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The rise in global human population, coupled with the effects of climate change,

has increased the demand for arable land. Soil fertility has been the most

affected, among other things. Many approaches to soil fertility management

have been proposed by studies in Sub-Saharan Africa (SSA); however, the

question of sustainability remains. Nutrient monitoring (NUTMON), which

combines biophysical and socio-economic features for soil fertility

management, gives an in-situ soil fertility status of a given land use system,

which ultimately provides guidance in proposing appropriate soil management

techniques in a given land use system. In this review, the Preferred Reporting

Items for Systematic Review andMeta-Analysis (PRISMA) approach was deployed

for a systematic search of the literature materials. The review evaluated various

studies on nutrient monitoring in SSA soils in order to understand the

socioeconomic attributes and their influence on farming systems, as well as

nutrient flow and balances. The review identified two dominant smallholder

farming systems in SSA: mixed crop-livestock and mixed crop farming systems.

Also, this review revealed that most nutrient balance studies in SSA have been

done in mixed crop and livestock farming systems. However, regardless of the

farming systems, the overall mean nutrient balances in all studies, particularly

those of nitrogen (N) and potassium (K), were negative, indicating significant

nutrient mining. The review further revealed a vast range of biophysical soil

fertility management technologies; however, their adoption has been limited by

socio-economic aspects including land ownership, gender, financial position,

literacy level, and access to inputs. Therefore, in view of this situation, integrating

biophysical and socioeconomic disciplines could address the problem of soil

nutrient depletion holistically, thus decreasing the existing negative nutrient

balances in the SSA region.
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1 Introduction

1.1 Background information

The variety of natural resources and climate conditions found in

smallholding systems has resulted in a wide range of land use

systems (1). Consequently, farming systems vary greatly depending

on socioeconomic and agro-ecological environments, which

ultimately affect system management practices in a given

community (2–4). Various farming systems exist in smallholder

settings in sub-Saharan Africa (SSA) based on cropping systems.

Perennial crops, crop-livestock mixed farming, maize-mixed

farming, root and tuber farming, and cereal-root crops are among

the major farming systems in SSA (1, 4). However, crop-livestock

mixed farming is the most common farming system for

smallholders who produce for subsistence, accounting for roughly

two-thirds of smallholder farmers’ livelihoods in Sub-Saharan

Africa (SSA) (5). Crop-livestock mixed farming is preferred due

to the interdependence of livestock and crops, which results in

nutrient recycling within the system (6).

The challenge of nutrient cycling in mixed crop-livestock

farming is that, quantities of animal manure produced within

farmsteads in SSA are smaller due to the small number of

livestock kept per household, unlike in developed countries where

manure is considered a problematic waste (7). As a result,

smallholder farmers are forced to use little manure, which does

not meet nutrition crop requirements; thus, crop production in this

region relies heavily on natural soil fertility (8, 9). It is estimated that

60–80% of household income is generated at the expense of natural

soil fertility (10). Reports show that over the last three decades,

nutrient mining from arable lands in SSA has been estimated to be

660, 75, and 450 kg ha-1 yr-1 of N, P, and K, respectively (11).

Consequently, these practices contribute to land degradation

through nutrient mining, threatening the sustainability of existing

farming systems (12). Understanding the interaction between

farmers’ socioeconomic attributes of soil fertility management

and soil nutrient depletion is critical in developing appropriate

approaches to address soil fertility problems (13–15). Designing

biophysical nutrient management without consideration of

socioeconomic factors is likely to yield low adoption, despite

being technically sound (14). In the past, soil management

interventions were derived from less participatory, top-down

policies and thus did not work because they appeared to interfere

with farmers’ decision-making (16). Adoption of nutrient

management is determined by accessibility and affordability of

the technology and the respective requirements for input,

materials (17) and labor. To that end, smallholder farmers in SSA

often respond to these challenges in various alternative ways by

using easily available resources within their environment, such as

animal manure, mulching, or intercropping (18). However, due to

the insufficient quantity and often low quality of animal manure

produced within farmsteads, their contribution to improving soil

fertility is negligible (19, 20).

