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ABSTRACT

This dissertation, is about a study on insurance companies that have experienced ruin but have
a possibility of recovery from ruin. The study has proposed a perturbed mathematical model,
analysed and used it for modelling the portfolio of insurance companies with possibilities of re-
covery after ruin. Return on investment and refinancing have been used as approaches for over-
coming ruin. The model was analysed for various cases of possibilities of recovery after ruin in
the closed interval [0, 1]. The basic perturbed classical risk process was later compounded by
refinancing and return on investment. The Hamilton-Jacobi-Bellman and Integro-Differential
Equation of Volterra type were obtained. The Volterra Integro-Differential Equation for sur-
vival function of an insurance company was converted to a third order ordinary differential
equation and later converted into a system of first order ordinary differential equations which
was solved numerically using the fourth order Runge-Kutta method. The results indicate that
the return on investment plays a vital role in reducing ultimate ruin and that as the possibility
of recovery for insurance companies increases, the return on investment reduces ruin much
faster. Also, the survival function increases with the increasing intensity of the counting pro-
cess but decreases with an increase in the instantaneous rate of stock return and return volatility.
Because an insurance company faces more risks, these results also suggest that insurance com-
panies should increase their counting process since doing so will help the insurance companies
in servicing more customers.
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CHAPTER ONE

INTRODUCTION

1.1 General Introduction

This research focus on insurance portfolio optimisation on the assumption that the insurance
companies have the possibility of recovery after suffering ruin. The aim of this research is to
develop and solve the model that represents portfolios of insurance companies having possibil-
ity of recovery after ruin. Investing and refinancing techniques are used to explore the situations
of these kind of insurance companies.

This chapter gives the background of the problem, problem statement, objectives of the study
and research questions. Furthermore, important concepts are defined, it outlines the signifi-
cance of this study, and the chapter ends with an outline of the entire dissertation.

1.1.1 Background

Insurance refers to a contract that is represented by using a policy where individuals or entities
receives financial protections from a given insurance company against losses. Various types of
life and non-life insurance are available aiming at giving protection to people and their property.
There are insurance in health, cars, house and so on (Oyatoye & Arogundade, 2011).

The background of the insurance sector in Tanzania can be traced back to 1996 when the Insur-
ance Act of Tanzania liberalised the Insurance market giving the direction and ways to private
and new entrants to invest in the insurance market (Kamwambia, 2013). After nationalization
of private insurance companies in 1967 before market liberalization in 1996, the insurance in-
dustry in Tanzania was previously monopolized by the government through National Insurance
Corporation (NIC). These changes eventually attracted many domestic and foreign investors
to invest in Tanzania’s insurance sector with increased companies currently reaching 31 in-
surance companies (Abbas & Ning, 2016). Some of these companies in insurance business
consist of joint ventures between local investors and foreign companies. This tends to bring a
combination of external sectors knowledge and financing with the local insurance market ex-
pertise. Out of the total registered insurance companies, 23 are privately owned with at least
one third local ownership, 2 (National Insurance Corporation Tanzania limited and Zanzibar
Insurance Corporation) are 100% state owned by the government of the united republic of Tan-
zania and revolutionary government of Zanzibar respectively and 4 are 100% locally owned
(TIRA, 2018).

A new Insurance Act was enacted in 2009 and provided a general framework for all compa-
nies operating in insurance industry. It also created Tanzania Insurance Regulatory Authority
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(TIRA) that works as a regulatory and supervisory body. Since its approval and implementa-
tion, TIRA has pushed the insurance industry in Tanzania toward a risk based system where
the greatest risks receive the highest attention (Kamwambia, 2013; TIRA, 2018). Tanzania In-
surance Regulatory Authority prepares and distributes publications related to insurance to the
public with the aim of improving insurance awareness and understanding (Kamwambia, 2013;
TIRA, 2018). Also TIRA has been working very closely with insurances brokers in order to
improve professional standards and efficiency of the insurance industry. In consequence, Tan-
zanians are aware of all the benefits of insurance and the insurance sector contributes to the
country’s growing economy (Nthenge, 2012; Abbas & Yushan, 2016).

In fulfilling its obligations, an insurance company will have a collection of investments that
generate income to cover various clients’ claims. This collection of investments for an insur-
ance company is known as an insurance portfolio (Kozmenko & Oliynyk, 2015). An insurance
company holding a portfolio with many investments that are liquid reduces the investor’s risk
since these investments can handle companies’ claims whenever they arise.

Risks are everywhere in our daily lives: at home, job, on the road and so on. Generally,
risk is associated with everything but we are interested with the risk that leads to financial
losses. Therefore it is very important to secure expensive property that we own and insurance
companies provide that security. Provision of insurance requires competent management as
poor management may leads to the eventual ruin of the insurance company, resulting in its
failure to fulfill its obligations. This happens when the insurer’s level of surplus goes below
zero, thus making the company bankrupt (Kasumo, 2019).

One of the very important measures that insurance companies should take is risk management.
Several ways are available to ensure that risk is managed in an insurance company. Refinancing
and investment are among other very good ways to overcome the risks of the insurance compa-
nies and give the optimal returns to the shareholders. Using investment, the insurer distributes
part of those risks to the paying investments which in turn can save a company to cover clients’
benefits (Hu et al., 2018).

Through investment and refinancing strategies, insurers may themselves protect against any
potentially big losses or at least ensure that their earnings will remains relatively stable when
there is a possibility of recovery after ruin. In the literature such as Asanga et al. (2014), Asimit
et al. (2015) and Björk et al. (2014), many optimisation problems have arisen as part of the risk
management process to study how insurance companies can control ultimate ruin.

Research by Zhu et al. (2015) investigated insurers whose opportunities and set of investments
contained the default security. They considered a proportional reinsurance and also investment
optimisations problems for insurers existing in financial markets depending on risky stock as-
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sets, a savings account, and corporate bonds, while Loke and Thomann (2018) studied ruin
probability based on a dual risk model having risk-free investments.

Sheng et al. (2014) and Hu et al. (2018) studied investment and reinsurance problems, Sheng
et al. (2014) studied how to optimize the control in investments and reinsurance problems for
an insurer using jump-diffusions risks process but with independence of the Brownian motions
while Hu et al. (2018) studied optimal investments and reinsurance problems for re-insurer and
insurer using jump-diffusion processes.

1.1.2 Investing and Refinancing

The insurance industry is currently undergoing fundamental transformation in terms of opera-
tions and competitiveness. Several disruptive factors in business have given rise to new players
in the market with disruptive business models to out-perform their competitors. Investing and
refinancing can be used as approaches when insurance players look at how they should react to
this major shift. With investing and refinancing an insurance company can manage to operate
much better even if it had suffered from ruin provided the investments are done properly and
refinancing is done adequately and timely (Eisenberg, 2010).

1.2 Basic Mathematical Concepts and Definitions

Definition 1.1 (Sample Space)
A sample space Ω can be defined as a set containing all possible outputs of a given probability
or random experiment (Kijima, 2016).

Definition 1.2 (σ -field)
A σ -field also known as σ -algebra can be defined as a set F that contains subsets of sample
space that fulfils the following:

(i) Ω, /0 ∈ F .

(ii) If B ⊂ Ω ∈ F then Bc = Ω\B ∈ F .

(iii) If B1,B2, ... ∈ F then ∪∞
k=1Bk ∈ F ,∩∞

k=1Bk ∈ F (Øksendal, 2003).

Definition 1.3 (Probability Measure )
The probability measure can be defined as a set function P : F → [0,1] that is defined on F

and that satisfies the following:

(i.) P(Ω) = 1 and P( /0) = 0.

(ii.) Given an event B ∈ F then P(B) ∈ [0,1].

(iii.) For B1,B2, ... ∈ F then P
(
∪∞

k=1Bk
)
≤ ∑

∞
k=1P(Bk) .
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(iv.) If B1,B2, ... are disjoints sets in a set F then P
(
∪∞

k=1Bk
)
=∑

∞
k=1P(Bk). There-

fore, if B,C ∈ F then B ⊆C implies that P(B)≤ P(C) (Øksendal, 2003; Kijima, 2016).

Definition 1.4 (Probability Space)
A probability space is the triple of the form (Ω,F ,P) in such a way that Ω is a non-empty set,
P the probability measure on Ω and F is a σ -field containing subsets of Ω (Øksendal, 2003;
Kaluszka & Krzeszowiec, 2012).

Definition 1.5 (Random Variable)
For a given probability space of the form (Ω,F ,P) then a random variable Y is a function with
real values defined on the sample space Ω whose value is determined by the random experiment
(Liao, 2013).

Definition 1.6 (Stochastic Process)
A stochastic process also known as a random process is a family of random variables
Y (t) : t ∈ [0,T ] which is defined on a probability space (Ω,F ,P) in which [0,T ] is a subset of
the real line R. A stochastic process is said to be real if the all random variables are real valued
and the random process is complex if all the random variables are complex valued (Todorovic,
2012).

Note: In most cases T represent an interval of time, a random variable Y (t) describes the
random process at time t. The set T is known as the domain of the stochastic process Y (t),
when T is discrete for example T = N+ = {0,1,2, ...} then stochastic process is discrete and
when T is continuous for example T = R+ = [0,∞) then the stochastic process is said to be
continuous (Todorovic, 2012).

Definition 1.7 (Filtration)
A filtration on a probability space (Ω,F ,P) is an increasing family F = (Ft)t∈[0,∞) of σ -
fields such that Fs ⊂ Ft ⊂ F , ∀ 0 ≤ s ≤ t in [0,∞). Ft is interpreted as the information
known at time t, and increases as time elapses. The quadruple (Ω,F ,F,P) is called the filtered
probability space.

A filtration F = (Ft)t∈[0,∞) is said to satisfy the usual conditions if it is right continuous, that
is F+

t = ∩s≥tFs = Ft , ∀t ∈ [0,∞) and it is complete, that is it even contains the smallest
σ -field containing all Ft , t ∈ [0,∞).

Definition 1.8 (Stopping Time)
A stopping time is a random variable (random time) whose value permits a given stochastic
process to exhibits a certain behaviour of interest. A stopping time is mostly defined by a stop-
ping rule, a mechanism for deciding whether to continue or stop a process on the basis of the
present position and past events. For a given filtered probability space (Ω,F ,{F}t∈[0,∞) ,P)

then a stopping time is any non-negative random variable T that satisfies T ≤ t ∈ F for any
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t ≥ 0.

Definition 1.9 (Adapted Process)
A process (Xt)t∈[0,∞) is adapted with respect to filtration F if for all t ∈ [0,∞) then Xt is Ft

measurable. This is to say the adapted process is a process whose value at any time t is revealed
by the available information given by Ft . This can be interpret that X is adapted if and only
if, for every t, Xt is known at time t. A standard Brownian motion on [0,∞) for a filtration
{F , t ∈ [0,∞)} is an example of adapted process.

Definition 1.10 (Portfolio Strategy)
Portfolio strategy can be defined as a stochastic process that is given by

π = {πt =
(
Πb,t ,Πs,t

)
, t ∈ [0,T ]}, (1.1)

that obeys the following conditions:

(i) π must be measurable progressively.

