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Abstract: COVID-19 poses a significant threat to the present and future of mankind. The emergence of
diverse strains during the pandemic creates uncertainty regarding their disappearance or resurgence.
Lockdown measures and travel restrictions impact national and household food systems, hindering
the movement of people and goods. Effective COVID-19 control requires science-based preventive
measures and consideration of food availability. In Tanzania, resource-constrained farmers rely on the
self-storage of food crops. Precise pest control information and tailored detection/storage systems are
essential for preserving major staple foods such as maize and beans, which face frequent infestation
by beetles and moths. Traditional methods used before the pandemic are insufficient compared to
advanced global alternatives. This paper reviewed about 175 publications from different databases,
dated from 1984 to 2023 (2023 to 2014 = 134, 2013 to 2004 = 26 and 2003 to 1984 = 15), assessing storage
management for maize and beans. Identifying gaps between Tanzania and global advancements
aiming to empower farming communities with the latest technologies and ensuring food security
amid the pandemic.
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1. Introduction

Cereals and legumes play a crucial role in ensuring food availability, particularly in
developing nations like Eastern Africa [1,2]. Legumes, in particular, are valuable sources
of proteins, vitamins, minerals, and dietary fibres [3,4]. The global and Tanzania legume
consumption is estimated at 6.5 and 16.2 kg/capita/year, respectively (Figure 1). In the
regions of East and Southern Africa, Phaseolus vulgaris, commonly known as beans, holds
significant importance both as a food crop and a cash crop [5]. It is worth noting that more
than 34% of rural smallholder farmers cultivate beans, with a substantial portion, ranging
from 16% to 41%, being sold for income generation.

Maize (Zea mays L.), on the other hand, holds significant importance in Sub-Saharan
Africa, serving as a staple food, animal feed, source of income, and raw material for various
industries [6,7]. Globally, maize is consumed at an estimate of 45.1 kg/capita/year while
about 46.8 kg/capita/year is consumed in Tanzania (Figure 2). In Tanzania alone, over
7.4 million farmers are engaged in maize cultivation [8,9]. The global concerns of food
security, hunger, and increasing poverty levels, especially in developing nations, highlight
the pressing need for effective agricultural strategies [10]. While much emphasis has
been placed on crop production, it is crucial to address the significant postharvest losses
experienced in developing countries [11].
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Postharvest loss is predominantly caused by insect pests ranging from 30–40% in ce-
reals and 30–73% in legumes [5,12,13]. Notably, the major pests responsible for these 
losses include Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidea): Prostepha-
nus truncatus (Horn) (Coleoptera: Bostrichidae), and Rhyzopertha dominica (Fabricius, 1792) 
for maize, and Callosobruchus maculatus (Fabricius, 1775) for legumes [14]. Addressing 
these pest infestations is crucial to mitigate the significant losses encountered during the 
post-harvest stage. 

In addition to the Ukraine war and global climate change, the world is currently un-
der threat from SARS-CoV-2 (COVID-19), a disease that has profound implications for the 
health, education, and socioeconomic conditions of agricultural communities [15]. The 
implementation of lockdowns, social restrictions, and travel bans poses a significant risk 
to global food supply chains [16,17]. Policies aimed at preventing the spread of the disease 
also impact food production strategies [15,18]. Food security, which is as crucial as public 
health, hinges on the availability of staple foods within communities affected by social 
restrictions aimed at combating the virus [15]. Insufficient measures to prevent COVID-
19 impede agricultural production and distribution. The global disparity in food availa-
bility and pricing further exacerbates food scarcity, particularly in rural areas [10]. The 
economic impact of the disease during the COVID-19 pandemic has resulted in wide-
spread starvation [19]. This was greatly contributed by the rise of food prices [20]. It is 
essential to establish effective storage and protection systems for food products during 
times of crisis, such as the ongoing global pandemic [21]. 

This review of various databases (Figures 3 and 4) aims to examine the global ad-
vancements in maize and bean storage systems, recent methods of storage insect pest de-
tection, and pest management while identifying gaps within the Tanzanian context. In so 
doing, the review will contribute to SDG 2, which emphasizes ending hunger, achieving 
food security, improving nutrition, and promoting sustainable agriculture. This infor-
mation will assist rural communities in acquiring knowledge on how to store their own 
staple foods during crisis situations (Figure 5). 

 
Figure 1. Worldwide and Tanzania beans consumption by regions (FAO Stat 2021). 
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Figure 1. Worldwide and Tanzania beans consumption by regions (FAO Stat 2021).
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Figure 2. Worldwide and Tanzania maize consumption (FAO Stat 2021).

Postharvest loss is predominantly caused by insect pests ranging from 30–40% in
cereals and 30–73% in legumes [5,12,13]. Notably, the major pests responsible for these
losses include Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidea): Prostephanus
truncatus (Horn) (Coleoptera: Bostrichidae), and Rhyzopertha dominica (Fabricius, 1792) for
maize, and Callosobruchus maculatus (Fabricius, 1775) for legumes [14]. Addressing these
pest infestations is crucial to mitigate the significant losses encountered during the post-
harvest stage.

In addition to the Ukraine war and global climate change, the world is currently
under threat from SARS-CoV-2 (COVID-19), a disease that has profound implications
for the health, education, and socioeconomic conditions of agricultural communities [15].
The implementation of lockdowns, social restrictions, and travel bans poses a significant
risk to global food supply chains [16,17]. Policies aimed at preventing the spread of the
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disease also impact food production strategies [15,18]. Food security, which is as crucial
as public health, hinges on the availability of staple foods within communities affected
by social restrictions aimed at combating the virus [15]. Insufficient measures to prevent
COVID-19 impede agricultural production and distribution. The global disparity in food
availability and pricing further exacerbates food scarcity, particularly in rural areas [10]. The
economic impact of the disease during the COVID-19 pandemic has resulted in widespread
starvation [19]. This was greatly contributed by the rise of food prices [20]. It is essential to
establish effective storage and protection systems for food products during times of crisis,
such as the ongoing global pandemic [21].