The majority of smallholder farmers are still struggling to

increase crop production in order to feed more people, a result of
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the high population growth rate (21, 22). However, reaching

potential yields has remained a challenge due to smallholder

farmers’ reliance on rain-fed agriculture, insufficient soil nutrient

supply, use of low-yielding varieties, and a lack of mechanization (3,

14). According to Aschonitis et al. (23), the introduction of the

“green revolution” in the 1960s greatly improved crop yields

ranging from 3 to 5 MT ha-1 in Asia and China, respectively, to

10 MT in North America, Europe, and Japan through the use of

improved crop varieties, fertilizers, pesticides, and advanced farm

machinery. The green revolution was not realized in developing

countries, leaving Africa with the lowest yield at around 1.5 MT ha-1

(24), due to the inaccessibility and high cost of the agricultural

technologies. Nonetheless, previous research findings, such as those

by Omuto and Vargas (25) and Takele et al. (14), revealed that

agricultural technological change, such as the use of advanced

machinery, high yielding varieties, fertilizers, and pesticides, has

been linked to land degradation in many arable lands, including

erosion, salinity, and soil nutrient depletion.
1.2 Rationale of the review

Global population growth is expected to reach 9.7 billion people

by 2050, with African population growth expected to reach 2.5

billion in 2050, up from 1.3 billion in 2020, and the SSA population

expected to reach 3.1 billion by 2100, up from around 1.24 billion

today (3). With these population projections, the governments,

including those in the SSA region, have to take critical actions to be

able to feed the growing population by addressing the rapid decline

in soil fertility and increased food constraints (3). It is, therefore,

important that global and/or regional food production be increased

through holistic strategies to meet the demand of the growing

population. While research centers have developed many promising

systems of soil amendment techniques for nutrient enrichment, the

majority of them rely on mono-disciplinary approaches with a focus

on the biophysical aspects (26–29), with little consideration of the

socio-economic aspects. Integrating biophysical and socio-

economic disciplines could address the problem of soil nutrient

depletion more holistically (29). It all starts, nevertheless, with

estimating nutrient budgets, and this has been gaining popularity

among the researchers (30). A nutrient budget can be viewed as a

reliable indicator for nutrient mining and related land degradation,

allowing for improved soil nutrient management. The nutrient

budget was defined by Bindraban et al. (31) as the difference

between the system’s nutrient inputs and outputs within

predefined spatial-temporal boundaries. The difference is

calculated based on the nutrient stocks present within the top

30 cm of the soil profile (32) and the depth where most of the

crop roots are active (33).

There are several modes available for better evaluation of

nutrient flow and budgets and the limitations of soil nutrient

content in SSA. A system for quantitative evaluation of the

fertility in tropical soil (QUEFS), for example, was designed to

assess the efficacy of N, P, and K ratios during fertilizer application

(34). Other models, like NuMass, were developed to diagnose soil
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fertility in terms of N, P, and soil acidity (35). However, the

NUTMON methodology, introduced in 1990 by Stoorvogel and

Smallings, mainly focused on nutrient flow and balance by

indicating the nutrient inputs and outputs of a certain land use

and farming system (36–38). Because it combines biophysical and

socioeconomic approaches to soil fertility management, the

NUTMON concept has been opened to a wide range of studies

related to nutrient budget and flow (30). NUTMON is essentially a

decision support model that has been modified from the Nutrient

Balance Model (NUTBAL), which was previously developed to

generate quantitative nutrient balances for the major

macronutrients (N, P and K) for African land use systems (33).

NUTMON, goes beyond NUTBAL by including, in addition to

nutrient balance, changes in land use, farm activities, and economic

analysis to generate qualitative and quantitative nutrient stock and

flows data within and outside the farm (29, 39–41). The economic

analysis tool was included in order to estimate the farm’s economic

performance (33, 42). As a result of the integration of biophysical

and economic performance, farmers and researchers can make

recommendations for alternative methods of implementing

Integrated Nutrient Management (INM) while keeping the

underlying constraints in mind.

The NUTMON methodology can be used by researchers and

farmers to assess the environmental and financial sustainability of

tropical farming systems (11, 29). Other research has shown that

NUTMON can be used to assess the degree of nutrient mining in an

agro-ecosystem and the effects of the various nutrient management

strategies on soil nutrient stocks (32, 33). NUTMON categorizes

inputs into five groups (N1 to N5): incoming nutrients from

fertilizers (mineral and organic), wet and dry deposition, nitrogen

fixation, and sedimentation. Harvested products (grain, tubers, or

animal products), crop residues, leaching beyond the rooting zone,

gaseous N and S losses (denitrification, valorization, and burning),

and erosion are the five output categories (OUT1–OUT5) (16, 40,

43). As shown in Figure 1, a farm-level NUTMON consists of a

structured questionnaire, a data base, and two statistical models:

one for calculating nutrient flows (NUTCAL-model) and the other

for calculating economic performance (ECCAL-model) (33).
Frontiers in Soil Science 03
Because there have been numerous studies on NUTMON in

SSA and elsewhere, this review intends to investigate the

sustainability of smallholder farming systems in terms of nutrient

flow and balance by utilizing previous studies on nutrient

monitoring (NUTMON) in smallholder farming system soils.