(ii) π must be an adapted process, that is ∀t ,πt is Ft measurable.

In equation 1.1 this portfolio strategy can be interpreted in a sense that Πb,t represents the
number of units in risk free assets (bonds) that were held by an insurance company at a given
time t also Πs,t can be interpreted as the number of units in risky assets (stocks) that were held
by an insurance company at the same time.

1.2.1 Brownian Motion

If the stochastic process Wt is the Brownian motion then;

(i) For each t , Wt is a Gaussian random variable with mean 0 and variance t.

(ii) The stochastic process Wt has increments which are independent , that is for 0 ≤ t1 < t2 <

.... < tn, the random variables Wt1,Wt2 −Wt1, ...,Wtn −Wtn−1 are independent.

(iii) Almost all sample paths of Wt are continuous.

(iv) It starts at 0 with probability of 1.

A Brownian motion is said to be n-dimensional if it is Rn valued stochastic process given
by W =

(
W 1

t ,W
2

t ,W
3

t , ...,W
n

t
)

where the components W i
t are all independent one dimension

Brownian motion (Löffler & Kruschwitz, 2019).
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1.2.2 Itô Process

Let W = (Wt)t∈[0,∞) be a 1-dimensional Brownian motion on a filtered probability space
(Ω,F ,{F}t∈[0,∞) ,P). Then a stochastic integral (Itô process) is a process Y = (Yt)t∈[0,∞)

valued in R such that almost surely

Yt = Y0 +
∫ t

0
σ(s,Ys)dWs +

∫ t

0
b(s,Ys)ds, t ∈ [0,∞), (1.2)

where Y0 is F0 -measurable, b : T ×R→ R are progressively measurable processes valued in
R such that ∫ t

0
|σs|2ds+

∫ t

0
|µs|ds < ∞, a.s. ∀t ∈ [0,∞). (1.3)

Itô process in differential form can be written as

dYt = µ(t,Yt)dt +σ(t,Yt)dWt , (1.4)

where σ and µ are the diffusion (dispersion) and drift coefficients respectively (Shreve, 2004;
Steele, 2012).

Theorem 1.1 (1-Dimensional Itô’s Formula)
Let Yt be the Itô process and let f (t,y) ∈ C2 ([0,∞)×R). Then Zt = f (t,Yt) is also an Itô

process , and

dZt =
∂ f
∂ t

(t,Yt)dt +
∂ f
∂y

(t,Yt)dYt +
1
2

∂ 2 f
∂y2 (t,Yt)(dYt)

2, (1.5)

where (dYt).(dYt) = (dYt)
2 is obtained by using the rule dtdt = dtdWt = dWtdt = 0,dWtdWt =

dt (Shreve, 2004; Steele, 2012).

Proof:
Suppose Yt is an Itô process given by equation 1.4. Suppose Zt = f (t,Yt) from 1.5 then,

dZt = d f (t,Yt) =
∂ f
∂ t

(t,Yt)dt +
∂ f
∂y

(t,Yt)dYt +
1
2

∂ 2 f
∂y2 (t,Yt)(dYt)

2.

Using 1.4;-

dZt =
∂ f
∂ t

dt +
∂ f
∂y

(µtdt +σtdWt)+
1
2

∂ 2 f
∂y2 (dYt)

2,

dZt =
∂ f
∂ t

dt +µt
∂ f
∂y

dt +σt
∂ f
∂y

dWt +
1
2

∂ 2 f
∂y2 (dYt)

2. (1.6)

Also
(dYt)

2 = (µtdt +σtdWt)
2 = µ2

t (dt)2 +2µtσtdtdWt +σ2
t (dWt)

2.
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Now, by using the rule dtdt = dtdWt = dWtdt = 0,dWtdWt = dt , thus

(dYt)
2 = σ

2
t dt. (1.7)

Equation 1.6 become

dZt =
∂ f
∂ t

dt +µt
∂ f
∂y

dt +σt
∂ f
∂y

dWt +
1
2

σ
2
t

∂ 2 f
∂y2 dt. (1.8)

Equation 1.8 can be written as

dZt =

[
∂ f
∂ t

+µt
∂ f
∂y

+
1
2

σ
2
t

∂ 2 f
∂y2

]
dt +σt

∂ f
∂y

dWt . (1.9)

From 1.9 let the drift part
∂ f
∂ t

+ µt
∂ f
∂y

+
1
2

σ2
t

∂ 2 f
∂y2 = µ̂t and the diffusion part σt

∂ f
∂y

= σ̂t ,

therefore dZt = µ̂tdt + σ̂tdWt which is also an Itô process.
End of the proof.

Theorem 1.2 (Generalized Itô’s Formula)

Let dYt = µ(t,Yt)dt + σ(t,Yt)dWt be an n-dimensional Itô process with Yt =


Y1,t

Y2,t
...

Yn,t

,

µ =


µ1

µ2
...

µn

, σ =


σ11 . . . σ1m

...
...

σn1 . . . σnm

 and dWt =


dW1,t

dW2,t
...

dWn,t

. Let f (t,Yt) =

( f1(t,Yt), f2(t,Yt), ..., fp(t,Yt)) be C2 map from [0,∞) × R
n into R

p. Then the process
Zt,ω = f (t,Yt) is also an Itô process whose component number k, Zk is given by

dZk =
∂ fk

∂ t
(t,Y )dt +∑

i

∂ fk

∂yi
(t,Y )dYi +

1
2 ∑

i, j

∂ 2 fk

∂yi∂y j
(t,Y )(dYi)(dYj), (1.10)

where dYidYj is obtained by using the rule dWidWj = δi jdt,dWidt = dtdWi = 0 and δi j is the
Kronecker delta function given by

δi j =

{
1 when i = j

0 when i ̸= j

(Shreve, 2004; Steele, 2012).
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1.2.3 White Noise and Perturbation Procedure

The White Noise process ξ (t) is formally defined as the derivative of the Brownian motion
B(t),

ξ (t) =
dB(t)

dt
= B′(t). (1.11)

It does not exist as a function of t in the usual sense, since a Brownian motion B(t) is nowhere
differentiable. If σ(x, t) is the intensity of the noise at point x at time t, then it is agreed that,

∫ T

0
σ(X(t), t)ξ (t)dt =

∫ T

0
σ(X(t), t)B′(t)dt =

∫ T

0
σ(X(t), t)dB(t), (1.12)

where the integral is Itô integral. Stochastic Differential Equations arise, for example, when
the coefficients of ordinary equations are perturbed by white noise (Klebaner, 2012).

To introduce the stochastic term into non-stochastic model, that is to perturb the non-stochastic
model, then the procedure is to perturb the constant and the perturbation of the constant is done
by using the white noise, and the white noise goes together with the intensity of the noise and
intensity of the noise is the one that introduces the volatility sigma to be used together with the
stochastic term in the perturbed model (Klebaner, 2012).

Definition 1.10 (Martingales)
Consider a given real-valued Ft-adapted stochastic process Y = {Yt}t∈[0,∞) that satisfy E [Yt ]<

∞ for all t ≥ 0. Then, for 0 ≤ s < t,

(i) The process Yt is referred as a sub-martingale if E [Yt |Fs]≥ Ys.

(ii) The process Yt is referred as a super-martingale if E [Yt |Fs]≤ Ys.

(iii) The process Yt is referred as a martingale if E [Yt |Fs] = Ys.

Note: A process Y = {Yt}t∈[0,∞) is a martingale if and only if it is both a sub-martingale and a
super-martingale (Serfozo, 2009; Liao, 2013).

Theorem 1.3 A one-dimensional Brownian motion B = {Bt}t∈[0,∞) is a martingale.

Proof:
Let 0 ≤ s < t then it follows that

E [Bt |Fs] = E [Bt −Bs +Bs|Fs] ,

= E [Bt −Bs|Fs]+E [Bs|Fs] (by independence),

= Bs (Bs +E [Bt −Bs] is Fs −measurable),

= Bs +0,

= Bs.
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End of the proof.

Definition 1.11 (Leibniz Integral Rule)
This rule illustrates how to take derivatives under the integration sign. It is useful when it comes
to the conversion of integral equations into differential equations.

(i) For a(x)< b(x) functions of x, the Leibniz Integral rule is given by

d
dx

(∫ b(x)

a(x)
F(x,y)dy

)
=
∫ b(x)

a(x)

∂

∂x
(F(x,y))dy+F(x,b(x))

db(x)
dx

−F(x,a(x))
da(x)

dx
.

(1.13)

(ii) For a < b some constants, the Leibniz Integral rule is given by

d
dx

(∫ b

a
F(x,y)dy

)
=
∫ b

a

∂

∂x
(F(x,y))dy. (1.14)

1.2.4 Ruin Time and Ruin Probability

Ruin theory was introduced by the well known model called the Cramér–Lundberg model (or
Poisson risk process, classical compound-Poisson risk model or classical risk process ). It was
introduced back in 1903 by the Swedish Filip Lundberg. The work was republished in the
1930s by Harald Cramér. The model describes an insurance company which experiences two
opposing cash flows: incoming cash premiums and outgoing claims. For instance if an insurer’s
surplus is modelled by X(t) for t ≥ 0 and the company started with initial surplus of X(0) = x

then the ruin time can be defined as the time when this surplus goes below zero for the first
time, mathematically it can be expressed as

τ = inf{t > 0 : X(t)< 0} . (1.15)

The Fig. 1 illustrate more where X(τ−) surplus prior to ruin and X(τ) the deficit at ruin.

The ruin probability is the probability that the portfolio becomes negative in finite time. This
is to say that ruin occurs when the surplus process, modelled as a stochastic process, becomes
negative for the first time. Mathematically ruin probability can also be presented as

ψ(x) = E [I(τ < ∞)|X(0) = x] ,

= P [τ < ∞|X(0) = x] .
(1.16)

Where in equation 1.16, the I is the indicator function, that is, I(τ < ∞) = 1 if τ < ∞, and
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I(τ < ∞) = 0 if τ = ∞. Note that the probability of ruin before or at time t is denoted by

ψ(x, t) = E [I(τ ≤ t)|X(0) = x] ,

= P [τ ≤ t|X(0) = x] .
(1.17)

Figure 1: Ruin Time

1.2.5 Utility Functions

In this section a brief survey on the utility functions is given. In the investment process the
insurer is required to make decisions while minimizing the risk at the same time. Thus it is
necessary to find a way of associating decisions with respect to preferences, that is the mea-
sure of a degree of insurer’s satisfactions. Expected utility criterion is one of the criteria the
insurer can use. Among other criteria it also includes the probability of ruin. Morgenstern and
Von Neumann suggested that the preferences can be represented by the expectation of some
functions called utility functions (Fishburn, 1989). A utility function is a function of the form
U : [0,∞)→ [0,∞) that satisfies;

(i) U(x) ∈C2(R) .

(ii) U(x) is a strictly increasing function, this means U ′(x)> 0 ; non-satiation.

(iii) U(x) is a strictly concave function, this means U ′′(x)< 0 ; risk-averse.