This review of various databases (Figures 3 and 4) aims to examine the global advance-
ments in maize and bean storage systems, recent methods of storage insect pest detection,
and pest management while identifying gaps within the Tanzanian context. In so doing,
the review will contribute to SDG 2, which emphasizes ending hunger, achieving food
security, improving nutrition, and promoting sustainable agriculture. This information will
assist rural communities in acquiring knowledge on how to store their own staple foods
during crisis situations (Figure 5).
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Figure 4. Number of publications reviewed every five years from 1984 to 2023.
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Figure 5. Systematic framework of storage pest and commodity specific advanced food storage
measures to ensure food availability post COVID-19 crisis.

2. Common Storage Insect Pests of Maize

A multitude of insect species worldwide can inflict damage on maize grains, with
the majority belonging to the coleopteran and lepidopteran groups [22]. Among these
species are rice weevils (Sitophilus oryzae (L.) (Coleoptera: Curculionidae)), lesser grain borers
(Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae)), large grain borers (Prostephanus truncatus
(Horn) (Coleoptera; Bostrichidae)), maize weevils (Sitophilus zeamais Motschulsky (Coleoptera:
Curculionidae)), khapra beetles (Trogoderma granarium Everts (Insecta: Coleoptera: Dermestidae),
red flour beetles (Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), granary weevils
(Sitophilus granarius (L.) (Coleoptera: Curculionidae), cigarette beetles (Lasioderma serricorne (F.)
(Coleoptera: Anobiidae), drugstore beetles (Stegobium paniceum (Linnaeus, 1758) (Coleoptera:
Ptinidae), Angoumois grain moths (Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae),
rice moths (Corcyra cephalonica (Stainton) (Lepidoptera: Pyralidae), sawtoothed grain beetles
(Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae), long-headed flour beetles (Latheticus
oryzae Waterhouse (Coleoptera, Tenebrionidae), confused flour beetles (Tribolium confusum
Jacquelin Du Val (Coleoptera Tenebrionidae), large flour beetles (Tribolium destructor Uytten-
boogaart (Coleoptera: Tenebrionidae), Indian meal moths (Plodia interpunctella (Hubner 1857)
(Lepidoptera: Pyralidae), yellow mealworms (Tenebrio molitor (Linnaeus) (Coleoptera: Tenebri-
onidae), flat grain beetles (Cryptolestes pusillus (Schönherr) (Coleoptera: Laemophloeidae), and
almond moths (Cadra cautella (Walker) (Lepidoptera: Pyralidae). In East Africa, P. truncatus
and S. zeamais are the most destructive species [23]. Both species, P. truncatus and S. zeamais,
are pre and post-harvest primary coleopteran pests of maize inflicting grain loss between
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5% and 45% during storage [24]. If left unchecked, these storage pests can cause substantial
losses in both the quality and quantity of maize grains [25].

3. Common Storage Insect Pests of Beans

The most significant insect pests that affect bean storage include Chinese bruchid (Lin-
naeus, 1758) (Callosobruchus chinensis) (Coleoptera: Chrysomelidae), Pulse beetle
(Callosobruchus maculatus) (Fabricius 1775) (Coleoptera: Bruchidae), Bean weevil (Calloso-
bruchus analis (Fabricius, 1781) (Coleoptera: Bruchidae), Bean weevil (Acanthoscelides obtec-
tus (Say, 1831) (Coleoptera: Bruchidae), Mexican Bean Weevil (Zabrotes subfasciatus) (Bohe-
mann, 1833) (Coleoptera, Chrysomelidae, Bruchinae), Bruchidius incarnatus (Boheman, 1833)
(Coleoptera: Bruchidae), Broadbean seed beetle (Bruchus rufimanus (Boheman, 1833); Coleoptera:
Chrysomelidae), Bruchus dentipes (Baudi 1886) (Coleoptera: Bruchidae), Bruchidius quinquegutta-
tus (Olivier, 1795) (Coleoptera: Chrysomelidae), Bruchus emarginatus (Allard, 1868) (Coleoptera:
Chrysomelidae), Bruchus ervi (Frölich, 1799) (Coleoptera: Chrysomelidae, Bruchus lentis (Frölich,
1799) (Coleoptera: Chrysomelidae, and Bruchus pisorum (Linnaeus, 1758) Coleoptera: Chrysomel-
idae [5,26,27]. Among these pests, C. chinensis is particularly damaging and can cause losses
of up to 50% in beans, peas, and lentils [12].

4. Cereals and Legumes Storage Systems

On-farm storage systems are widely employed in many developing countries and play
a crucial role in ensuring continuous food availability throughout the year [28]. These sys-
tems encompass various structures and techniques, such as fireplaces, cribs, roofs, woven
granaries, mesh or net structures, bins, underground pits, and wooden platforms [29,30].
Such storage methods are particularly suitable for maize grains that have been stored intact
with the ear corn. In Asia and Mexico, maize is often stored on elevated rafters to reduce
moisture content and deter insect infestations [31]. Wrapping bamboo and wooden poles
with wire mesh or steel netting is another common practice for storage bins in China and
Central America [32]. Woven granaries made from bamboo and straws are also widely
used in Asia, Africa, and Latin America [29].