However, due to inconclusive results from diverse settings of

smallholder farmers worldwide, this review will only focus on

Sub-Saharan Africa (SSA) as a representative of other areas with

extensive nutrient mining and low-resource farming systems. As a

result, this paper intends to; (i) examine biophysical attributes that

influence soil fertility management in SSA smallholder farming

systems, (ii) provide narrations on how socio-economic categories

affect farming systems and nutrient flow and balance., (iii)

Identifying existing smallholder farming systems and their soil

nutrient balance status (iv) Identifying the nutrient monitoring

(NUTMON) research gap in SSA.
2 Methodology used in
gathering information

The goal of this review was to look at the characteristics of

smallholder farming systems in terms of nutrient flow and balance

in NUTMON studies in SSA soils. During the systematic search of

the materials, a PRISMA approach was used, with ScienceDirect

and Google Scholar serving as search engines. The keywords were

“NUTMON” AND “sub-Saharan Africa” AND “Farming systems”

with the link of “nutrient balance” AND “Socio-economic”.

Numerous articles were drawn from the internet, as shown in

Figure 2. The search was limited to the last three decades, i.e.,

from 1990 to 2022 (Table 1). Details on literature relevance using

quality assessment, exclusion, and inclusion criteria are shown in

Figure 2. At the end, 43 articles were considered for this review

based on the selection criteria. Numerous theories and knowledge

on the socioeconomics of smallholder farmers, farming systems,

and soil nutrient budgets were discussed in these sources. Therefore,

the results of soil fertility management strategies and the NUTMON
Farm- NUTMON

Questionnaire

Database

(Processing

unit)

NUTCAL

Model

ECCAL

Model 

Nutrient 

balance

Economic 

performance

FIGURE 1

A schematic representation of a farm NUTMON (Source: 33).
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concept were reviewed to gain an understanding of the successes

and challenges of soil fertility management.
3 Findings from the explored literature

The review consisted eight five (85) documents which met the

inclusion criteria. However, of the 85 documents 72 were peer

reviewed journal articles, 4 were proceedings, 4 Master thesis, and 5

PhD thesis. Kenya and Ethiopia are the most studied countries on

nutrient flow and balances by, 28 and 22 documents, respectively

(Table 1). Other countries including Mali, Tanzania, Burkina Faso,
Frontiers in Soil Science 04
Nigeria, Uganda, Rwanda, Madagascar, Ivory Coast, Benin, and

Mozambique which consisted 1 to 5 articles (Table 1). This results is

in line with the report by (30) that more than one-third of research

in nutrient balances documented in SSA are done in Kenya.

Furthermore, results show that the majority of studies were

conducted in the 2000s and 2010s (Table 1).
3.1 Focus of this review article

The emphasis of this review is on smallholders’ characteristics

and soil nutrient management in SSA. Soil fertility, being the most
TABLE 1 Chronological trend of nutrient flow and budgets studies in SSA farming systems.

Year Number
of
studies

Country studied Reference

1990’s 20 Mali (5), Kenya (6),
Tanzania (2) Ethiopia (3),
Nigeria (1), and Burkina
Faso (1), Mozambique (1),
Uganda (1)

Stoorvogel and Smaling, (41); Stoorvogel and Smaling, (39); Smaling & Fresco (40); van der Pol & Traore, (44);
Van den Bosch et al. (33); De Jager et al. (27, 29); Elias et al. (45); Harris (46); Ramisch (47); Krogh, (48); Defoer
et al., (49); Shepherd & Soule (50); Budelman et al. (51); Folmer et at, (52); Saleem (53); Wortmann & Kaizzi (54)

2000’s 33 Kenya (12), Ethiopia (8),
Zimbabwe (3) and Uganda
(3), South Africa (1),
Tanzaniza (2), Burkina
Faso (2), Mali (1),
Mozambique (1), Benin (1)

Haileslassie et al. (55); Kathuku et al. (56); Ncube et al. (57); Nkonya et al. (58); Onduru et al. (59); De Jager et al.
(60); De Jager et al. (61); Zingore et al. (62); Van Beek et al. (10); Utiger et al. (63); Assefa and van Keulen (64);
Gachimbi et al. (32); Gachimbi et al. (65); Elias (66); Bekunda and Manzi (67); Abegaz (18); Haileslassie et al.
(55); Haileslassie et al, (68); Dougill et al. (69); Tittonell et al. (70); Leonardo (71); Baijukya et al. (19); Lesschen
et al., (72); Ramisch et al. (73); Elias (74); De Jager et al. (60); De Jager et al. (61); Saidou et al. (75); Zougmore
et al. (76); Mwijage et al. (77); Kaliisa (78).