(iv) U(x)> 0 ∀x ∈ R+ and U(x) =−∞ ∀x ∈ R− .
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where x represents the amount of the insurer’s wealth.

Pratt and Zeckhauser (1987) also Crainich and Eeckhoudt (2008) suggested that there are two
measures of degree of risk-aversion obtained from the utility functions, namely ;

(i) Absolute risk aversion (ARA) function the ratio A(x) =−U ′′(x)
U ′(x) .

(ii) Relative risk aversion (RRA) function the ratio R(x) =−xU ′′(x)
U ′(x) .

Insurer may use the above measures to make decisions in the process of portfolio optimisation
while taking into account the risk associated with each asset. Actually, the utility functions
gives an opportunity to visualize the preferences relation between various levels in wealth and
for various portfolio strategies.

The following are some examples of various utility functions which are commonly used;

Exponential Utility Function U(x) = 1−e−ax, a > 0 .
The ARA in the case is constant given by A(x) = a, this means that the behaviour of the insurer
towards the risk doesn’t depend on the initial wealth. These utility functions are among the most
widely used functions to represent the attitude of the investors towards risk in optimisation of
the portfolio (Çanakoğlu & Özekici, 2009).

Logarithmic Utility Function U(x) =logx .
The ARA is A(x) = 1

x , this decreases as the wealth increases. This mean that somebody with
higher capital is less afraid of taking risk than somebody with lower wealth which actually
makes sense from the economics point of view.

Power Utility Function U(x) = xα

α
, 0 < α < 1 .

The ARA is A(x) = 1−α

x , which is a decreasing function of wealth. This can be interpreted in
similar way as logarithmic utility functions.

Generally, insurance companies are very vital as a mechanism for recovery from loss and they
must exist as going concerns. Scholars have the responsibility to research the performance of
insurance companies and give suggestions/recommendations to the insurance industry where
necessary. Many insurance companies became bankrupt due to failure to manage their portfo-
lios; as a result clients suffer by losing their rights to be served by the companies in keeping
with their contracts. The goal of the insurer is to find the process that enables him/her to make
as much money as possible. Therefore in that regard utility functions are assigned to wealth so
that the expected utility of the wealth can be maximised at some future time.

1.3 Statement of the Research Problem

Shareholders of insurance businesses are interested in optimizing the returns from the insurance
portfolio as well as ensuring that the business remains afloat over a long-time horizon. To
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achieve this, the managers of the company have to optimally run the business with objectives
of maximizing returns and reducing ruin probability. Even in extreme care, many times ruin
is inevitable. Most studies in the literature for example Schmidli (2002), Kasozi et al. (2013)
and Kasumo et al. (2018) do not consider recovery from ruin, once it hits. This study seeks
to develop and analyse an insurance portfolio optimisation model and determine the optimal
investments and refinancing strategies when there are possibilities of recovery after ruin. This
is the gap that this research comes to fill.

1.4 Research Justification

In investments there is a trade-off between risks and returns. In turn, to increase the expected
returns from investment, investors must be willing to tolerate greater risks (Kolm et al., 2014).
Portfolio management theory helps in studying how to model the trade-off for the given collec-
tions of several possible investments (Taillard, 2012).

Investigating companies that have suffered from ruin is one of the very important area one can
choose to research. Some research studies have been done to investigate portfolio optimisation,
most of them applied reinsurance and refinancing approaches (Liu & Hu, 2014; Kasumo, 2019).
However more research is needed on these insurance companies that have suffered from ruin
because little has been done to investigate how these companies with the possibility of recovery
after ruin can be managed financially to become profitable again.

This research will open the way to other researchers to conduct more research on how to man-
age the portfolio of insurance companies that have suffered from ruin for them to recover.
Refinancing and investment will be considered as approaches to be used in making these in-
surance companies get back to profitable operations. Also, the study employs an approach of
converting the Volterra integro-differential equations into an ordinary differential equations for
solving this kind of problem. This approach has not been used before to solve these kinds of
insurance modelling problems.

1.5 Research Objectives

1.5.1 Main Objective

To formulate and analyse an insurance portfolio optimisation model and determine the optimal
control strategies with possibilities of recovery after ruin.

1.5.2 Specific Objectives

The specific objectives of the research are:

(i) To formulate and analyse the insurance portfolio optimisation model.
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(ii) To determine the optimal control strategies that maximises the insurance company’s
wealth at some future time.

(iii) To determine the optimal investments and refinancing strategies under ruin probability
constraints.

1.6 Research Questions

(i) How can the insurance portfolio optimisation model be formulated and analysed?

(ii) What is the optimal control strategy that maximises the insurance company’s wealth at
some future time?

(iii) What are the optimal investments and refinancing strategies under ruin probability con-
straints?

1.7 Significance of the Study

(i) The study will help the managers (decision-makers) in insurance industry to understand
how they should control their portfolio so that their companies can perform better upon
recovery after ruin.

(ii) The study will give the vast knowledge on how to invest and refinance under ruin prob-
ability constrains. This knowledge will be very useful to insurance mathematicians and
managers (decision-makers) of insurance companies.

(iii) The study will increase knowledge of the current body of knowledge on insurance math-
ematics and insurance industry at large.

(iv) The study will be submitted as a partial fulfilments of the requirements for the award of
the degree of Doctor of Philosophy of the NM-AIST.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Much research has been conducted highlighting various approaches to portfolio optimisation.
The intention of this chapter is to review relevant and important literature related to this study,
the review has been subdivided into four parts namely investing, refinancing, ruin probability
and portfolio optimisation.

2.2 Investing

Frajtova-Michalikova et al. (2015) focused on investments fund in insurance and banking man-
aged by a company originated in Luxembourg. A company invested in several portfolios of
equities and other securities up to ten percent of the actual assets of the given fund. Their
portfolio included companies operating in various sectors such as consumer finance, banks,
brokerage, investment banks, insurance, and asset management. Dynamic investors were the
specific target for the fund. To achieve their objectives of investment, the fund was allowed to
be utilized in other financial derivatives such as index options and futures, interest rates, swaps,
and foreign currencies forward transactions. The intention was to make sure the value of the
funds is increased by selecting profitable stocks upon a thorough analysis of companies. They
selected section for each month to quantify the recovery, for calculation of the best, logarith-
mic quantification was chosen because it is more accurate in determining its height. In their
study they didn’t address insurance companies that have suffered from ruin but their aim of
optimising the investment portfolio was achieved, their results offered an alternative to better
compositions and optimisation had been improving to the investor and eventually achieve their
intended benefits.

Badaoui et al. (2018) considered the problems insurance companies where the wealth of insur-
ers were given by Cramér-Lundberg process. An insurer was free to make the investment in
risky assets having stochastic volatility upon looking at the influences of economic factors and
remaining surplus in the bank account. A system of stochastic differential equation was used
to model a price in the risky assets and economic factors. They then assumed the market was
incomplete and studied a problem in maximization of utility of the expected terminal wealth.
With exponential preferences to the insurer they proved the uniqueness and existence theorem
for a non-linear equation of Hamilton–Jacobi–Bellman (HJB). They managed to produce the
optimal strategies and value function in a closed-form. They presented two numerical methods
namely a method of Monte-Carlo which was based on stochastic representations of solutions of
the insurer’s problem using Feynman-Kac’s formula and the method of mixed finite differences
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Monte-Carlo, in here they aimed at showing the connection between the correlation coeffi-
cient and decision of the insurer. They finalized by presenting the Scott model results although
their study only addressed profitable companies, they didn’t look for insurance companies with
possibilities of recovery after suffering from ruin.

Meng et al. (2016) investigated optimal reinsurance-investments strategies of an insurer who
faces model uncertainties. Insurer acquires new business then invested in financial markets that
consisted of one asset that has no risk and one risky asset in which the price process follows
a geometric Brownian motion. The expected quadratics distances of the terminal wealth of a
given benchmark in the “worst-case” scenario were minimized to obtain closed-form solutions
of the optimal strategy and their value function was determined after solving the HJB equation.
An example was presented numerically showing the impact of the parameters of the model in
the optimal strategy. Other researchers like Zhao et al. (2018) decided to introduce a spectral
risk measure (SRM) into an optimisation problem of insurance investments. They realized that
spectral risks measure could best describe the degree of risk aversion, so the underlying strate-
gies might take the investor’s risks attitude into accounts. They observed that when aversive
levels were increased to some extent, the impacts on investment strategy disappeared because
of marginal effects of risk aversion, although in these studies they didn’t explain how to handle
insurance companies that have suffered from ruin which have possibilities of recovery.

In their study, Brachetta and Schmidli (2019) considered a diffusion approximation model to
insurance risk models where an external driver models the stochastic environments. They con-
sidered a type of SAHARA utility function to maximise the expected terminal utility of wealth.
Finally, they managed to obtain explicit results. In other paper titled optimal proportional
re-insurances and investments for stochastic factors models, Brachetta and Ceci (2019) inves-
tigated optimal proportional insurances and investment strategies of insurance companies that
wished to have the maximization of its exponential expected utility of the terminal wealth in
finite time horizons. With this paper, their goal was the extension of the classical Cramér-
Lundberg models by introducing stochastic factors that affect the intensity of the claims arrival
process that was described using the Cox process, also the reinsurance and insurance premia.
They used classical stochastic controls method based upon the HJB equation they characterized
the optimal strategies and provided a verification result of the value functions using a classical
solution of the backward partial differential equation. They also presented and discussed the
uniqueness and existence of those solutions. Results in various premium calculations principles
were illustrated and the new premium calculations rule was proposed so that to obtain realistic
strategy and to better fit the stochastic factors model. To finalize their work numerical simula-
tion was done. These studies also didn’t look at insurance companies that have suffered from
ruin but have possibilities of recovery.
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Kasozi et al. (2013) used a model which was obtained after perturbation of the basic insur-
ance model, the new model was then used to stand for the dynamics of the wealth of a given
insurance company. Later on, the model was compounded by return on investment process
using Black-Scholes. The two models from the risky process were used in managing the risk
levels, the company entered with the re-insurer into a quota-share kind of reinsurance. Second-
order Volterra integro-differential equation was derived and transformed it into a linear volterra
integral equations of a second kind and these equations were then solved numerically by the
block-by-block method. Their results indicated that the quota-share reinsurance performed
better in improving the insurer’s survival. In their study they didn’t consider an approach of
converting the Volterra integro-differential equations into a system of differential equations,
this approach will be used in this study.

2.3 Refinancing

Bulinskaya et al. (2015) in their paper titled discrete-time insurance model with capital in-
jections and reinsurance, they used capital injection (refinancing) at the end of each period to
maintain the company surplus above a chosen level, below which the ruin could occur. One
period insurance claims formed a sequence of i.i.d non-negative random variables with finite
mean. They applied a non-proportional reinsurance to minimize the total expected discounted
injections during a given planning horizon of n periods. There after they calculated insurance
and reinsurance premiums by using the expected value principle and managed to establish the
optimal reinsurance strategy and the numerical results that illustrates the theoretical ones were
provided for three claims distributions. In their study they didn’t use the perturbation on the
Cramér-Lundberg model, this study uses the perturbed Cramér-Lundberg model to encounter
for uncertainty due to claim and premium variation.