Dunkel [33] provides a description of underground grain storage pits coated with
straw or woven bamboo. In India, traditional grain storage structures such as Kanaja (mud
and cow dung smeared bamboo structure), kothi (built store), sanduka (wooden boxes for
cereals and legumes), utrani (burnt clay pots), and hagevu (underground pit of stones or
straws) are widely utilized [34]. In order to enhance grain storage conditions, mud clay
pots coated with cement or bitumen are also employed [28]. Additionally, in Nepal, bins
made of mud sandwiched between polyethylenes are utilized [28]. However, these storage
structures have the drawback of occupying space even when empty.

Polypropylene synthetic bags and sisal sacks are widely employed and highly ben-
eficial to farming communities. These bags offer portability for both storage and trans-
portation purposes, occupying minimal space when filled with grain as well as when
empty [30]. Their versatility and convenience make them valuable tools in agricultural
storage practices.

Non-hermetic storage systems, such as self-built household silos, community storage
buildings, and warehouses, are commonly found in many developing countries. These
storage facilities can be complemented with various pesticides to eliminate any existing
insect pests. However, non-hermetic storage solutions lack an airtight barrier, making them
ineffective in eradicating insects already present in the grains [35]. Although these storage
systems offer protection against theft, their inability to create an air barrier limits their
efficacy in pest control.

Hermetic storage systems are designed to modify the atmospheric conditions within
airtight silos or bags, reducing oxygen levels and increasing CO2 concentrations to in-
hibit the respiration of storage insects [36]. These systems have been proven effective in
preserving the quality and quantity of various grains, including maize [37], cowpea [38],
and rice [39], across different agroecological settings. Airtight bags, among the available
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storage solutions, are both technically and economically feasible for farmers [40]. These
hermetic bags typically consist of polyethylene bags (80-micron thickness) layered between
polypropylene or traditional bags with capacities ranging from 25 kg to 100 kg [41]. While
metal silos are a more expensive option due to the cost of galvanized iron sheets, labor,
and transportation [42,43]. Hermetic bags are susceptible to punctures caused by sharp
objects, grains, and rodent damage during transport or storage. Another alternative is
the silo-bag, a tube-like structure made of a plastic bag capable of storing approximately
200 metric tonnes of maize, wheat, or soybean [44]. In addition, other forms of hermetic
metal silos include cocoons which are widely used in Rwanda, Ghana, and the Philippines
for storage of shelled and unshelled maize. This type is modified to absorb gases against
the deformation of the storage system [45].

In Tanzania, traditional storage options such as open barrels, jute or polypropylene
sacks/bags, and Vihenge bins were commonly used before and during the COVID-19
pandemic [1,46]. The duration of grain storage typically ranged from three months to a
year, depending on factors like crop quantity, storage capacity, and farmer preferences [1].
However, new storage technologies like Zerofly bags [47] and airtight bags [48] have
emerged in some regions of East Africa. Although these technologies provide effective
protection against storage pests, the knowledge and skills of farmers in their proper usage
vary significantly across farming communities in the region. Additionally, many sellers
promote and market these new technologies without considering the need for farmer
training on the correct application. The current understanding and adoption of these
advanced technologies, as well as their appropriate implementation in Tanzania, remain
inadequately explored.

5. Storage Pest Detection Methods

Accurate and timely pest detection in storage facilities is crucial for effective pest
control. The advancements in pest detection technologies globally have encompassed a
range of tools and techniques, from simple to sophisticated. However, there is a notable
knowledge gap in storage pest detection methods specific to East Africa. In Tanzania for
example, prior to the COVID-19 pandemic, pest infestations in storage were primarily
identified through sensory evaluation, such as smell and visual inspection of maize for
signs of decay, along with long-term temperature monitoring in the storage containers [49].
Recently, [50] studied acoustic, pitfall trap, and visual surveys of stored product insect pests
in Kenya and found them to be useful detection methods. Despite the usefulness smell and
visual inspection are time-consuming and susceptible to grain losses. Acoustic methods
have been developed and are widely used on a global scale for detecting infestations of
internally feeding insects. These methods include both expensive commercial devices [51]
and low-cost electronic sound-sensing detection devices [52]. These innovative insect
detection techniques offer automated pest detection systems for granaries and warehouses.
Deep learning approaches, machine learning techniques, image processing techniques, and
opto-acoustic techniques are among the methods mentioned in the literature [52].

Chen, et al. [53] conducted a study on an automatic pest detection system based on
YOLOv4, a classic single-stage deep learning object detection model, and found it to be
more than 95% accurate in detecting beetles and weevils in storage facilities. Another study
by [54] demonstrated the effectiveness of improved YOLOv5 in detecting and identifying
multiple pests in granaries. Nyabako, et al. [55] concluded that machine learning can be
used to predict P. truncatus populations and associated grain damage.

Modern insect detection methods, such as soft X-ray detection, near-infrared spec-
troscopy, laser detection, and convolutional neural networks (CNNs), have also been shown
to be effective in detecting storage pests [56–59]. Some authors have illustrated modern ma-
chine learning models that not only detect but also estimate insect populations in storage
facilities for decision-making purposes. These models include Region-based Convolu-
tional Neural Networks (R-CNN) [60], Fast Region-based Convolutional Neural Networks
(Fast-RCNN) [60,61], Modified Dilated Residual Networks (MDRN) [62], RetinaNet [63],
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Single Shot MultiBox (SSD) [64], and U-net-like frequency-enhanced saliency (FESNet) [65].
An improved extended residual network detection using computer vision has also been
proposed by [66]. However, Ref. [1] tested only a few of these methods in some East
African countries, including Tanzania, despite their limited use by smallholder farmers in
the country. While these novel insect detection techniques offer precision and timeliness,
they are expensive and challenging to detect immature insects hidden within grains.