2010’s 30 Kenya (11), Uganda (2),
Ethiopia (8), Rwanda (2),
Nigeria (2), Cameroon (2),
Ivory Cost (1) & Burkina
Faso (2)

Adamtey et al. (79); 12; Tully et al. (80); 81; Ebanyat et al. (82); Esilaba et al. (83); Kabirigi et al. (84); Tankou
et al. (85); Bucagu et al. (86); Tadesse et al, (87); Lelei & Tunya (88); Vaittinen (89); Ehabe et al, (90); Sitienei
et al. (91); Abdulrahaman et al. (22) Muendo et al. (92); Namoi et al. (93); Huluka et al. (11); Meylan (94);
Onwonga et al. (95); Achola (96); Rufino et al. (97); Tunya (98); Kiros et al. (99); Enyew, (100); Melese et al.
(101); Onduru (102); Diarisso et al. (103).

2020’s 9 Madagascar (1) Tanzania
(1), Uganda (1), Kenya (1)
and
Ethiopia (5)

Fanjaniaina et al. (5); Amann et al. (21); Reetsch et al. (104); Mesfin et al. (105); Gebresamuel et al. (106);
Esubalew et al. (107); Lewoyehu et al. (108); Mamuye et al. (109).
FIGURE 2

A schematic literature search based on PRISMA in acquisition of appropriate articles for this review.
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important indicator that determines the capacity of the soil to

produce crops, is controlled by many factors ranging from

biophysical (110) to socio-economic (14, 106). In the past,

smallholder farmers in SSA used to cultivate land by moving

from one place to another (the practice is known as shifting

cultivation); thus, farms were left fallow to rejuvenate their

fertility (9, 111). Clearly, the aforementioned practice is no longer

appropriate due to increased population, which has resulted in

pressure on agricultural lands (112, 113). The current smallholder

farming systems in SSA are comprised of homestead farms (home

gardens), which are typically small pieces of land (1 acre), and

distant farms, which are relatively large (> 1 acre but less than 5

acres) (3, 114). We discussed soil fertility management by

smallholder farmers in terms of biophysical and socioeconomic

attributes in this section.

3.1.1 Attributes related to biophysical aspects on
soil fertility management

Historically, the SSA experienced moderate growth in

agricultural production between the 1960s and 1970s, but the

trend later began to decline, making it the least developed region

in comparison to the developed world (115). Factors attributed to

the decline in crop production are not other than pests and diseases,

climate change (too much or too little rainfall), and most

importantly, land degradation, which ultimately affects the quality

of soils (104). Soil fertility management, from a biophysical

standpoint, includes managing soil nutrients at the farm level as

well as improving soil condition (physicochemical and biological

attributes) for improved plant production (116, 117). Since the

introduction of the green revolution in the 1960s, agricultural

scientists have been coming up with a vast range of soil fertility

management technologies for the purpose of combating world

hunger (118, 119). Ofori and Amoakohene (116) highlighted

varieties of technologies, including the use of (i) inorganic

fertilizers alone, (ii) organic inputs together with inorganic

fertilizers, (iii) organic inputs alone (organic farming), and (iv)

Integrated Soil Fertility Management (ISFM) practices (currently

highly promoted).

In SSA, smallholder farmers engage in a variety of farming

systems with different management practices, yet the sustainability

of these systems is at stake (3, 79). The current review found that,

with the exception of plot-level experimental studies, almost all

(90%) studies in smallholder farming systems rely on organic

inputs, specifically farm yard manure and crop residues, with

little or no inorganic fertilizers (5, 85, 105). A similar observation

is reported by Masso et al. (120), who find that more than 65% of

smallholder farmers in developing countries do not use inorganic

fertilizers in their farming systems. Although animal manure has

been reported as the main source of nutrient inputs in most

smallholder fields, these sources are constrained by limited access

and poor quality (24, 105). Studies demonstrate that the amount

and quality of manure have been affected by various factors, but

most importantly poor animal nutrition, a poor livestock keeping

system, and poor manure handling (121). For example, a study by

Tittonel (2015) on diversity in soil fertility management on
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smallholder farms in western Kenya found that only 38% of N,

38% of P, and 34% of K remained in the manure after storage.