The study on a jump-diffusion model was done by Yin and Yuen (2014) to investigate how
optimal control on dividends can be achieved. Three different practical optimisation problems
were studied one of which capital refinancing was used as an approach. In their first problem,
they considered the classical dividend problem without capital injections, in the second problem
the intention was to maximise the expected discounted dividend payments minus the expected
discounted costs of capital injections over strategies with positive surplus at all times, and the
last problem had the same aim as that of the second one, but without having the constraints on
capital injections. Although in their study they didn’t address how insurance companies that
have already suffered from ruin with possibilities of recovery can be handled to came back in
profitable operations. Finally under the assumption of the proportional transaction costs, they
identified the value function and the optimal strategies for any given distribution of gains.

In another study, Eisenberg and Schmidli (2011) without taking into consideration insurance
companies that have suffered from ruin with possibilities of recovery, they had aim of minimis-
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ing the expected discounted capital injections over all admissible reinsurance strategies. For
the diffusion approximation case, they used HJB approach to obtain the optimal strategy and
obtaining expression for the value function explicitly. For the case of the classical risk model
they managed to show that there is an existance of a weak solution and they used numerical
approximations approach to calculate the value function.

Eisenberg (2010) considered optimal control of capital injections by reinsurance and invest-
ments. The objective of the study was to investigate how the insurer’s capital injections for the
future can be controlled by using investments and/or reinsurance, he used the Cramér-Lundberg
model and in a diffusion approximation with preference rate greater or equal to zero, to achieve
this aim. The Cramér-Lundberg model was also studied by Kasozi et al. (2011) where they
used the Homotopy Analysis Method (HAM) as the numerical approach to calculate the value
function of the dividend payments in a given basic insurance process. In these two studies
companies that have already suffered from ruin that have possibilities of recovery were not
considered.

Liu and Hu (2014) had the objective of finding the strategy that can maximise the expected
present values of their dividends payout minus the equity issuance up to the time of ruin. Al-
though this study also ignored companies that have already suffered from ruin that have pos-
sibilities of recovery but finally by using an approach of constructing two different suboptimal
control problems they managed to solve the optimal problem and identify the optimal strategy.

He and Liang (2008) studied optimal financing and dividend control of the insurance company
with proportional reinsurance policy. It was the first time that the financing process in an
insurance model has been considered, which was more realistic. They managed to identify the
value functions and the optimal strategies corresponding to the suboptimal models depending
on the relationships between the coefficients. In another study, He and Liang (2009) considered
optimal financing and dividend control of the insurance company with fixed and proportional
transaction costs. It was the first time that the financing process in an insurance model was
considered with two kinds of transaction costs which come from real financial market. They
aimed at maximizing the expected present value of the dividends payout minus the equity
issuance before bankruptcy although in both papers they didn’t address companies that have
suffered from ruin with possibilities of recovery.

2.4 Ruin Probability

Ruin probability has been studied widely in literature, scholars like Shiu (1989), Tang (2005),
Asmussen and Albrecher (2010), Loeffen et al. (2013) and Kasumo et al. (2018) gives vari-
ous opinions on how to deal with the ruin probability under various settings of the insurance
mathematical models.
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Schmidli (2002) considered a classical risk model and allowed investment to be done into a
risky asset which was modelled using Black–Scholes model as well as the proportional reinsur-
ance. In their study they didn’t introduce perturbation in the Cramér-Lundberg model although
by using the HJB approach they found a candidate for the optimal strategy and they managed
to develop a procedure for solving HJB equation numerically. They wanted to show that for
any increasing solution to the HJB equation it is bounded and solves the optimisation problem,
thus they decided to prove the verification theorem. They also proved that the solution to the
HJB equation which is always increasing function exists. Then they ended by discussing two
numerical examples.

Paulsen et al. (2005) studied a numerical method for the aim of finding the probability of ul-
timate ruin for a given classical risks model with stochastic returns on investments. In their
study survival probability function was given a sufficient conditions of being four times con-
tinuously differentiable, this actually implied that the survival probability function is a solu-
tion of a second order integro-differential equation. After using an approach of transforming
this integro-differential (second order) equation into an another equation which was ordinary
Volterra integral equation of second kind, they managed to analyze the properties of its numer-
ical solutions upon using the block-by-block method together with the Simpson’s rule. Despite
the fact that they didn’t use an approach of converting the Volterra integro-differential equa-
tions into a system of differential equations, by using numerical examples they realized that
their methods also works very well.

Ma and Jiang (2018) investigated the discrete dynamical Pareto optimisation model in China
upon looking at portfolio for natural disaster insurance. They proposed a model for manag-
ing risks that was based on the cooperative insurance among the insurance market, operating
government and public. They divided their study areas into units whereby in each unit they
analysed the risk stochastic process of the operating government and insurers. The operating
government provided the subsidy and policy support. Their risk stochastic process took into
consideration the premium income, the fixed initial risk value, the claim and the transaction
costs. There after they introduced the ruin probability together with the stopping time of the
ruin probability, the stable operation of insurers, and the recovery capability of the public.
Finally, they used numerical simulation for verification of the model results.

Liu and Yang (2004) studied optimal investment strategies of an insurance company in order
to minimize the probability of ruin to the company. They assumed that the rate of receiving
premiums to the insurance company is constant and they used compound Poison process to
model the total claims of the company. Insurance company was allowed to invest in risky asset
such as stocks and in the money market. By including a risk-free asset their model became
the generalization of the model used by (Hipp & Plum, 2000). Using various claim-size distri-
butions they investigated numerically the investment behaviour. The associated HJB equation
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for the optimal policy was solved for each distribution. Their results provided insights for the
managers in insurance companies on how to hove good investments for minimizing the ruin
probability. These studies didn’t address how to handle insurance companies that have suffered
from ruin with possibilities of recovery.

Weibull distribution is one of the distributions that can be used to model data with a higher
degree of positive skewness which is mostly seen in the claim amounts. Das and Nath (2019)
used Weibull distribution to fit the set of insurance claim data and the probability of ultimate
ruin was computed for those Weibull distributed claim data by using two different methods.
The consistency has been found in the values obtained from both methods. The influence
of the surplus process being subjected to the force of interest earnings and tax payments on
the probability of ultimate ruin was also studied. On another side, Deshpande et al. (2019)
decided to study risk discriminating portfolio optimisation where they described an investment
portfolio optimisation method that used both non-linear and linear asymmetric dependence of
assets. Due to its nature of return-seeking, it was realized that risk discriminating portfolio
optimisation had the chance to outperform the simple mean-variance efficient portfolio. These
studies also didn’t address how to handle insurance companies that have suffered from ruin
with possibilities of recovery.

Kasumo (2019) worked on diffusion and perturbed risks model consisting of an investment
return and surplus generating processes. The investments return process obeyed standard
Black–Scholes type modeled using geometric Brownian motion. A company was free to
purchase non-cheap proportional reinsurance whose price was obtained using expected value
principles. By the use of Hamilton–Jacobi–Bellman (HJB) equation a second-order Volterra
integro-differential equation was derived and the equation was later transformed into a linear
Volterra integral equation of the second kind. The formed equation was then solved by using
the method of block-by-block to get the numerical solutions of the optimal reinsurance and re-
tention level that minimized the ultimate ruin probability. Numerical solutions based on a light
and a heavy-tailed individual claims amount distribution showed that the proportional invest-
ment and reinsurance play vital roles in the enhancement of the survival of insurance company
but it was observed that ruin probabilities show sensitivity to the given volatility of stock prices.
In his study he didn’t address how to handle insurance companies that have suffered from ruin
but have possibilities of recovery, also he didn’t consider an approach of converting the Volterra
integro-differential equations into a system of differential equations, which will be used in this
study.

2.5 Portfolio Optimisation

Kümmerle and Rudolf (2016) studied portfolio optimisation under illiquid life insurance in-
vestment. By un-smoothing the data from German life insurers they were able to obtain the
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return or risk patterns of the given underlying financial assets. Mean-variance portfolios were
analysed engaging a smoothed with a profit contract which was compared to an unsmoothed
unit-linked. They found out that the life insurance was attractive for the case of conservative
investors and can’t be simply replicated. In addition, their results indicated that investor can’t
regain expected utility when allocated to the undesirable amounts in the illiquid with-profits
contracts neither to the reallocation of his liquid investments nor on collateral lending. Al-
though their study couldn’t explain how to handle portfolios of the insurance companies that
have suffered from ruin, they finally observed that with-profit contracts were similar in char-
acteristics than some illiquid assets. The major difference is that by law allow the investors
to play part in the smoothed returns contrary to other financial market products whereby the
investor shall just participate for his holding period returns.

Oliynyk et al. (2015) observed how to manage effectively the insurance portfolio of the com-
pany. They carried out procedures of formulating mathematical models and they proposed
scientific mathematical approaches in performing optimisation of an insurance portfolio of any
company in developing countries. They later conducted implementation practically for those
methodologies for some insurers of Ukraine. On the other hand, Zhu et al. (2015) analysed
proportional investments and reinsurance for an insurer of defaultable markets. They assumed
that the exponential premium principle was used to calculate the reinsurance premium. The
insurer may distribute his wealth in the following securities: a risky stock asset, a corporate
bond, and a bank account. The starting optimisation problem was divided into two small prob-
lems: a pre-default and a post-default. They also derived explicitly the optimal investments and
reinsurance policies that can maximise the utility of wealth, finally, they gave simulations for
numerical results and discussed relevant economic meaning obtained from their results. Both
the two studies could not address how to handle insurance companies that have suffered from
ruin with possibilities of recovery and none of them considered an approach of converting the
volterra integro-differential equations into a system of differential equations.

Oyatoye and Arogundade (2011) intended to design a stochastic model capable of predicting
the optimum portfolio of insurance business at an acceptable risk exposure level. Although
they studied healthier insurance companies and their study ignored companies that have suf-
fered from ruin, they thought this was important because it would guarantee the acceptable risk
levels for a viable insurance company, evaluate the retention rate of insurance portfolio at a
given risk rate, but also it would provide good knowledge on the importance of reinsurance on
risk adjustment in times of larger claim, and finally, it would examine the unbearable risk level
that would require co-insurance. They adopted the application of Markowitz’s portfolio opti-
misation method to finance and insurance risks. Risk return analysis and catastrophe exposure
analysis were performed and they observed that there is a need to revert to stochastic modelling,
which canvases the use of risk, variances and expected values for mathematical computation.
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Recently considerable attention on the part of insurance companies is given to the procedures
of the formation of a given insurance portfolio because it serves as an indicator of the quality
of insurance liabilities. Oliynyk (2015) studied the basic methodological principles of forma-
tion and management of insurance portfolio to achieve its equilibrium and to ensure that the
financial stability of insurance companies is maintained. One of the stage in the company’s in-
surance portfolio management is to deal with portfolio optimisation. This stage was discussed
as it leads to the reduction of risks and an increase in profitability levels. The study finally
observed that the proposed scientific and methodical approach to building and managing an
insurance portfolio to achieve its equilibrium based on nonlinear programming has a differ-
entiated character. For each company, this model chose an optimal structure of an insurance
portfolio that ensures maximal profits and minimal risks.