6. Management of Storage Insect Pests

In stores, insect pests can be effectively controlled using a range of methods including
biological, chemical, botanical, and cultural approaches, as well as through host-plant resis-
tance, irradiation, hermetic bags and silos, Zerofly bags, silicon dioxide, chlorine dioxide,
ozone gas, radio frequencies, diatomaceous earth, Long-Lasting Insecticide-incorporated
Netting (LLIN), and essential oils derived from various plants. These methods can be em-
ployed individually or in combination, depending on factors such as the complexity of the
pest population, farmers’ knowledge, and affordability. Before the incidence of COVID-19
farmers in Tanzania were only using synthetic pesticides such as organophosphate and
synthetic pyrethroids, botanicals, hermetic bags, metal silos and diatomaceous earths [67].
The selection and application of these control techniques for combating storage insect
pests usually vary considerably depending on the specific commodity and the farming
community involved. Each method has its advantages and limitations, and their suitability
is often influenced by factors such as the type of pest, local environmental conditions,
available resources, and regulatory considerations. Therefore, an integrated approach that
combines multiple strategies tailored to the specific circumstances is often recommended
for effective and sustainable pest management in storage facilities.

6.1. Chemical Control

The effective control of storage insect pests in different commodities often requires
the use of specific active ingredients, either individually or in combination. Ref. [68] exten-
sively discussed the combined use of pirimiphos-methyl and permethrin or fenitrothion
and fenvalerate to control the pest complex consisting of P. truncatus, Sitophilus sp., and
T. castaneum. Gourgouta, et al. [69] found that a commercial cypermethrin formulation was
effective against S. oryzae, O. surinamensis, R. dominica, and P. truncatus infesting wheat
and maize. Various fumigants have also been employed for grain fumigation to com-
bat storage pests. Phosphine, sulfuryl fluoride, ethyl formate, methyl bromide, carbonyl
sulfide, propylene oxide, and allyl isothiocyanate have been used for this purpose. Phos-
phine and methyl bromide are commonly used and effective for large-scale fumigation of
storage facilities [70,71]. In addition to fumigants, alternative control methods have been
explored. Ozone gas (O3) has demonstrated efficacy against phosphine-resistant strains
of red flour beetles, saw-toothed grain beetles, maize weevils, and rice weevils [72,73].
Chlorine dioxide has shown effectiveness against red flour beetles, lesser grain borers,
saw-toothed grain beetles, maize weevils, and rice weevils [74–76]. Ref. [77] also found
that a combination of wood vinegar and the chemical insecticide deltamethrin was 90%
effective against Sitophilus oryzae. It is important to note that the choice of control method
and active ingredient depends on the target pest species, the type of commodity being
protected, and factors such as safety, environmental impact, and regulatory considerations.
Further research and evaluation are needed to determine the optimal combination and
application techniques for efficient and sustainable pest management in storage facilities.

6.2. Botanicals

Botanicals contain active substances that are effective in fighting storage pests. In
many plants, especially essential oils, they have insecticidal properties [78]. These plants
are used for the purpose of keeping pests out of stored grains. In the past, dried or ground
plants have been mixed with stored grains. [79] collected and examined 59 pesticidal
herbs in Sub-Saharan African countries and found Capsicum annuum L., Aloe vera Miller,
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Croton macrostachyus Hochst, Boswellia papyrifera, Kleinia spp., Vernonia amygdalina Del.,
Euphorbia spp., and Carissa schimperi to be effective against storage pests [79]. Farmers use
them as insecticides in the form of plant extracts and powders to protect storage insect
pests such as Sitophilus oryzae, Sitophilus zeamais, Callosobruchus chinensis, C. maculates,
Tribolium castaneum, Rhyzopertha dominica, and Trogoderma granarium Everts [80].

According to the findings by [81], powders and essential oils (EOs) of Artemisia ab-
sinthium aerial parts, Melia azedarach fruits, Trigonella foenum-graecum seeds, and
Peganum harmala seeds can fight adult T. castaneum in cereal grains. [82] discovered that
neem seed, leaf powder, and garlic can lower rice weevil populations by more than 65%.

Essential oils (EOs) extracted from various plants have shown great potential as in-
secticides against storage insect pests, with diversified mechanisms of action and safety
for mammals and non-target organisms [83]. These plant bioactives exhibit fumigant,
contact toxicity, repellent, antifeedant, ovicidal, oviposition deterrent, and larvicidal ac-
tivities. They can also interfere with neurotransmitters involved in nerve impulses, such
as acetylcholine esterase (AChE), octopamine, and amino butyric acid (ABA). The extrac-
tion method of essential oils can influence their toxicity against stored insect pests. [84]
found that ultrasound extraction of Ocimum basilicum resulted in toxicity against adult
Sitophilus zeamais. Ref. [85] tested the toxicity of nanoencapsulated Eucalyptus largiflorens on
the cowpea weevil, C. maculatus, and observed persistent and toxic. Mint and rosemary
essential oils were found to affect the mating fitness of C. maculatus [86]. Ref. [87] discovered
that lemongrass essential oil and citral had a significant antifeedant effect on C. maculatus.
A comprehensive review on stored-product pest management [88], highlighted the efficacy
of essential oils such as eucalyptol, camphor, linalool, eugenol, limonene, terpinen-4-ol,
menthone, and anethole in terms of fumigation and contact toxicity. Ref. [89] investigated
essential oil-based nanoemulsions of Carlina acaulis L., Mentha longifolia (L.) Huds., and
Hazomalania voyronii (Jum.) and found them to be effective against S. oryzae. A review
conducted by [90] revealed that EOs from 121 species and 26 families exhibit efficacy
against C. maculatus. These EOs primarily consist of terpenoids and sesquiterpenoids,
acting as fumigants, contact toxins, and repellents. Despite the effectiveness of EOs against
storage pests, their practical application in Tanzania is still limited due to a lack of ap-
propriate dosage, insufficient knowledge, and limited availability. Further research and
exploration are needed to determine the optimal application methods and formulations for
the utilization of EOs in storage pest management in Tanzania.

