ± 1.7% and forest 1.4 % ± 1.5% 

(Fig.  21b). The MixSIAR outputs for the land-use types against the individual RS also revealed 

that cultivated land had the greatest contribution of sediments in both sub-tributaries with 

86.4% ± 7.6% and 80% ± 8.2% to the Duma and Simiyu respectively. In the Duma sub-

tributary, channel banks contributed 9 % ± 7.2%, riverbanks contributed 2.7% ± 2.1%, 

bushland contributed 1.1% ± 0.9%, and forest contributed 0.7% ± 0.6% (Fig. 22a). In the 

Simiyu sub-tributary, channel banks contributed 9%± 6.8%, riverbank contributed 6.3% ± 

5.2%, bushland contributed 2.9% ± 2.1%, and forest contributed 1.7% ± 1.4% (Fig. 22b).  

 
Figure 22: The MixSIAR of the land-use from the Duma (DM) and Simiyu (SMY) 

tributaries 

The dominant contribution from cultivated land to the sediment in both sub-tributaries confirms 

agriculture's high impact on soil erosion and sediment transport in the catchment, probably due 

to its large proportion of the catchment, combined with bad soil and water management. 

Previous research in Northern Tanzania has shown that poor agricultural practices decrease soil 

organic matter content and structure, increasing the susceptibility to water erosion (Amasi et 

al.,  2021a). This assertion is further supported from the study by Kimwaga et al. (2012b) which 

revealed that agricultural land expanded significantly from 19.33% in 1975 to 73.44% in 2006. 

A parallel study found similar temporal trends in land cover between 1986 and 2016, wherein 

agricultural land increased from 8.71 % to 68.43 %, bushland decreased from 30.14% to 23.74 

%, and grassland decreased from 59.33 % to 7.56 % (Zhang et al.,  2020a). The land use and 
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land cover changes have likely altered the hydrology in the Simiyu River, leading to increased 

peak flows (Guzha et al.,  2018), erosion rates, and suspended sediments and nutrients in the 

river (Dutton et al.,  2018; Mango et al.,  2011). 

Interestingly, direct unmixing of the Simiyu Main RS against the land-use sources revealed a 

higher proportional contribution of channel banks (26.5% ± 5.0%) compared to the separate 

unmixing of the two sub-tributaries (9%± 6.8%, and 9%± 7.2%, in Simiyu and Duma, 

respectively). Interestingly, the proportional contribution of channel banks was higher to the 

Simiyu Mainstem (26.5%) compared to the two sub-tributaries (9% in both). A potential 

explanation for the higher importance of channel banks further downstream could be the 

complex hydrology of the catchment, which is characterized by distinct topographic changes 

and high seasonality in rainfall and river flow. During extreme rainfall events, there may be a 

higher contribution of gully erosion, but the high river flow transports the sediment further 

downstream (Wynants et al.,  2021a). Another explanation could be that there is significant 

channel bank erosion closer to the outlet that enters the mainstream through small sub-

tributaries below the sampling points. However, field observations and a study by Zhang et al. 

(2020a) locate most gullies upstream of the sub-tributary sampling points. Finally, the complex 

soil geochemistry in the catchment could also influence the model performance, leading to 

better representations on smaller scales (Blake et al.,  2018). 

Nonetheless, the dominance of CU with significant contribution of CB indicates that the model 

finds similar outcomes on both spatial levels and is thus a robust tool for catchment soil- and 

water management in the Lake Victoria basin. It is also important to note that the low 

proportional contribution of other land-use types does not necessarily reflect low absolute rates 

of soil erosion on these land-use types but can be masked by high absolute values of sediment 

originating from cultivated land and/or the lower proportions of these land cover types in the 

catchment. In this study, CB contributed 9-26% of the total sediment, which is significant 

considering the more spatially constrained location of gully erosion in the catchment. The 

impacts of gully erosion also go beyond the direct contribution of sediment since they increase 

the connectivity between hillslopes and the river channel, as demonstrated by Wynants et al. 

(2021b) in northern Tanzania. Gully erosion and hillslope surface erosion are likely connected, 

leading to a rapid downstream movement of eroded soils from agricultural hillslopes through 

highly connected ephemeral gully networks. Further research is needed on integrating 

geochemical fingerprinting with sediment dating techniques on deposited sediments in 

floodplains or reservoirs (Pulley et al.,  2015a) to evaluate how sedimentation rates and sources 
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have changed historically through a period marked by significant changes in human and 

livestock population densities, and land-use. 