Ma et al. (2018) were motivated to come up with an extension of the work of Zhu et al. (2015)
to include defaultable securities. The insurer was given a chance of buying a proportional kind
of reinsurance, and put his wealth in stock, a defaultable corporate bond, and a money account.
The intention was maximizing their expected utility of wealth. In their paper, they chose the
constant elasticity of variance (CEV) process for describing the behavior of the stocks. The
reason for selecting CEV model was that it can also be used as an alternative model to describe
the stochastic volatility behavior of the price of the stock and it had several empirical pieces
of evidence to support it. By using theories of stochastic control they derived an equation for
Hamilton–Jacobi–Bellman (HJB) and later divided the original problem into two parts a pre-
default case and a post-default case. Value functions and expressions of the optimal strategy
were derived, finally, they presented examples in numerical forms as illustrations to their re-
sults. In their study an approach of forming and later converting the volterra integro-differential
equations into an ordinary differential equation was not considered.

2.6 Conclusion

This chapter has reviewed the relevant literature to this study, from the above review, it is clearly
observed that researchers contributed a lot in various areas of insurance portfolio optimisation
such as investment-reinsurance strategies, proportional reinsurance, portfolio management, and
others. However, most of the studies are for profitable companies and not companies that have
the possibility of recovery after ruin. To the best of my knowledge, there is no any study
that investigated the insurance portfolio optimisation for the companies having possibility of
recovery after ruin. This research seeks to fill this gap in the literature. The next chapter
presents about the procedure of the model formulation and analysis of the model will be done.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

The process of model formulation and analysis are achieved in this chapter. The study considers
a perturbed Cramér-Lundberg model with investment and refinancing. Before looking at this
model it is better to state the Cramér-Lundberg model which is also referred to as the classical
risk process, since it forms the basis for the entire model to be formulated and analysed in this
study.

3.2 Cramér-Lundberg Model

Ernest Filip Oskar Lundberg Swedish actuary and mathematician, is one of the founders of
mathematical risk theory, one among the very important contribution was his introduction of
the simple and good model that was capable of entailing the basic dynamics of a homoge-
neous insurance portfolio. The main concept of the Lundberg model and its extension was
the determination of probability of ruin (Mikosch, 2009). In 1930’s Harald Cramér a Swedish
mathematician, statistician and actuary who specialized in mathematical statistics and proba-
bilistic number theory, decided to extend the Lundberg model and due to that extension till
today the model is know as the Cramér-Lundberg Model (CLM).

Cramér-Lundberg model is given by

Xt = p+ ct −
Nt

∑
i=1

Yi , t ≥ 0. (3.1)

Where by
• Xt is the surplus of the insurance company at time t.

• X0 = p is the initial reserve or surplus.

• c is the premium rate, that is, the insurer’s premium income per unit time assumed to be
received continuously.

• {Nt} is a homogeneous Poisson process with intensity λ , this is the counting process for
the claims.

• {Yi} is a sequence of strictly positive independent and identically distributed (iid) random
variables representing the claim sizes, with distribution function F having finite first
moment µ and finite second moment σ2.

• {Nt} and {Yi} are independent and ∑
Nt
i=1Yi is a compound Poisson process with an average

number of claims per time period of λ . This process (also called the total claim amount
process) represents the aggregate losses to the insurance company.
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The classical risk process in equation 3.1 is the surplus process and has dynamics given by

dXt = cdt −d

(
Nt

∑
i=1

Yi

)
. (3.2)

The Cramér-Lundberg model is among the most popular and useful model in insurance math-
ematics, simple and powerful enough to calculate probabilities of interest but it is too simple
to be realistic. The main reason includes the following, it does not include interest earned on
the surplus, nor long tail business with claims which are settled a long time after occurrence
of claim, nor time dependence or even randomness of premium income. Due to these weak-
nesses, this study makes some modifications on the Cramér-Lundberg model by taking into
consideration the uncertainty due to claim and premium variation and incorporate investment
of the surplus into risk and risk-free assets but also incorporating the refinancing aspect.

3.3 Model Assumptions

(i) Trading in the insurance and financial markets in general is continuous.

(ii) The company has a fixed premium rate, only depending on the safety loadings of the
insurer.

(iii) There is no transaction cost for the investment.

(iv) The moment when deficit occurs is just the time the company refinances (inject the capi-
tal).

(v) There are no costs for refinancing (capital injection) unless borrowed.

(vi) There is no restriction on the investment policy (that is, both borrowing money at the
risk-free interest rate and short selling of the risky asset are allowed).

3.4 Model Variables and Parameters

We assumed the model variables and parameters to meet the need of the study. Some are newly
used, while some are similar to those used in other studies. Descriptions of the model variables
and parameters are given in Table 1 and Table 2, respectively.

3.5 Model Formulation

In this work we consider continuous time stochastic processes, and the time interval [0,T ] ,
where 0 < T < ∞ . In actual sense a stochastic process is a family X = (Xt)t∈[0,T ] of random
variables defined on the probability space (Ω,F ,P) and valued in a measurable space R and
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indexed by time t. For each ω ∈ Ω , the mapping X(ω) : t ∈ [0,T ]→ X(t;ω) is called the path
of the process for the event ω .

All stochastic quantities and random variables are defined on a large enough stochastic ba-
sis (Ω,F ,(F )t∈[0,T ],P) satisfying the usual conditions, that is (F )t∈[0,T ] is right continuous
and P-complete, P is the probability measure defined on F and (F )t∈[0,T ] is an augmented
filtration.

3.5.1 Basic Insurance Process without Financing and Investment

In actual sense the income of the insurer is not deterministic, there are exist fluctuations in
the number of customers, claim arrival but also premium income. If both financing (capital
injection) and investment are absent, to model all these additional uncertainties, upon following
the procedure of introducing perturbation to non-perturbed model as explained in chapter one,
lets introduce perturbation with intensity σX to model 3.1 to have risk process Xt defined by

Xt = p+ ct +σXWX ,t −
NX ,t

∑
i=1

YX ,i , t ≥ 0. (3.3)

In this case c is the premium rate and is calculated by expected value principle, that is c =

(1+θ)λX µX where θ > 0 is the relative safety loading of the insurer. Also X0 = p is the initial
capital of the insurance company and WX is a standard Brownian motion independent of the
compound Poisson process ∑

NX ,t
i=1 YX ,i. Here λX is the intensity of the counting process NX ,t for

the claims and let FX be the distribution function of the claims YX ,i. It is assumed that FX is
continuous and concentrated on (0,∞).

Table 1: State variables for the model

Variable Description
Xt State variable representing the surplus in the

absence of refinancing and investment.
XM

t State variable representing the surplus with
refinancing.

Rt State variable representing the return on in-
vestments at time t.

PM
t State variable representing the surplus in the

presence of refinancing and investment.
WX ,t 1-dimensional standard Brownian motion or

Wiener process.
YX ,i Amount of the i-th claim.
NX ,t Number of claims received by the insurer at

time t.
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Equation 3.3 can be interpreted as follows, ct is the premium income received by an insurance
company up to time t. The Brownian term σXWX is meant to take care of small perturbations
in premium income and claim sizes. NX ,t is the claim number process and YX ,i are claim sizes.
It is assumed that FX(0) = 0 and at least one of σX or λX is non-zero.

A vast number of researchers have studied this classical risk process perturbed by diffusion
model in insurance industry, some of them includes; Cai and Xu (2006), Kasozi et al. (2013),
Kasumo et al. (2018), Hu et al. (2018), Kasumo (2019) and many others.

Table 2: Parameters for the model

Parameter Description
c Fixed premium rate in the absence of refi-

nancing and investment.
σ Diffusion or volatility coefficient.
θ Safety loading of the insurer.
λ Number of claims received per unit time.
ρ Correlation coefficient.
r0 Risk-free interest rate for the bond.
r Instantaneous rate of stock return.

3.5.2 Basic Insurance Process with Refinancing

Let M be an increasing process with M0− = 0. The process with refinancing (capital injec-
tions) is denoted by XM

t = Xt +Mt with Xt being the surplus process and X0 = p. The injec-
tion process M has to be chosen such that XM

t ≥ 0 for all t (almost surely), it could then be
optimal to inject capital already before the process reaches zero. Lets assume when the in-
surance company take risk Yi and at the same time capital refinanced is M then the insurance
company will retain max(M,Yi) = y∧M. In return the company has to pay cost of refinanc-
ing for example to the lender in case money were borrowed, suppose this cost is calculated
as premium using expected value principle with safety loading η and let a rate be given by
(1+η)λXE [(M−Yi)

+]. This means under refinancing process the premium rate left to the
company is cM = c− (1+η)λXE [(M−Yi)

+] and assume further that η > θ for healthy refi-
nancing. Therefore, by using equation 3.3 the following equation can be obtained;

XM
t = p+ cMt +σXWX ,t −

NX ,t

∑
i=1

YX ,i +Mt , t ≥ 0. (3.4)

3.5.3 Investment Process

Suppose that in addition to refinancing an insurer is now allowed to invest some of the surplus
into financial market consisting of a risk-free asset (for example bond) with a positive interest
rate r and the rest to a risky asset (for example stock). An attempt of incorporating investment
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income in a Cramér-Lundberg Model was done for the first time in 1942 by Segerdahl, the
assumption was that the capital earns interests with a fixed rate r (Yuan & Hu, 2008).

Other researchers has been increasingly attracted in this area and many of them extended the re-
searches therein to make this area among very popular in insurance mathematics. Paulsen and
Gjessing (1997) studied a risk process with stochastic return on investment, Kasumo (2011)
modified Gjessing and Paulsen model by incorporating investment and a proportional reinsur-
ance. This work extends the model by incorporating refinancing and investment.

Assume in the same way as in Meng et al. (2016) that the risk-free price process is given by

dBt = r0Btdt, (3.5)

where r0 ≥ 0 is the interest rate for the risk-free asset, which is assumed to be constant. Bt is
the price of the bond at time t.

Let us also describe the risky asset (stock) price process by the Geometric Brownian Motion
(GBM) similar to that of Badaoui et al. (2018) given by

dSt = rStdt +σSStdWS,t , (3.6)

where St is the stock price at time t, r ≥ 0 is the expected instantaneous rate of stock return,
σS ≥ 0 is the diffusion of the stock price and WS,t : t ≥ 0 is a standard Brownian motion defined
on the complete probability space (Ω,F ,(F )t∈[0,T ],P).