6.3. Long-Lasting Insecticide-Incorporated Netting (LLIN)

The use of LLIN technology, initially developed for controlling disease vectors in
tropical regions, has recently been tested in agriculture [91]. While previous research has
demonstrated the effectiveness of LLIN against storage beetles, it has also been utilized as
an insect trap in crop plants and for managing nuisance pests in residential settings [92].
In a study by [93], the effects of LLIN were compared between immature and mature
T. castaneum and T. variabile. The researchers found that the movement and dispersal
abilities of the adult beetles were significantly reduced compared to the larvae when
exposed to LLIN. This research highlights the potential of LLIN technology as a versatile
tool for pest management, not only in storage environments but also in agricultural crops
and residential settings. Further studies are needed to explore its efficacy against various
pests and optimize its application strategies in different contexts.

6.4. Insects Growth Regulator (IGR)

Methoprene and pyriproxyfen are insect growth regulators (IGRs) commonly used
in agricultural systems for pest control [94]. These IGRs have been tested in combina-
tion with deltamethrin and cyfluthrin against storage pests, with a particular focus on
immature insects [95]. IGRs are typically insecticides that target insect juvenile hormones
(JH) and can include hormone analogues [96]. Their mode of action involves affecting the
growth, development, metamorphosis, and chitin synthesis of immature insects [97]. The
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different modes of action of IGRs are classified as juvenile hormone agonists, ecdysteroid
agonists, and chitin synthesis inhibitors [98]. These insect growth regulators have a sig-
nificant impact on insect growth, reproduction, and behavior [99]. Studies by [94] have
shown the effectiveness of methoprene against pests such as R. dominica, T. castaneum, and
S. cerealella in maize, paddy, and wheat. Methoprene has also demonstrated efficacy against
P. interpunctella, T. castaneum, C. ferrugineus, and R. dominica, leading to a disruption in the
development (metamorphosis) of immature insects and a subsequent reduction in insect
populations on infested commodities [100,101]. Overall, IGRs, particularly methoprene,
have shown promise in controlling storage pests by targeting their growth, development,
and reproduction, leading to effective population reduction. Further research is needed to
explore their application in different pest management strategies and agricultural contexts.

6.5. Cultural Control

The implementation of certain measures and changes in storage environments and
practices can significantly reduce the likelihood of infestation by primary storage pests such
as S. zeamais and P. truncatus. These methods include removing residues from the previous
harvest and regularly adjusting the ambient temperature [102,103]. Increasing the airflow
rate during aeration has been found to have a greater impact on reducing populations
of adult Sitophilus spp. and R. dominica [104]. Ref. [105] demonstrated that controlling
S. granaries and C. chinensis can be achieved by using hypoxic nitrogen at concentrations
ranging from 99% to 100% in silos. The resistance of host plants to storage pests is influenced
by biochemical and physical characteristics, such as high phenolic concentrations [106].
Ref. [107] investigated the susceptibility of different maize genotypes to the larger grain
borer and found that protein content is an important trait determining maize grain sus-
ceptibility to this pest. Loneliness has been shown to affect the life expectancy of male
and female Callosobruchus spp. [86]. Additionally, periodic disturbance of maize grains
and beans can effectively suppress populations of storage pests such as S. zeamais and
A. obtectus by more than 90% [108]. By implementing these measures and understanding the
factors influencing susceptibility in host plants and changes in storage environments, it is
possible to mitigate the infestation of primary storage pests and enhance pest management
strategies in storage facilities.

6.6. Biological Control

Teretrius nigrescens, a predator, has been proven to be highly beneficial in controlling
P. truncatus populations in various countries, including Togo, Kenya, Benin, Ghana, Tan-
zania, and Malawi [109]. In the case of S. zeamais, several studies have been conducted to
identify potential bio-control agents, with one standout candidate being Theocolax elegans, a
small wasp (1–2 mm) that targets primary grain pests such as Sitophilus spp., R. dominica,
S. paniceum, Callosobruchus spp., and S. cerealella [110]. Interactions between Beauveria
bassiana and Isaria fumosorosea were found to be more than 66% effective against weevils,
specifically Sitophilus spp. [111]. Recent research by [112] demonstrated that M. anisopliae
and I. fumosorosea are highly effective against S. granarius and S. oryzae, resulting in 84–90%
mortality rates. Ref. [113] reported that M. anisopliae and Diatomaceous earth (DE) exhib-
ited remarkable efficacy, causing more than 95% mortality in insects such as R. dominica,
S. oryzae, and T. confusum. These studies highlight the potential of bio-control agents
and entomopathogenic fungi in the management of storage pests. By harnessing the
predatory abilities of insects like T. nigrescens, the parasitic nature of wasps such as Theo-
colax elegans, and the effectiveness of entomopathogenic fungi like Beauveria bassiana and
Metarhizium anisopliae, it is possible to develop environmentally friendly and sustainable
approaches for pest control in grain storage facilities.