In SSA, fertilizer use is definitely very low compared to

the developed world (122). Reports have shown that the

average fertilizer use on crop land is 135 kgha-1 year-1 in

developed countries, whereas SSA exhibits the lowest rate of less

than 15 kg ha-1 year-1 (123, 124). The 2006 Abuja Fertilizer

Declaration estimated that by 2015 the fertilizer use in SSA

could be 50 kg ha-1 of N, P, and K (123). Generally, there are

some efforts to increase fertilizer use in SSA countries, yet the pace

is too slow to meet the target, with an average of 5 kg in 1990

and 10 kg in 2008 (122). Some limitations on the use of

inorganic fertilizers have been associated with limited access,

high prices, poor extension services, and inappropriate fertilizer

recommendations due to little research on fertilizer use (14,

124–126).

In view of the above information, livestock plays a vital role in

nutrient cycling in crop-livestock-based farming systems (5).

However, there is an ongoing debate by environmentalists that

livestock contribute about 14.5% of all emitted anthropogenic

greenhouse gasses (nitrous oxide and methane), threatening

global climatic conditions (5). The question remains: “Should we

abandon the systems?” Based on these varying situations of soil

nutrient management among smallholder farmers’ fields, integrated

soil fertility management (ISFM) could serve the purpose of

improving soil fertility in smallholder farming systems in SSA.

The biophysical soil fertility management approach is well

discussed in almost all the reviewed articles. However, the generic

nature of scientific approaches when it comes to soil fertility

management failed to incorporate indigenous knowledge,

resulting in poor adoption of the recommended soil fertility

management technologies (118).

3.1.2 Socio-economic attributes on soil
fertility management

Agriculture is the primary source of income for the majority of

people in most developing countries, SSA in particular, accounting

for more than 70% of smallholder farmers’ livelihoods, with 60%

concentrated in rural areas (127–130). Low crop yields, which lead

to food insecurity, are the most significant constraint for

smallholder farmers in SSA (131, 132), negatively affecting their

economic status. Among other things, socioeconomic factors that

influence farmers’ ability to adopt soil fertility management

technologies threaten existing smallholder farming systems (78,

85, 105, 113). This review found significant evidence that

socioeconomic factors influence farmers’ decisions to adopt

proposed soil management technologies (133). Inorganic

fertilizers, for example, appear to be the most widely adopted

among the various introduced soil fertility management

technologies by many farmers in developed countries due to their

immediate effect. However, this is not the case in developing

countries, including SSA, due to the prohibitively high cost of

inorganic fertilizers, which the majority of smallholder farmers

cannot afford (17). Previous research, for example, by Zingore et al.

(62) and Kathuku et al. (56), shows that soil nutrient management
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varies significantly across socioeconomic classes, ranging from

insufficient inputs (typically poor resource farmers) to adequate

and excessive inputs (rich farmers). The direct socio-economic

factors that influence soil nutrient flow are management practices

and levels of crop-livestock interaction, and the level of importation

and exportation of soil nutrients through crop and livestock

product sales and purchases (58, 101). However, Stewart et al.

(24) and Giller et al. (3) reported that land ownership or tenure,

access to labor, household income and endowments, gender equity,

and access to market services were other socioeconomic factors that

constra ined most smal lholder farmers ’ so i l fer t i l i ty

management decisions.

Socioeconomic factors impede the adoption of biophysical soil

management technologies among farmers in SSA (29, 129). For

instance, the deteriorating relative price relations between farm

inputs and outputs have disappointed farmers’ efforts to invest in

soil nutrient management techniques (27, 32), as it makes

agriculture a non-profitable venture. As a result, crop production

is being performed by elders, women, and children since many

youths migrate from rural to urban centers seeking job

opportunities (32, 83, 96). Studies demonstrate that women can

manage the soils around their homes and gardens because manure

and other organic residues are concentrated at home and less

attention is paid to distant fields (19, 114). Nevertheless, in SSA

countries, women are constrained by poor agricultural extension

services, access to financial resources, and access to improved

agricultural inputs such as seeds, herbicides, pesticides, fertilizers,

and mechanization (106, 129). This scenario has aggravated the

problem of soil fertility decline and thus low crop production in

most smallholder farming systems in Africa, threatening the

livelihood of most rural communities.