Paulsen and Gjessing (1997) in their work gave the generalized return on investment process
Rt by using the equation 3.7 ;-

Rt = rt +σRWR,t +
NR,t

∑
i=1

SR,i , t ≥ 0, R0 = 0, (3.7)

where WR,t is a Brownian motion independent of the surplus process Rt also ∑
NR,t
i=1 SR,i is a

Poisson process with intensity λR which represents the sudden changes in income (jumps), the
term σRWR,t represents the fluctuation in income of an insurance company and the rt is non
risk part of the investment process. If we assume λR = 0 that is there is no jumps, the resulting
model is the Black-Scholes model given by

Rt = rt +σRWR,t t ≥ 0, R0 = 0. (3.8)

Equation 3.8, is the return in investment model. r is the risk-free part, hence Rt = rt means one
unit that was invested at time zero will be worth ert at time t. The process Rt in equation 3.8 is
known as Black and Scholes option pricing formula.
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3.5.4 Risk Process with Refinancing and Investment

In this part the insurance process compounded with refinancing and return from investment is
obtained. It is obtained by combining equations 3.4 and 3.7 above. For the case of reinsurance
and investment the process has been extensively studied for ultimate ruin probability, this can
be observed in studies such as Paulsen and Gjessing (1997), Paulsen and Rasmussen (2003),
Paulsen et al. (2005), Kasozi et al. (2013) and many others. Following the similar approach as
in Kasozi et al. (2013) the process PM = {PM

t }t∈[0,∞) which represent the insurance portfolio is
given by:

PM
t = XM

t +
∫ t

0
PM(s−)dR(s), (3.9)

which is the solution of the SDE

dPM
t = dXM

t +PM(t−)dR(t), (3.10)

where in this case XM
t is the basic insurance process given in equation 3.4 and R(t) is the return

on investment process given in equation 3.8 and PM(t−) stands for the insurer’s surplus just
prior to time t.

3.5.5 Stochastic Differential Equation for the Wealth

In this section the basic insurance process with investment, which is expressed by the stochastic
differential equation for the wealth after refinancing, is formulated. Now let us consider the
investment problem of an insurance company which wants to transfer current wealth into the
bond and stock. The company prefers to choose the dynamic portfolio strategies in order to
maximise its expected utility of wealth at some future time T . Therefore in order to describe
the company’s actions the portfolio strategy is formulated.

Assume that the joint distribution of the WX ,t and WS,t is bi-variate normal and we denote
their correlation coefficient by ρ , that is E

[
WX ,tWS,t

]
= ρt. The company needs to monitor its

wealth, let the amount of money invested in risky asset (stock) at time t under investment policy
π be denoted by πt , where {πt} is a portfolio strategy suitable and admissible control process,
that is to say πt satisfies

∫ T
0 π2

t dt < ∞ a.s., for all T < ∞.

Let {Zt , t ≥ 0} denote the corresponding wealth process, then the dynamic Zt is given by

dZt = πt
dSt

St
+(XM

t −πt)
dBt

Bt
+dXM

t , (3.11)

with Z0 = z > 0 being the initial wealth of the company.

By using equations 3.4, 3.5 and 3.6 then the wealth process with investment and refinancing
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will follow the following stochastic differential equation

dZt =
(
πtr+(XM

t −πt)r0
)

dt +σSπtdWS,t +dXM
t . (3.12)

3.5.6 Optimal Control Problem for Maximizing the Expected Utility of Terminal Wealth

Ferguson (1965) studied the problem of expected utility of wealth in the discrete time for a
given investor. In that study it was conjectured that minimizing the ruin probability is strictly
related to maximizing exponential utility of terminal wealth of the investor, the assumption
behind the conjecture was that the investor is allowed to borrow an unlimited amount of money
and without risk-free interest rate.

Let a strategy α describe the stochastic process {πt ,Mt} , where πt is the amount invested in the
risky asset at time t and Mt is the capital refinanced/injected at time t and denote the set of all
admissible strategies by αs. Suppose now that the insurer is interested in maximizing the utility
function of its terminal wealth, say at time T . The utility function u(z) is typically concave
and increasing (u′′(z)< 0). For a strategy α , lets define the utility attained by the insurer from
state z at time t as follows;

Vα(t,z) = E [u(Z(T ))/Z(t) = z] . (3.13)

Therefore the objective is to find the optimal value function

V (t,z) = sup
α∈αs

Vα(t,z), (3.14)

and the optimal strategy α∗{π∗
t ,M

∗
t } such that Vα∗(t,z) =V (t,z).

3.6 Dynamic programming and Hamilton-Jacobi-Bellman equation

At this point the interest is to solve the stochastic optimal control problem 3.14 by looking for
a maximum value of the performance function 3.13 subject to the state which is the wealth
equation given by 3.12.

First the the necessary definitions and theorems are given then the Bellman’s principle of op-
timality, which is commonly known as the Dynamic programming principle (DPP) is stated in
the Theorem 3.2 .

Definition 3.1 (Infinitesimal generator)
Let (Zt)t≥0 be an Itô diffusion in Rn. Then the infinitesimal generator L of Zt is defined by

L g(s,z) = lim
t→s

E
s,z[g(t,Zt)]−g(s,z)

t − s
,z ∈ Rn, (3.15)
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and g is in the domain DL which is the class of functions g : [0,T ]×R
n → R for which the

limit exists for all s,z (Pham, 2009).

Proposition 3.1
Let L be the differential operator defined on C1,2 by

L =
∂

∂ t
+

n

∑
i

bi
∂

∂ z
+

1
2

n

∑
i, j=1

ai j
∂ 2

∂ zi∂ z j
, (3.16)

with ai j = (σσT )i j and let g be defined on C1,2 such that for all 0 ≤ s ≤ t,z ∈ R. Then

E
s,z
[∫ t

s
|L g(u,Zu)|du

]
< ∞ and E

s,z
[∫ t

s
[(Dzg(u,Zu))

T
σ(u,Zu)]

2du
]
< ∞, (3.17)

thus g ∈ DL and L g = L g (Ndounkeu, 2010)

Proof
The proof is available in (Ndounkeu, 2010).

Remark 3.1
It can be observed that L is also a generator of Itô diffusion. Therefore when it is applied to the
function g ∈C1,2 it results in L g(t,z) = gt(t,z)+(Dzg(t,z))T b+ 1

2tr((Dzzg(t,z))T a) where in
this case Dzzg(t,z) and Dzg(t,z) are the Hessian matrix and gradient vector respectively of the
function g ∈ C1,2 while tr(B) = ∑

n
1 bii is the trace of any square matrix B = (bi j) ∈ Rn×n,1 ≤

i, j ≤ n .

Theorem 3.1 ((Dynkin’s formula)
Suppose g : [0,T ]×R

n → R. Let τ be a stopping time in such a way that Ez[τ]< ∞. Then

E
z[g(τ,Zτ)] = g(z)+E

z
[∫

τ

0
L g(s,Zs)ds

]
. (3.18)

Note: If τ is the first exit time from the bounded set G ∈ Rn, then Dynkin’s formula holds for
any g ∈C1,2 .

Proof
The proof is available in (Øksendal, 2003).

Theorem 3.2 (Bellman’s equation )
For all (t0,y) ∈ [0,T ]×R

n and t1 ∈ [t0,T ],

V (t0,y) = sup
α∈αs

E
t0,y
[∫ t1

t0
φ(s,Zs,αs)ds+V (t1,Zt1)

]
,∀ 0 ≤ t0 ≤ t1 ≤ T. (3.19)
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In other words, this is to say that, an optimal policy from t0 to T that passes through t1 is also
optimal in [t1,T ] (Yong & Zhou, 1999; Ndounkeu, 2010).

Proof
See Yong and Zhou (1999) also (Ndounkeu, 2010).

After imposing some assumption on the value function, Bellman’s equation given in Theorem
3.2 is very useful in the derivation of the so called HJB equation upon applying Itô’s formula 1.5
to the value function V if it is smooth enough, and with some reasoning leads to HJB equation.

According to Yong and Zhou (1999) upon considering a modified state equation with a control
α given by {

dZα
t = b(t,Zt ,αt)+σ(t,Zt ,αt)dWt , t ∈ [0,T ],

Zt0 = z , z ∈ Rn,
(3.20)

together with the performance function given by

J(t0,Zt ,αt) = E

[∫ T

t0
f (t,Zt ,αt)dt +h(ZT )

]
. (3.21)

Then if the value function V is smooth enough it is the solution of a second order non-linear
partial differential equation

sup
α∈αs

{
φ(t,z,α)+Vt(t,z)+(Dz(V (t,z))T b(t,z,α)+

1
2

tr(Dzz(V (t,z))a(t,z,α)

}
= 0. (3.22)

Equation 3.22 can also be written by using the differential operator L given by equation 3.16
to get

sup
α∈αs

{φ(t,z,α)+L αV (t,z)}= 0. (3.23)

Here the supremum is taken over all the admissible control. So, for a fixed z, the quantity
will be maximised only through α ∈U where U is a given utility function, then the following
equation can be formulated upon using 3.23 ;-{

supα∈U {L αV (t,z)}= 0,
V (T,z) =U(T,z) =U(z).

(3.24)

Equation 3.24 is called HJB equation, and also known as the dynamic programming equation
which is very vital in optimal control and U(z) is the utility function under consideration. This
will give a non-linear partial differential equations (PDEs) which sometimes can be compli-
cated and hard to solve.
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From equation 3.12 the generator is

L πg(t,z) = gt +
[
πtr−πtr0 +XM

t r0
]

gz +
1
2
[
σ

2
s π

2
t +2ρσsπt +1

]
gzz. (3.25)

No constraints are put on the control πt , it is allowed that πt < 0 or also πt > Zt . This assump-
tion was first applied by Ferguson (1965) when he considered a discrete time problem for an
ordinary investor. Under πt < 0 an insurance company is considered to short the stock while
for the case of πt > Zt an insurance company is borrowing money to invest long in the stock.
This is realistic provided that the insurance company has positive net wealth, that is Zt > 0, it
can be allowed to borrow money for investment, but when the ruin occurs, that is an insurance
company is bankrupt it will not be allowed to borrow money for investment. On account of this
fact the probability of ruin and its possibility to occur is of real great concern.

3.6.1 Maximizing the Exponential Utility of Terminal Wealth

An ordinary investor under discrete time and space was studied by Ferguson (1965) where it
was found that when the investor had an exponential utility function such as u(z) = −e−θz

and aiming at maximizing the utility of terminal wealth at fixed terminal time then the optimal
policy was investing a fixed constant. The conclusion given by a strategy was in general optimal
for minimizing the probability of ruin or maximizing the probability of survival.

Using equations 3.13 and 3.14 , let π∗
t denote the optimal policy and suppose that the company

is now having an exponential utility of the form 3.26 , where γ > 0 and θ > 0.

u(z) = λ − γ

θ
e−θz. (3.26)

This kind of utility function have constant ARA since −u′′(z)/u′(z) = θ , it plays a very impor-
tant function/role in actuarial and insurance mathematics at large.