6.7. Hermetic Storage

Hermetic storage technology is a method that involves creating a sealed storage
environment where carbon dioxide (CO2) accumulates, and oxygen levels are depleted,
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creating an inhospitable condition for the survival of insects and fungi [45,114,115]. In a
sealed storage condition for maize grains, insects and fungi consume the available oxygen,
leading to unfavorable conditions for their survival [48]. An on-farm trial conducted by
Likhayo, et al. [116] in Naivasha and Nakuru, Kenya, demonstrated the efficacy of hermetic
storage. They observed that weight losses of maize grains were only 1.5% and 1.8% in
metal silos and super Grain IV-R bags, respectively, compared to a substantial 32% in
polypropylene bags after 270 days of storage. This finding highlights the high efficacy of
hermetic storage in preserving grain quality. Ref. [117] tested the effectiveness of Purdue
Improved Crop Storage (PICS) bags in Benin, Ghana, and Burkina Faso. They found that
PICS bags achieved 95–100% mortality of adult P. truncatus and S. zeamais, indicating their
efficacy in controlling these pests. In the study by [47], Zerofly bags were evaluated for their
effectiveness against S. oryzae, T. castaneum, and R. dominica. The results showed that these
bags provided a 99% mortality rate in less than three hours, demonstrating their ability to
protect maize grains from storage insect pests. Furthermore, Deltamethrin-infused Zerofly
bags were found to be highly effective in controlling stored insect pests. Ref. [6] evaluated
different hermetic bag storage methods and found that Zerofly hermetic bags, PICS bags,
and non-hermetic Zerofly bags were highly effective in controlling insects and aflatoxin
in maize grains. A study conducted by [118] investigated the efficacy of PICS bags and
metal silos over a seven-month storage period. The results showed that both PICS bags
and metal silos were highly effective in controlling the storage of insect pests. Collectively,
these studies demonstrate the effectiveness of hermetic storage technologies, such as PICS
bags, Zerofly bags, and metal silos, in controlling the storage of insect pests and preserving
grain quality over extended periods of storage. These methods provide valuable options
for farmers to mitigate post-harvest losses and ensure food security.

6.8. Inert Substances

Inert substances, such as diatomaceous earth (DE), amorphous silicon dioxide, and
diamond dust, have been observed to cause cuticular abrasion and absorb lipids in insect
cuticles [119]. Ref. [120] conducted a study investigating the synergistic effects of Spinosad,
diatomaceous earth, and Trichoderma harzianum against S. oryzae. The combination was
found to be effective in controlling the insect population. In a similarly designed study,
Saeed, Wakil, Farooq, Shakeel, Arain and Shakeel [119] demonstrated the effectiveness
of combining M. anisopliae and diatomaceous earth (specifically Grain-Guard) against
Latheticus paeta, C. ferrugineus, R. dominica, and T. castaneum. Agrafioti [121] conducted
research on silicon dioxide (SiO2) coated insect-proof nets and their effectiveness against
S. oryzae. The study found a 100% reduction in the insect population after seven days
of exposure to the nets. Ref. [122] tested several inert substances and found them to be
effective against khapra beetle (T. granarium). Fields [123] found that pea-protein-treated
grains resulted in a few C. ferrugineus, S. oryzae, S. zeamais, T. castaneum, and T. confusum.
The majority of these substances showed advantageous effects in reducing the T. granarium
population. The use of inert substances, such as diatomaceous earth, amorphous silicon
dioxide, and diamond dust, either alone or in combination with other control agents, has
been shown to be effective in controlling various storage insect pests. These findings
contribute to the development of alternative and environmentally friendly approaches for
pest management in storage systems.

6.9. Mass Trapping

Pheromones can be utilized for monitoring and controlling stored-product insects [124].
Savoldelli and Trematerra [125], review indicated pheromones to be a promising tool for
monitoring and control through mass-trapping and mating-disruption of stored-product
insect pests. Food oils have been utilized as kairomones to attract adult T. castaneum beetles.
The pheromones, specifically 4,8-dimethyldecanal, and the kairomone properties of food
oils have been found to significantly impact the trapping of T. castaneum adults and the
emergence of their progeny, providing valuable insights into the chemical ecology and
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behavior of these storage pests [126]. Fargo [127] showed that differences in insect species,
grain temperatures, and trapping duration can affect trap catches during the estimation of
insect abundance in stores.

6.10. Ionizing Radiation

Ionizing radiation is a well-established method employed for sterilizing, eradicating,
or preventing the emergence of insect pests in food products. By inducing oxidative stress
and causing DNA damage, ionizing radiation effectively eliminates infestations. Various
sources of ionizing radiation, such as gamma rays from cobalt-60 and cesium-137, high-
energy electrons, X-rays, and UV radiation, are commonly utilized for this purpose in the
food industry [128]. In the case of P. interpunctella, [129] discovered that neutron irradiation
proved to be an effective means of control. Another promising approach is radiofrequency
heating, as demonstrated by [130], which allows for pest control through the application of
heat without leaving behind chemical residues. While many management options have
been extensively researched and implemented against storage pests in sub-Saharan Africa
and other regions, their application in Tanzania remains limited, highlighting the need to
bridge this gap in knowledge and practice.

7. Conclusions and Prospect

Finally, this review emphasizes the importance of improving storage practices for
staple foods in developing countries like Tanzania, particularly in light of the COVID-19
pandemic and the need to ensure food availability for smallholder farming communities.
The grain storage systems, pest detection techniques, and control practices for maize and
beans, which are the main staple foods in Tanzania, are summarized. The review highlights
that traditional methods were predominantly used for pest detection and control in Tanza-
nia before and during COVID-19, while more advanced techniques and technologies are
available globally.