Furthermore, this study discovered that smallholder farmers

prioritize soil fertility management for crops with high monetary

value (84). According to our findings, the staple and monetary value

of crops for smallholders varied by country and region within the

same country based on agro-ecological characteristics. For example,

in Kenya, Mairura et al. (129) found that more fertilizer was applied
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to crops that generate more income and have staple value for

farmers, such as coffee, banana, napier, tobacco, and maize, while

less fertilizer was applied to sorghum, green gram, and millet.

Similarly, Haileslassie et al. (68) found that in Ethiopia, crops

with high monetary value, such as teff and wheat, receive more

attention than crops with low profitability. Positive nutrient

balances (particularly N, P, and K) were observed in Rwandan

fields with high-value crops such as rice, banana, and tomato,

whereas negative nutrient balances were observed in fields with

maize, sorghum, cassava, onions, and ground nuts (84).

Another socioeconomic issue that most smallholder farmers

face is a lack of information on the status of soil fertilitySome of the

issues that smallholder farmers are unaware of are soil analysis,

fertilizer recommendation rates, and new soil fertility technologies

(22). This has resulted in fertilizer over application (high resource

farmers) or under application (low resource farmers) resulting in

nutrient imbalances in the majority of smallholder farming systems

in SSA (22). In general, socioeconomic factors influence the

adoption, efficacy, and sustainability of soil management

technologies; thus, farmer participation in modifying existing or

developing new soil management technologies is critical because

they are the primary actors in farming activities (14, 134, 135).
3.2 Status of soil nutrient balance in
smallholders’ farming systems

According to the findings of this review, the majority of studies

on nutrient flow and balances have been conducted on mixed crop-

livestock systems. The most researched farming systems in Kenya

are highland perennials (dominated by coffee, bananas, and tea,

with annual crops such as maize and legumes) and lowland cereals

such as maize, sorghum, millet, and root crops like cassava. All of

these systems are linked to livestock like cattle, goats, sheep, and

poultry (Table 2). Similarly, the dominant farming systems in

Ethiopia are crop-livestock farming systems, mostly enset-based

with banana and cereals like barley, wheat, and teff and vegetables in
TABLE 2 Average full nutrient balances in the different farming systems.

Country Farming systems Nutrient balance
(kgha-1yr-1)

Reference

N P K

Kenya - Highland perennials (mixed crop-livestock
dominated by coffee, tea, banana, and other
crops like napier grass, maize, and vegetables)

-57.24
(38.79)

15.85
(26.57)

-34
(40.09)

Smaling & Fresco (40); Van den Bosch et al. (33); De Jager et al. (27);
Utiger et al. (63); Kathuku et al. (56); Onduru et al. (59); Van Beek
et al. (10);

- Lowland mixed crop-livestock (mainly
maize, sorghum, cassava, legumes, millet, and
vegetables)

-30.06
(25.26)

-8.95
(9.75)

-13
(15.31)

De Jager et al. (60); Gachimbi et al. (65); Gachimbi et al. (32); Lelei &
Tunya (88); Onwonga et al. (95)

Ethiopia - High-land farming (mixed crop-livestock,
predominantly enset-based, bananas, cereals like
wheat, barley, and maize, and vegetables)

-21
(9.09)

7.26
(3.25)

-25.71
(27.23)

Haileslassie et al. (55); Haileslassie et al, (136); Elias et al. (45);
Gebresamuel et al, (106);

- Lowland farming (mixed crop-livestock,
predominantly teff-based, and cereals like wheat,
barley, maize, millet, sorghum, and legumes)

-44.41
(31.46)

-1.2
(9.78)

-51.11
(45.47)

Haileslassie et al, (68); Haileslassie et al. (55); Haileslassie et al. (55);
Elias et al. (45); Abegaz (18); Huluka et al. (11); Kiros et al. (99);
Gebresamuel et al, (106); Lewoyehu et al. (108); Esubalew et al. (107)
The numbers in parentheses are the standard deviations.
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the highlands, and teff-based with barley, wheat, maize, sorghum,

and legumes in the lowlands (Table 2). Other farming systems

investigated include agro pastoral in Nigeria, Mali, Tanzania,

Uganda, and Burkina Faso (46, 47, 49, 72, 73, 81, 82, 137, 138),

and maize-mixed with crops such as legumes, cassava (57, 62, 71,

75). Based on the current review, Table 2 shows the average nutrient

balance in the most studied countries over the last three decades.