Theorem 3.3
The optimal policy to maximise expected utility at a terminal time T is to invest at each time
t ≤ T the constant amount given by

π
∗
t =

r
σ2

s θ
− ρ

σs
. (3.27)

Then optimal value function become

V (t,z) = λ − γ

θ
exp{−θz+(T − t)Q(θ)} . (3.28)
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In here Q(.) is the quadratic function which is defined by

Q(θ) =
1
2
(1−ρ

2)θ 2 −
(

XM
t r0 −ρ

(
r− r0

σs

))
θ − 1

2

(
r− r0

σs

)2

. (3.29)

Proof
For our problem of maximizing utility from terminal wealth at a fixed terminal time T . Then
the HJB equations for t < T can be obtained as follows{

supπt
{L πtV (t,z)}= 0,

V (T,z) = u(z).
(3.30)

where in here V (t,z) = supπt
E

t,z[u(Zπt
T )] this is the same as saying for each (t,z) we need to

solve the non linear PDE of 3.30 and there after find a value of πt that can maximise the function
3.31 ;-

Vt +
[
πtr−πtr0 +XM

t r0
]
Vz +

1
2
[
σ

2
s π

2
t +2ρσsπt +1

]
Vzz. (3.31)

Suppose we assume that the HJB equation 3.30 consists of a classical solution V that satisfies
Vz > 0 , Vzz < 0 now differentiating with respect to πt and equating to zero in 3.31 the following
optimizer is obtained

πt =− ρ

σs
−
(

r− r0

σ2
s

)(
Vz

Vzz

)
. (3.32)

Substituting equation 3.32 back into equation 3.31 then after some simplifications equation
3.30 become Vt +

[
XM

t r0 −ρ

(
r−r0

σs

)]
Vz − 1

2

(
r−r0

σs

)2 V 2
z

Vzz
+ 1

2

(
1−ρ2)Vzz = 0 for t < T,

V (T,z) = u(z).
(3.33)

The PDE obtained in equation 3.33 are quit different from those obtained in other studies of
utility maximization such as those in Browne (1995) and that of (Zou & Cadenillas, 2014).
Since we want to solve the PDE under a given case when u(z) = λ − γ

θ
e−θz. To solve the PDE

in equation 3.33 under this case lets assume that it has the solution of the following form

V (t,z) = λ − γ

θ
e−θz+g(T−t), (3.34)

where by g(.) is a given suitable function, with this assumption, then
Vt(t,z) = [V (t,z)−λ ] [−g′(T − t)] ,

Vz(t,z) = [V (t,z)−λ ] [−θ ] ,

Vzz(t,z) = [V (t,z)−λ ]
[
θ 2] . (3.35)

Since the boundary condition is V (T,z) = λ − γ

θ
e−θz this mean that g(0) = 0 now let us insert
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3.35 into 3.33 and simplify to get

−g′(T − t)+
1
2
(1−ρ

2)θ 2 −
(

XM
t r0 −ρ

(
r− r0

σs

))
θ − 1

2

(
r− r0

σs

)2

= 0. (3.36)

Now letting Q(θ) = 1
2(1−ρ2)θ 2 −

(
XM

t r0 −ρ

(
r−r0

σs

))
θ − 1

2

(
r−r0

σs

)2
gives

g′(T − t) = Q(θ). (3.37)

Integrating equation 3.37 and using g(0) = 0 gives the value function 3.28.

Since the value function is known, we can now obtain the control 3.27 by substituting the values
of Vz and Vzz from equation 3.35 into equation 3.32.

Finally we need to show that the value function and the control obtained above are optimal. This
is revealed upon checking the value function 3.28 since it is twice continuously differentiable
thus it is clear that it satisfies the conditions of the classical verification theorems as stated
by Ankirchner et al. (2019), therefore these are the optimal value function and controls. This
brings us to the end of the proof.

3.7 Minimizing Ruin or Maximizing Survival Function

Lets consider equation 3.9 for the purpose of minimizing ruin or maximizing survival function
for the insurance company. Since both X and R have stationary independent increments, then
P is a homogeneous strong Markov process. By using Itô’s formula the infinitesimal generator
for P can be given by

L g(p) =
1
2
(
σ

2
R p2 +σ

2
X
)

g′′(p)+(rp+ cM)g′(p)+λX

∫
∞

0
(g(p− (y∧M))−g(p))dFX(y).

(3.38)
The integro-differential operator presented in equation 3.38 is quite complicated and explicit
analytical computations involving it are hard to perform. However Paulsen and Gjessing (1997)
have presented and proved the following very useful results.

Theorem 3.4
Let τp = inf{t : Pt < 0} be the time of ruin where τp = ∞ means ruin never occurs and then let
ψ(p) = P(τp < ∞) be the probability of eventual ruin to occur. For all t then using the above
notations we have the following:

(i) Assume that Ψ(p) is twice continuous differentiable and bounded on p ≥ 0 with a
bounded first derivative there, where at p = 0 is meant the right hand derivative .

If Ψ solves L Ψ(p) = 0 on p > 0 together with the boundary conditions
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Ψ(p) = 1 on p < 0,
Ψ(0) = 1 if σ2

X > 0,
limp→∞ Ψ(p) = 0,

(3.39)

then
Ψ(p) = P(τp < ∞).

(ii) Assume that qα(p) is twice continuous differentiable and bounded on p ≥ 0 with a
bounded first derivative there, where at p = 0 is meant the right hand derivative .

If qα solves L qα(p) = 0 on p > 0 together with the boundary conditions

qα(p) = 1 on p < 0,
qα(0) = 1 if σ2

X > 0,
limp→∞ qα(p) = 0,

(3.40)

then
qα(p) = E [eατp] .

Proof
The proof is available in (Paulsen & Gjessing, 1997).

Now, according to Paulsen et al. (2005) replace the first part of the theorem with the survival
φ(p) = 1−Ψ(p) with boundary conditions given by equation 3.41

φ(p) = 0 on p < 0,
φ(0) = 0 if σ2

X > 0,
limp→∞ φ(p) = 1.

(3.41)

Because minimizing ruin is the same as maximizing survival for the insurance company the
goal is now to maximise survival φ(p). Therefore the value function for this intention is defined
as

V (p) = sup
M≥0

φ
M(p), (3.42)

and if it exists, we determine the corresponding refinancing strategy Mt ∈ [0,∞) that will satisfy
the objective function. Therefore in this section we are interested to find the optimal refinancing
strategy in presence of investments in the risk process that is risky and risk free assets. We refer
to this strategy as optimal in a sense that it maximises ultimate survival function which is the
same as minimizing the probability of ultimate ruin. In other words the survival function is the
objective function and the refinancing strategy Mt is the control variable to be adjusted such
that the objective function is maximised.
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3.7.1 Hamilton-Jacobi-Bellman Equation and Integro-Differential Equation

Under this subsection the HJB equation for the value function given by 3.42 is derived and
solved then later on the integro-differential equations for the survival function is formulated
and solved too. The solution of the HJB equation is the value function which gives the optimal
cost to go for a given dynamical system. In literature several HJB equations of similar kind have
been used for example the reader may refer Schmidli (2002), Paulsen et al. (2005), Kasozi et al.

(2013) and Kasumo et al. (2018) for more details.

(i) Hamilton-Jacobi-Bellman Equation

To derive the HJB equation for the value function given by 3.42, let (0,h] be a small interval
and suppose that for each surplus p(h)> 0 at time h we have refinancing strategy Mε such that
δMε(p(h))> δ (p(h))− ε . Let also that Mt = M ∈ [0,∞) for t ≤ h. Then by Markov property
one has the following

φ(p)≥ φ
M(p) = E

[
(φ Mε

(PM(h));τp > h
]
,

= E

[
(φ Mε

(PM(τp ∧h))
]
,

≥ E

[
(φ Mε

(PM(τp ∧h))
]
− ε.

But ε is arbitrary one can choose ε = 0 to get

φ(p)≥ E

[
(φ Mε

(PM(τp ∧h))
]
. (3.43)

Let us assume that φ(p) is twice continuously differentiable, by using Itô’s formula we obtain

φ(PM(τp ∧h)) = φ(p)+
∫

τp∧h

0

{
(rp+ cM)φ ′(PM(s))+

1
2
(σ2

R p2 +σ
2
X)φ

′′(PM(s))

+λX

[∫ p

0
φ(PM(s)− (y∧M))dFX(y)−φ(PM(s))

]}
ds,

(3.44)

where y∧M = max(M,Yi) denote the retained amount to the insurance company.

Now, put 3.44 into 3.43 to get

E

[∫
τp∧h

0

{
(rp+ cM)φ ′(PM(s))+

1
2
(σ2

R p2 +σ
2
X)φ

′′(PM(s))

+λX

[∫ p

0
φ(PM(s)−max(M,Yi))dFX(y)−φ(PM(s))

]}
ds
]
≤ 0.

(3.45)

Provided the limit and expectation can be interchanged then dividing the later equation by h
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and letting h → 0 gives the following

(rp+ cM)φ ′(p)+
1
2
(σ2

R p2 +σ
2
X)φ

′′(p)+λX

[∫ p

0
φ(p−max(M,Yi))dFX(y)−φ(p)

]
≤ 0.

(3.46)
This equation 3.46 must hold for all M > 0, that is to write

sup
M>0

[
(rp+cM)φ ′(p)+

1
2
(σ2

R p2+σ
2
X)φ

′′(p)+λX

[∫ p

0
φ(p−max(M,Yi))dFX(y)−φ(p)

]]
≤ 0.

(3.47)
Suppose that there is an optimal strategy M ∈ [0,∞) such that limt↓0 M(t) = M(0). Then using
similar approach we have

(rp+ cM)φ ′(p)+
1
2
(σ2

R p2 +σ
2
X)φ

′′(p)+λX

[∫ p

0
φ(p−max(M,Yi))dFX(y)−φ(p)

]
= 0.

(3.48)
Finally this gives us the HJB equation

sup
M>0

[
(rp+cM)φ ′(p)+

1
2
(σ2

R p2+σ
2
X)φ

′′(p)+λX

[∫ p

0
φ(p−max(M,Yi))dFX(y)−φ(p)

]]
= 0,

(3.49)
whose boundary conditions are φ(p) = 0 on p < 0 and limp→∞ φ(p) = 1.

An optimal strategy is obtained from the solution set (φ(p),M∗(p)) of the equation 3.49 in
which M∗(p) is a point at which the supremum in 3.49 is obtained. The insurance company
has a non negative net premium income if c > (1+η)λXE[(M−Yi)

+].

Let M be the value where the equality holds that is c = (1+η)λXE[(M −Yi)
+] but the aim is

to find a non decreasing solution of 3.49, thus lets write it as follows;

sup
M>M

[
(rp+cM)φ ′(p)+

1
2
(σ2

R p2+σ
2
X)φ

′′(p)+λX

[∫ p

0
φ(p−max(M,Yi))dFX(y)−φ(p)

]]
= 0,

(3.50)
whose boundary conditions are φ(p) = 0 on p < 0 and limp→∞ φ(p) = 1 as explained in The-
orem 3.4 .

According to Hipp and Plum (2000) the function φ(p) will satisfy equation 3.50, only if φ(p) is
strictly concave, strictly increasing, twice continuously differentiable and it satisfies the second
condition, that is limp→∞ φ(p) = 1.

Now, let us assume that φ(p) is concave so that to insure smoothness and concavity, the claim
density function must be locally bounded. The following results provide verification of the
existence and property of the solution of the HJB equation 3.49.
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Proposition 3.2 (Existence of Solution)
Let the claim size distribution have a locally bounded density. Then the HJB equation has a
bounded twice continuously differentiable solution φ ∈C2(0,∞)∩C1[0,∞).