The document underscores the need for an agricultural extension system in Tanzania
to address the gap in pest detection and control measures in storage facilities, drawing from
the global outlook and adopting modern approaches. It also suggests that control measures
effective against one pest can be tested and applied to closely related pests, as seen in
other regions. This information provides valuable guidance for developing comprehensive
storage insect control strategies targeting stored maize and beans in Tanzania.

By implementing these measures, Tanzania can enhance its food security and ensure a
steady food supply beyond the COVID-19 pandemic. The tabulated information (Table 1)
presented in this review serves as a valuable resource, broadening the range of options
for grain storage pest control measures and aiding in the development of effective and
sustainable pest management packages for stored maize and beans in the country.

Table 1. Summary of storage pest management strategies, crops, mode of action, and their respective
insect pests.

Method Product Common Names Insect Pest Insect Stage Mode of
Action Crops References

Chemical
Deltamethrin, Pirimiphos-methyl +

permethrin, fenitrothion +
fenvalerate,

P. truncatus, Sitophilus sp.
and Tribolium castaneum

Larval and
adult Toxicity Maize [68]

Cypermethrin

Sitophilus oryzae (L.),
Oryzaephilus surinamensis
(L.), Rhyzopertha dominica

(F.) and Prostephanus
truncates

Larval and
adult Toxicity Maize [69]
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Table 1. Cont.

Method Product Common Names Insect Pest Insect Stage Mode of
Action Crops References

Fumigants (phosphine, sulfuryl
fluoride, ethyl formate, methyl

bromide, carbonyl sulfide,
propylene oxide and allyl

isothiocyanate).

All storage insect pests
Egg, Larval,
Pupa and

adult
Toxicity

Maize
and

Beans
[70]

Ozone gas (O3)

Tribolium castaneum,
Oryzaephilus surinamensis

Sitophilus zeamais,
Rhyzopertha dominica and

Sitophilus oryzae

Egg, Larval,
Pupa and

adult
Toxicity Maize [131,132]

Chlorine dioxide

Tribolium castaneum,
Rhyzopertha dominica,

Oryzaephilus surinamensis,
Sitophilus zeamais and

Sitophilus oryzae.

Adult and
Larva Toxicity Maize [133]

Botanicals Mentha piperita, Pinus roxburghii and
Rosa spp. S. zeamais and S. oryzae Larva and

Adult Maize [134,135]

Cymbopogon citratus Sitophilus granarius Adult Toxicity Maize [136,137]

Rosmarinus officinalis and Zataria
multiflora Tribolium confusum. Adult Toxicity Maize [138]

Citrus sinensis peel Sitophilus zeamais Adult Toxicity Maize [139]

Thymus vulgaris Acanthoscelides obtectus Adult

Toxicity,
Oviposition

deterrent and
Oxidative

Beans [140]

Cannabis sativa

Cryptolestes ferrugineus,
Rhyzopertha dominica,

Sitophilus oryzae,
Cryptolestes turcicus,

Tribolium confusum and
Stegobium paniceum

Adult Toxicity Maize [141]

Artemisia sieberi S. oryzae, T. castaneum and
R. dominica

Larva and
adult Toxicity Maize [83,142]

Gomortega keule and Laurelia
sempervirens A. obtectus Larva Toxicity Beans [83]

Rosmarinus officinalis S. oryzae and
O. surinamensis

Larva and
adult Toxicity Maize [143]

Eucalyptus lehmannii and E.
astringens

T. Castaneum and
R. dominica

Larva and
adult Toxicity Maize [83]

Hyssopus officinalis, Origanum
majorana and Thymus zygis S. oryzae Larva and

adult Toxicity Maize [144]

Boswellia carterii C. chinensis and
C. maculatus

Larva and
adult Toxicity Beans [145]

Lippia javonica S. zeamais Larva and
adult Toxicity Maize [146]

Evodia lenticellata T. castaneum, L. serricorne
and L. bostrychophila

Larva and
adult Toxicity Maize [147]

Cinnamomum zeylanicum and
Syzygium aromaticum S. granarius Larva and

adult Toxicity Maize [136]

Melissa officinalis T. castaneum Larva and
adult Toxicity Maize [148]

Ostericum viridiflorum T. castaneum Larva and
adult Toxicity Maize [149]
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Table 1. Cont.

Method Product Common Names Insect Pest Insect Stage Mode of
Action Crops References

Mentha piperita
T. castaneum,

L. serricorne and
L. bostrychophila

Larva and
adult Toxicity Maize [150]

Lippia origanoides,
Tagetes lucida, Rosmarinus officinalis,

Cananga
odorata, Eucalyptus citriodora and

Cymbopogon citratus

S. zeamais Larva and
adult Toxicity Maize [151]

Zanthoxylum
Xanthoxyloides A. obtectus Larva and

adult Toxicity Beans [152]

Atalantia monophylla and S. oryzae, Larva and
adult Toxicity Maize [153]

Citrus
sinensis

R. dominica
and L. serricorne

Larva and
adult Toxicity Maize [154]

Asarum
heterotropoides

L. serricorne and L.
bostrychophila

Larva and
adult Toxicity Maize [155]

Artemisia brachyloba T. castaneum Larva and
adult Toxicity Maize [156]

Evodia rutaecarpa S. oryzae and
T. castaneum

Larva and
adult Toxicity Maize [157]

Tagetus terniflora, Cymbopogon
citratus and Elionurus muticus S. oryzae Larva and

adult Toxicity Maize [83]

Gaultheria procumbens S. oryzae and R. dominica Larva and
adult Toxicity Maize [143]

Pimpinella
anisum, Cuminum cyminum,

Eucalyptus camaldulensis,
Origanum syriacum and Rosmarinus

officinalis.