Regardless of the farming systems, the overall mean nutrient

balances (particularly for N and K) reported in all studies were

negative, with P being relatively small positive. Nitrogen, unlike

other soil nutrients that are most likely derived from parent

materials, must be supplemented externally. Nonetheless, N is the

most required nutrient by plants and the most mobile nutrient,

making it easily lost from the soil through harvested products,

leaching, volatilization, erosion, and denitrification if not managed

properly (88, 139). Potassium, on the other hand, is the third most

important nutrient for crops after phosphorus (140). Despite the

fact that potassium is abundant in soils, the readily available pool is

so small, and the fate of K in soil is almost similar to that of N (141).

This has been attributed to the high negative nitrogen and

potassium balances found in most studies, particularly when the

same field is cultivated for an extended period of time with little or

no nutrient replenishment. The degree of nutrient depletion

between N and K varied from study to study, depending on the

cropping system in a given area. For example, Wortmann and

Kaizzi (54) found a high negative balance of K in banana, bean, and

sweet potato cropping systems, while maize and soybean cropping

systems had a high negative balance of N in the same agro-

ecological zone. Similarly, studies by Amann et al. (21); Diarisso

et al. (103); and Abegaz (18), to name a few, found a high negative

balance in K compared to N, whereas De Jager et al. (27); Bekunda

and Manzi (67); and Tunya (98) found a high negative balance in N

compared to K. The positive P balance observed in some studies

could be attributed to the residue effect of applied P fertilizers or

manure in those farming systems (98, 142). It is estimated that 70-

90% of applied P fertilizer in soil becomes sorbed to soil particles

and transforms into less available forms very quickly (143).

Crop harvesting and soil erosion are reported to be the major

nutrient outputs in smallholder farming systems. According to

Smaling and Fresco (40), harvested crop products and crop

residues exported up to 61, 11, and 46 kg ha-1 year-1 of N, P, and

K, respectively, accounting for 50–70% of total losses, while soil

erosion contributed roughly one-third of total losses. Other nutrient

outputs, such as leaching and gaseous losses, varied depending on

soil type, climatic conditions, and management practices, but their

contributions to nutrient loss were significantly low (40, 68).

The current review discovered significant differences in nutrient

balances among farmers with similar agro-ecological conditions

(i.e., soils, climate, and infrastructure). It demonstrates the

importance of management practices in nutrient flow and

balance. Given the diverse settings of smallholder farming

systems across all studies, we found it difficult to make

comparisons on nutrient balance in various farming systems for

the current review due to variation between studies in terms of type

of balance (partial or full), scale of study (farm, plot, village,

district), and wealthy categories (rich, medium, poor). However,
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studies comparing wealthy farmers found that farm nutrient flow

and balances were more positive in richly endowed resource

farmers (i.e., those with high resource access) than in poor

resource farmers [Shepherd & Soule (5, 50, 56, 62, 81, 87, 114,

144)]. It follows that richer farmers use large amounts of inorganic

fertilizers and organic inputs on their fields (5). Moreover, richer

farmers own more livestock which accounts for large amounts of

manure produced on their farms and are likely to outsource

additional manure/and or crop residues as fodder (145). This

contrasts with poor farmers, whereby most of them are faced

with multiple constraints including shortage of family labour and

low purchasing power to inorganic fertilizers and/or additional

source of manure (28, 62, 114). However, this is not always the case;

for example, Elias (74) found high nutrient depletion, particularly N

(-85 and -102 kg ha-1 yr-1) in some rich farmer fields, whereas poor

farmers had a low negative N balance (-50 and -56 kg ha-1 yr-1).

This explains that not how much input is put into the soil but how

to manage those inputs matters.

Similar observations are reported in studies that compared

homestead farms with distant fields (Figure 3) (62, 84). As

smallholder farmers have limited access to inputs and focus on

surviving, a considerable soil fertility gradient usually develops from

the homestead to the so-called “far” fields. (68). The limited

attention to soil fertility management on fields that are located

away from home derives directly from the low farmers’ income (62,

114). Hence, the cost of transporting inputs such as fertilizers (both

inorganic and organic fertilizers) and the labour requirement

preclude optimal nutrient management in these fields. Gender

differences also contributes to differences in adoption of soil

fertility management, hence nutrient balance. A study by

Gebresamuel et al. (106), found that female-headed households

had more positive N, P, and K balances in their fields than male-

headed households. Among other things, it appears that female-

headed households have fewer animals or no livestock, resulting in

low crop residue removal from their fields (106). Although women

seem to be good soil fertility managers, due to multiple tasks obliged

by women such as handling children their effort in soil fertility

management is negligible thus crop production remains below

potential yields. There are conflicting findings regarding the

relationship between farming systems and nutrient balance;

however, most studies concluded that farms with high levels of

inputs (both organic and inorganic) performed well in terms of

productivity and nutrient balance and stocks.
3.3 Studies on nutrient budgets in
smallholders’ farming systems in SSA