4.4.3 Limitation of the Bayesian mixing model 

Despite the distinct results obtained from this study, a critical reflection on the assumptions of 

the Bayesian Mixing Modelling is warranted. The first major challenge of this study was the 

difficulty of capturing the entire variability of the sediment flux by time-specific sampling 

events, creating a sampling error. The present results represent a snapshot of time, which might 

be potentially impacted by seasonal or interannual variations in source contribution (Lizaga et 

al.,  2019; Lizaga et al.,  2020). This uncertainty is; however, partly accounted for in the model 

structure as a residual error. Secondly, some areas in the catchment are potentially not captured 

during sampling due to their large size and logistical constraints (lack of roads, necessary 

permits and safety). Wynants et al. (2021a), gullies that develop in deeply weathered hillslope 

soils have similar geo-chemical fingerprints as surface erosion from those hillslopes. If there 

are gullies like this in the Simiyu Catchment that were not captured by sampling, this could 

have led to underestimating the contribution of hillslope gully erosion in the mixing model. In 

addition, the observed overlap between forest and bushland, and the large variance in cultivated 

land, might have influenced the model performance. However, since the contribution of both 

forest and bushland is marginal, the impact of this overlap is unlikely to be significant. 

Moreover, while the PCA highlights overlap from individual sampling points, the model 

accounts for the entire group's mean and variance, which is distinctively different between 

forest and bushland. The representation of this study could be improved by integrating other 

types of tracers, such as compound-specific stable isotopes of fatty acids (Upadhayay et al.,  

2017), or fallout radionuclides (Evrard et al.,  2020), which are driven by vegetation and 

erosion processes respectively. However, given the strong difference in signature between the 

Simiyu and Duma River sediment, applying geo-chemical fingerprints has proved a robust tool 

for source attribution of tributary sources. Moreover, the distinct differences in source 

contribution of land-use types and the similar outcomes for both model runs are promising 

results and demonstrate the potential of geo-chemical tracers for attributing the contribution of 

major soil source groups in the data-poor Lake Victoria Basin.  

  



68 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

In this study, dominant sources of riverine sediment in the Simiyu River flowing towards LV 

were determined. The current impacts of land-use and climate changes for the period of 1990-

2019 and the near future (2030 – 2060) impacts of climate changes on the river discharge at 

this critical agroecological region of the Simiyu catchment were also assessed. The study used 

the geo-chemical tracers and a Bayesian Mixing Model (MixSIAR) to trace the dominant 

sources flowing towards Lake Victoria and the semi-distributed hydrological SWAT model to 

assess the impacts of land use and climate changes on Simiyu river discharge.  

The MixSIAR model output ascribed the Simiyu sub-tributary (63.2%) as the dominant 

contributing sub-tributary to the main Simiyu riverbed sediment over the Duma sub-tributary 

(36.8%). In addition, the fingerprinting analysis pointed to the cultivated land (CU) and channel 

banks (CB), with 64.7% and 26.5 %, respectively, as the main sources of the main Simiyu 

riverine sediment. A similar observation was observed in individual Simiyu and Duma tributary 

sediments, the main sources of which are agricultural land and channel banks. Although the 

CU from the Duma sub-catchment accounted for 86.4% while the Simiyu sub-catchment 

accounted for 80%, overall, the contribution seems to be well balanced between both sub-

catchments. Combined with observations of high sediment yield from other research, this study 

revealed agricultural practices in the area are causing high rates of soil erosion, which cascades 

down the river, leading to high sediment supply in the Simiyu River and eventually to Lake 

Victoria.  

The SWAT model results indicated a significant increase in temperature of about 0.4°C over 

the past 30 years (21.8°C in 1990 to about 22.2°C at the end of 2019). The climate model 

predicted that under RCP6.0, the average annual temperature will increase by 1.4°C in 2030 

and by 2°C in 2060, while the precipitation in the catchment is predicted to reduce by 7.8% in 

2060 compared to the 1990-2019 baseline. These results imply that these changes will be 

accountable for altering the hydrological cycle by decreasing the Simiyu River discharge. The 

climate elasticities of the discharge revealed that the predicted changes in climate would result 

in a 29.0% decrease in discharge in the catchment, which would negatively affect the 

catchment’s water resource availability. This implies that, the alteration of the hydrological 
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cycle by decreasing precipitation and the Simiyu river discharge will also cause a reduction in 

sediment flowing towards LV. 

Moreover, the mutual effect of land-use and climate change is predicted to have increased the 

chances of extreme discharges more so than the singular effects of climate change or land-use 

change. Since sediment connectivity is inseparably linked to water fluxes in the hydrological 

cycle, changes in hydrological connectivity will influence Sedimentological connectivity. 