T. confusum eggs Toxicity Maize [158]

Anethum sowa C. maculatus Adults Oviposition
deterrency Beans [159]

Lavandula hybrida,
Rosmarinus officinalis and Eucalyptus

globulus.
A. obtectus Adults Oviposition

deterrency Beans [160]

Lippia alba and
Callistemon lanceolatus

C. lanceolatus
C. chinensis Adult Oviposition

deterrency Beans [161]

Mentha spicata C. chinensis Adults Oviposition
deterrency Beans [162]

Acorus calamus C. chinensis Adults Ovicidal Beans [163]

Boswellia carterii C. chinensis and
C. maculatus

Eggs, larva
and adult.

Larvicidal,
Ovicidal

and
Oviposition
deterrents

Beans [145]

Atalantia monophylla C. maculatus Eggs Ovicidal
activity Beans [153]

Vanillosmopsis arborea C. maculatus Adults Oviposition
deterrency Beans [164]

Lippia sp., L. somulensis, L. grandifolia,
L. wilmsii, L. dauensis and L. javanica. S. zeamais Larva Larvicidal Maize [83]

Myristica fragrans T. castaneum larva Larvicidal Maize [165]

Piper nigrum T. castaneum larvae Larvicidal Maize [148]

Eucalyptus camaldulensis,
E. viminalis, E. microtheca, E. grandis

and E. sargentii

T. confusum and
T. castaneum larvae Larvicidal Maize [166]
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Table 1. Cont.

Method Product Common Names Insect Pest Insect Stage Mode of
Action Crops References

Cuminum cyminum C. chinensis and S. oryzae larvae Larvicidal Maize [83]

Crithimum maritimum
O. surinamensis,
S. granarius and

S. oryzae
larvae Larvicidal Maize [83]

Zanthoxylum planispinum
Tribolium castaneum,

Lasioderma serricorne, and
Liposcelis bostrychophila

Adult Contact toxicity
and repellent Maize [167]

Long-lasting
Insecticide-

incorporated
Netting
(LLIN)

LLIN
Tribolium castaneum,

T. variabile and Rhyzopertha
dominica,

Adult and
larva

Reduced
movement and

dispersal
Maize [93]

Insect
Growth

Regulator
(IGR)

Methoprene
Rhyzopertha dominica,

Tribolium castaneum and
Sitotroga cerealella

larva

Affect
development,
reproduction
and behavior

Maize [94]

Combined
methods methoprene + controlled aeration

Plodia interpunctella,
Tribolium castaneum,

Cryptolestes ferrugineus
and Rhyzopertha dominica.

Larva

Affect
development,
reproduction
and behavior

Maize [100]

Wood vinegar + deltermethrin Sitophilus oryzae Larva and
adult Toxicity Maize [77]

Hypoxic nitrogen + Silo S. granaries All stages Toxicity Maize [105]

Spinosad + diatomaceous earth +
Trichoderma harzianum Sitophilus oryzae All stages Toxicity Maize [120]

crystalline silica + abamectin P. truncatus Adult and
larva Toxicity Maize [168]

Hermetic bag + varieties

Sitophilus zeamais, Sitotroga
cerealella, Tribolium

castaneum and
Cryptolestes spp.

Adults Reduced
population Maize [169]

Resistant varieties + Teretrius
nigrescens P. truncatus Adult and

larva
Reduced

population Maize [170]

Metarhizium anisopliae +
diatomaceous earth (DE)

Rhyzopertha dominica,
Sitophilus oryzae and
Tribolium confusum,

L. paeta, C. ferrugineus and
T. castaneum

Larva and
adult Toxicity Maize [119]

Beauveria bassiana + diatomaceous
earth + abamectin T. castaneum Larva Toxicity Wheat [171]

Cultural
methods Removal of infested residues

Most primary storage insect
pests like S. zeamais and

P. truncatus
All stages Reduced

population

Maize
and

Beans
[110,172]

Increase in aeration airflow rate Sitophilus spp. and
Rhyzopertha dominica Adult Reduced

populations. Maize [104]

Grains petiodic disturbance Sitophilus spp. and
Acanthoscelides obtectus Adults Reduced

populations

Maize
and

Beans
[108]

Resistance varieties P. truncatus Adults and
larva

Reduced
population Maize [107]

Biological
Control Teretrius nigrescens P. truncatus Adult Predation Maize [109]

Theocolax elegans

Sitophilus spp.,
Rhyzopertha dominica,

Stegobium paniceum and
Sitotroga cerealella

larva Predation Maize [110]



Sustainability 2024, 16, 1767 15 of 22

Table 1. Cont.

Method Product Common Names Insect Pest Insect Stage Mode of
Action Crops References

Beauveria bassiana + Isaria fumosorosea Sitophilus sp. Larva and
adult Parasitism Maize [111]

M. anisopliae + I. fumosorosea S. granarius and S. oryzae Larva and
adult Parasitism Maize [173]

Hermitic
storage

Metal silo and Super Grain IV-R
bags All storage insects All stages Asphyxiation Maize [116]

PICS bags P. Truncatus, S. zeamais
and Zabrotes subfasciatus All stages Asphyxiation

Maize
and

Beans
[117,174]

Zerofly bags Polypropylene + deltamethrin S. oryzae and T. castaneum Larva and
adults Toxicity Maize [6,47]

Mass
trapping 4,8-dimethyldecanal and kairomone Tribolium castaneum Adult Attraction Maize [126]

Ionizing
Radiation neutron irradiation Plodia interpunctella Adult Toxicity Maize [129]

radiofrequency heating Various storage insects All stages Toxicity
Maize

and
Beans

[130]

microwave heating Tribolium castaneum Adult Toxicity Maize [175]
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