The decline in soil fertility in SSA soils is threatening soil

productivity in most arable lands. Most nutrient balance studies have

found more negative nutrient balances, particularly for macronutrients

(N, P, and K), and the trend continued to rise year after year. In central

Kenya, for example, the N, P and K balances were -55, 9 and -15 kgha-1

yr-1, respectively, in 1998, but had more than doubled to -116.2, -22.1,

and -31.7 kgha-1 yr-1 five years later (56). Studies indicate that

understanding the dynamics of farm nutrient flow is fundamental for
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proper implementation of appropriate soil nutrient management

techniques (38, 146–148). Over the last three decades, numerous

researchers have developed nutrient balance and budget models,

including the system for quantitative evaluation of fertility in tropical

soils (QUEFS), universal soil loss equation (USLE), nutrient

monitoring (NUTMON), and material flow analysis (MFA), to name

a few (21). NUTMON, however, is the most popular model for

evaluating nutrient flow and budget in several SSA countries,

particularly in East Africa, due to its ability to integrate both

biophysical and socioeconomic approaches (29, 33, 38). When used

properly, NUTMON provides an insight indicator for soil nutrient

depletion and/or surplus, aiding in the planning of proper soil

management practices (37). A better understanding of the nutrient

budget may also raise awareness among agricultural stakeholders and

policymakers. Nutrient budgets at the farm level can provide a

comprehensive picture of nutrient flow from the village to the

national level, informing stakeholders’ interventions (149).

In this review, we discovered that almost all NUTMON studies

focused on the major three nutrients, namely N, P, and/or K, rather

than other essential nutrients such as magnesium, calcium, sulfur,

and micronutrients. Reports have shown that micronutrients such

as zinc, iron, boron, and copper have been gradually decreasing in

SSA soils, leading to malnutrition, particularly in children under the

age of five (148, 150, 151). Iron and zinc deficiencies, for example,

have been reported in many African countries, particularly among

children under the age of five (151, 152). Despite this, little to no

effort has been made to monitor these plant nutrients. Thus,

researchers should investigate the balances of other essential plant

nutrients. Furthermore, in most SSA countries, a lack of research

capacity, particularly for long-term trials, has made it difficult to

draw valid conclusions from NUTMON research (120, 153).
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Despite the success stories of NUTMON reported in SSA and

elsewhere, the validity of the remains in doubt (30, 154). Transfer

functions, which rely heavily on regression models, are too general

and may not be applicable everywhere, contradicting the actual

losses (36). Simply put, extensive use of NUTMON tools may result

in an overestimation or underestimation of actual nutrient losses

(30, 64). This suggests that there is still much work to be done on

NUTMON, particularly in smallholder farming systems.
4 Conclusion

The goal of this review was to draw attention to problems

involving the characteristics of smallholder farmers in soil nutrient

management in SSA as a factor impacting soil nutrient balance. A

phrase by Goulding et al. (86) stated that ‘You do not get something

for nothing’; ‘you get out what you put in’. Agriculture must literally

return to its roots by rediscovering the value of healthy soil, relying

on natural sources of plant nutrition, and employing mineral

fertilizers wisely. This review demonstrates that farming systems

have a significant impact on soil nutrient flow and balance.

However, socioeconomic factors play an important role in the

management and sustainability of a specific farming system.

While smallholder farmers recognize the importance of various

technologies in soil fertility restoration, most SSA farmers have

found it difficult to adopt these technologies.

Based on the findings of this review, it is clear that the majority

of smallholder farmers in SSA rely entirely on organic inputs such

as animal manure and crop residues, both of which are insufficient

in quantity and quality. The reliance on organic inputs has been

attributed to either smallholder farmers’ low purchasing power,
FIGURE 3

A schematic representation of nutrient flow between, within, and outside homesteads and distance farms.
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poor agricultural policy and government support, or the research

methods used, i.e., the “top-down” approach (without engaging the

targeted community). Farmers in good financial standing, for

example, have access to inputs, labor, off-farm income, and

livestock possessions that poor farmers do not. As a result, it is

past time for research efforts in developing countries to focus on

site-specific nutrient management in the context of socioeconomic

aspects, with close engagement of smallholder farmers (the primary

stakeholders), so that the introduced technologies are well suited to

the intended farming systems. NUTMON, the most widely used

model in assessing soil nutrient balance, should take into account

other limiting nutrients, such as micronutrients, and be validated

based on the farming system of a given area.
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