While the sediment tracing identified the in-stream sediment provenance, the SWAT model 

simulated erosion rates/patterns and catchment runoff responses. Their outputs are both 

influenced by land use and climate change. Understanding the impact of climatic and land-use 

changes on sediment and river discharge dynamics underpins constructive and sustainable 

land-use and water management practices, particularly in vulnerable, arid and semi-arid 

environments of the Simiyu catchment.  

5.2 Recommendations 

The research findings highlights the high relative sediment contribution to Lake Victoria comes 

from agricultural land use type which recommends the Water Managers and Policy Makers to 

take note on the following actions to be taken onboard: 

(i) The need for catchment mitigation plans that emphasizes the decreasing soil erosion 

rates in agricultural areas and disconnecting sediment delivery to the Simiyu river 

networks.  

(ii) The necessity for reducing both hillslope erosion and the sediment connectivity from 

the hillslope to Lake Victoria to maintain food, livelihood and water security in the 

Lake Victoria Basin. 

(iii) The new advanced technological structural design of improved water resource 

management and adaptation strategies to climate change eg. half-moon holes.  

However, this research recommends future studies as follows: 

5.2.1 Compound Specific Stable Isotope (CSSI) for specific crop cover  

The observed overlap between land-use types, e.g. forest and bushland and intercropping 

agricultural landuse might have influenced the mixing model performance. In addition, the off-

site and on-site sediment source tracing in agro-ecosystems is a scientific challenge that 
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requires a specific set of tracers since the current geo-chemical approaches do not provide such 

information. The CSSI technique distinguishes itself from the traditional geochemical methods 

because it is currently the only sediment source tracking approach that can positively identify 

and apportion the sources of soil by land use, contributing to the suspended load or the sediment 

in a deposition zone. Analysis of soil material from a range of crop covers in a mixed land-use 

agricultural catchment shows that the carbon CSSI signatures of particle-reactive fatty acids 

label surface agricultural soil with distinct crop-specific signatures, thus permitting sediment 

eroded from each land cover to be tracked downstream. The representation of this study could 

be improved by integrating other types of tracers, such as compound specific stable isotopes of 

fatty acids or fallout radionuclides, which are driven by vegetation and erosion processes, 

respectively. 

5.2.2 Integration of MixSIAR within spatial GIS models 

Integration of MixSIAR within Arc GIS could offer a better scope for inclusion of the gullies 

and river nodes would be an advantage in interpreting the high erosion risk areas in hierarchical 

complex catchment. The GCM models have shown discrepancies over regional climate change 

(Wilby & Wigley, 1997; Zhang et al., 2020b) due to differences in the spatial domains and 

predictor variables, downscaling with dynamic and statistical downscaling methods (Wilby & 

Wigley, 1997; Zhang et al., 2020b) or even within different statistical downscaling methods. 

This study used an ensemble of 3 GCM models and 3 representative concentration pathways 

(RCPs 4.5, 6.0 and 8.5) to understand the effect of future climate on the Simiyu River 

discharge. In view of this, the GCM outputs results in this study are inferred as best available 

simulations and not as empirical observations because of the temporally and spatially 

simplified representations of the catchment environment and hydrological processes. Given the 

range of RCPs and GCM models, these results represent a range of potential outcomes, and 

resource management should be adopted in response to the trajectory that is most representative 

of actual development. Due to the large size of the catchments and logistical constraints that 

include lack of roads, necessary permits and safety, some areas in the catchment were not 

captured during sampling. For instance, the gullies that were not captured in this study could 

have led to an underestimation of the contribution of hillslope gully erosion in the mixing 

model since the gullies in deeply weathered hillslope soils have shown to have similar geo-

chemical fingerprints as surface erosion from those hillslopes (Wynants et al., 2021a). 
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5.2.3 Integrating geochemical fingerprinting with sediment dating techniques 

Gully erosion and hillslope surface erosion are likely connected, leading to a rapid downstream 

movement of eroded soils from agricultural hillslopes through highly connected ephemeral 

gully networks. Further research is needed on integrating geochemical fingerprinting with 

sediment dating techniques on deposited sediments in floodplains or lakes to evaluate how 

sedimentation rates and sources have changed historically through a period marked by major 

changes in human and livestock population densities and land use. 

5.2.4 Combination of the future landuse and climate change on Simiyu river discharge 

The rapid growth of population leads to growth of towns as well as expansion of agricultural 

land use. The projected landuse could give the estimated future impacts on river discharge 

towards Lake Victoria.  
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