Proof
A proof is similar to that of (Hipp & Plum, 2003).

Proposition 3.3 (Property of the Solution)
If φ(p) is twice continuously differentiable and solves the HJB equation 3.49, then it is strictly
concave.

Proof
See (Schmidli, 2002).

Remark 3.2
According to Hipp and Vogt (2003) if φ(p) is a smooth solution of the HJB equation 3.49 with
properties of Theorem 3.4, then the supremum over M > M is either attained at M = 0 when
there is no refinancing for small claims or at M = p or M < M < p .

(ii) Integro-Differential Equation

From the HJB equation 3.49 then the integro-differential equation for the survival function
φ(p) takes the following form

L φ(p) = 0, p ≥ 0, (3.51)

where L is the infinitesimal generator defined by the equation 3.38 for the underlying risk
process with refinancing and investment given by equation 3.9. Thus from the HJB equation
3.49, the integro-differential equation for the survival function is given by

(rp+ cM)φ ′(p)+
1
2
(σ2

R p2 +σ
2
X)φ

′′(p)+λX

∫ p

0
φ(p−max(M,Yi))dFX(y)−λX φ(p) = 0,

(3.52)
for 0 < p ≤ ∞.

Equation 3.52 is a second order integro-differential equation of Volterra type (VIDE). In this
study VIDE equation 3.52 is converted into an ordinary differential equation (ODE) which can
be solved numerically in order to determine the optimal strategies.

(iii) Converting VIDE into an ODE

In this section, we begin the process of solving VIDE given by equation 3.52. The equation
is first converted into an ODE and later it will be solved numerically. The equation will be
solved on the assumption that the claims are exponentially distributed. If σR = 0 and r = 0
then there is no investment, for this case the analytical solution to the similar problem is given
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by Belhaj (2010) and if λX = 0 similar case was solved analytically in Paulsen and Gjessing
(1997) however when λX ̸= 0 , σR ̸= 0 and r ̸= 0 equation 3.52 has no analytical solution.

Consider exponential distribution given by

fX(y) = βe−βy,

FX(y) = 1− e−βy,

dFX(y) = βe−βy.

(3.53)

Then equation 3.52 become

(rp+ cM)φ ′(p)+
1
2
(σ2

R p2 +σ
2
X)φ

′′(p)+λX

∫ p

0
φ(p−max(M,Yi))βe−βydy−λX φ(p) = 0,

(3.54)
for 0 < p ≤ ∞.

Differentiating with respect to p and simplifications gives

1
2
(σ2

R p2+σ
2
X)φ

′′′(p)+(rp+cM+σ
2
R p)φ ′′(p)+(r−λX)φ

′(p)−λX βe−β p
φ(p−max(M,Yi))= 0

(3.55)
for 0 < p ≤ ∞.

Equation 3.55 is an ODE that can later be solved numerically.

3.7.2 Treating Possibility of Recovery After Ruin for Insurance Companies

In this section an approach on how to handle the possibility of recovery after ruin for insurance
companies is suggested and developed for the first time in insurance mathematics.

Assume that an insurance company had a wealth Xt
τ−

before the time of ruin suppose an in-
surance company has a possibility γ ∈ [0,1] of recovery after ruin, where γ = 0 means the
company has no possibility of recovery at all and γ = 1 means the company has a possibility of
recovering a full wealth after ruin.

Now, this study suggest that the new wealth or capital of the company for running the insurance
business be given by the following formula

XN
t = γXt

τ−
. (3.56)

Therefore, this approach will be used in the next chapter to perform simulation on various
cases of possibilities γ under various situations of wealth or capital Xt when compounded with
investment and/or refinancing.
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3.8 Summary of Materials and Methods

In previous sections, the perturbed model was formulated upon using the Cramér-Lundberg
model. Later on the model was compounded with return on investment and refinancing, with
the help of stochastic control the optimisation problem was formed and later solved using
utility function. Upon using a model that includes the investment and refinancing then the
stochastic control theory was used again to derive the HJB equation from which the volterra
integro-differential equation (VIDE) was derived and later transformed into an ODE ready for
numerical analysis.

3.8.1 Numerical Method

In this section let us present the numerical method called Runge–Kutta to be applied in solving
the formed ODE to obtain the survival φ(p) given by equation 3.52. The method will not be
derived rather it will just be stated, for details of the derivation a reader can refer a book by
(Richard & Burden, 2011).

Runge–Kutta methods are used in numerical analysis to solve initial value ODE and system of
ODEs. These methods were developed by the German mathematicians Carl Runge and Wil-
helm Kutta around 1900. There are six Runge–Kutta methods namely first order, second order,
third order, fourth order, fifth order and sixth order Runge–Kutta methods, out of these six the
fourth order is the most used. The main computational effort in using Runge-Kutta Methods is
based on the evaluation of the function f . In second order method, the local truncation error
is O(h2), and the cost is two function evaluations per each step while the fourth order Runge-
Kutta method requires four functions evaluations per each step with local trunction error of
O(h4). The advantage of the Runge–Kutta methods is that they eliminate the need to compute
and evaluate the derivatives of f (xi,yi) (Richard & Burden, 2011).

In this study a fourth order Runge–Kutta method will be used, the method is presented below;

y0 = α,

k1 = h f (xi,yi) ,

k2 = h f
(

xi +
h
2 ,yi +

k1
2

)
,

k3 = h f
(

xi +
h
2 ,yi +

k2
2

)
,

k4 = h f (xi+1,yi + k3) ,

yi+1 = yi +
1
6 (k1 +2k2 +2k3 + k4) .

(3.57)

Where α and h are the initial condition and step size respectively.

Next we transform an ODE given by equation 3.55 into a system of ODEs that will be solved
numerically by using a fourth order Runge–Kutta method given by equation 3.57.
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Letting Z1(x) = φ(p), Z2(x) = φ ′(p) = Z′
1(x) and Z3(x) = φ ′′(p) = Z′

2(x) then the following
system of first order ODEs is obtained

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =

2
(σ2

R p2+σ2
X )

[
λX βe−β pZ1(p−max(M,Yi))− (r−λX)Z2 − (rp+ cM +σ2

R p)Z3

]
.

(3.58)
In the next chapter the numerical solution using a fourth order Runge–Kutta method for this
system 3.58 will be discussed.

3.8.2 Materials

(i) All the data simulations in this dissertation will be performed using a HP ENVY 17 with
an Intel(R) Core(TM) i7-8550U CPU processor at 1.80GHz to 1.99GHz and 16.0GB of
RAM.

(ii) The numerical method described in subsection 3.8.1 will be implemented in the next
chapter by using MATLAB R2020a.

(iii) All the figures in the next chapter will be constructed using MATLAB R2020a.

3.9 Conclusion

In this chapter the perturbed model incorporating refinancing and investment was formulated.
By using the Hamilton-Jacobi-Bellman (HJB) approach, the Volterra Integro-Differential equa-
tion (VIDE) corresponding to the optimisation problem was derived and solved using exponen-
tial utility function. The stochastic control theory was also used to derive the HJB equation
from which the volterra integro-differential equation (VIDE) was derived and later transformed
into an ODE ready for numerical analysis. The chapter also introduced an approach for han-
dling the possibility of recovery after ruin for insurance companies and it finally ends with the
subsection addressing numerical methods.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, we present this study’s numerical results, simulations, and their discussions
of the basic models such as the Cramér-Lundberg Model using the fourth order Runge-Kutta
method. Various scenarios are presented and discussed thereafter. For the purpose of the
simulations, some parameter values were obtained from the literature. Other values were not
available in the literature thus there was a need for a trial, out of several trials the values that
performed better were assumed for this study. The parameters values are presented in Table 3.
Numerical results and their graphical representations were performed using MATLAB R2020a.

Table 3: Model parameters and their values.

Symbol Definition Value(s) Source
λ Intensity of the count-

ing process
2, 1.75, 1, 5, 10, 20,
200

(Kasumo et al., 2018).

r0 Risk-free interest rate
for the bond

0.02, 0.04 (Liu & Yang, 2004).

σ The volatility or diffu-
sion coefficient

0.25, 0.1, 0.2, 1, 1.3,
1.5, 2

(Mtunya et al., 2017).

c Insurer’s premium in-
come per unit time

2 (Kasumo, 2011).

δ Preference rate to refi-
nancing

0.04, 0.08, 0.12 (Eisenberg, 2010).

β Mean of the exponen-
tial distribution

0.5 (Kasumo, 2011).

r Instantaneous rate of
stock return

0.05, 0.5 (Kasozi et al., 2013).

ρ Correlation coefficient 0.03 (Hu et al., 2018).
ri The value of the invest-

ment rate
0.05, 0.1, 0.2 (Kasumo, 2011).

XM
t Refinanced surplus

process
50, 70, 100, 1000 (Liu & Yang, 2004).

θ Safety loading of the
insurer

0.8, 2, 3, 5 (Kasumo, 2019).

γ Possibility of recovery 2%, 25%, 80% Assumed.
M Capital refinanced 600 Assumed.
p Initial capital 10000 Assumed.
Y Capital risked 500 Assumed.

4.2 Survival in the Cramér-Lundberg Model

Consider a Cramér-Lundberg model given by equation 3.1, this model is the same as model 3.4
when there is no perturbation and refinancing.
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By Itô’s formula we can obtain the infinitesimal generator for Xt given by an equation 4.1;-

L g(x) = cg′(x)+λ

∫ x

0

(
g(x− y)−g(x)

)
dF(y). (4.1)

This gives the VIDE given by equation 4.2 ;-

cφ
′(x)+λ

∫ x

0

(
φ(x− y)−φ(x)

)
dF(y) = 0. (4.2)

Integrating by parts on [0,x] transforms 4.2 into a VIE of the second kind that can easily be
converted into an ODE.

c
(
φ(x)−φ(0)

)
+λ

∫ x

0
F(x− y)φ(y)dy−λ

∫ x

0
φ(y)dy = 0. (4.3)

cφ(x) = cφ(0)+λ

∫ x

0
φ(y)dy−λ

∫ x

0
F(x− y)φ(y)dy,

= cφ(0)+λ

∫ x

0

(
1−F(x− y)

)
φ(y)dy,

= cφ(0)+λ

∫ x

0
F(x− y)φ(y)dy.

(4.4)

Therefore we get,

φ(x) = φ(0)+
λ

c

∫ x

0
F(x− y)φ(y)dy. (4.5)

This means that 4.5 can be expressed as a linear VIE of the second kind

φ(x) = g(x)+
∫ x

0
K(x− y)φ(y)dy, (4.6)

whereby g(x) = φ(0) is the forcing function and K(x− y) = λF(x−y)
c is the kernel with F(x−

y) = 1−F(x− y).

This study focuses on solving an equation of the form 4.5, by transforming it into an ODE, and
later into a system of ODEs that can be solved numerically by using the fourth order Runge-
Kutta Method given by equation 3.57.

Now, by using the exponential distribution given by equation 3.53 and with the help of Leibniz
Integral Rule we transform this VIE into an ODE of third order.

Consider exponential distribution given by

f (y) = βe−βy,

F(y) = 1− e−βy,

dF(y) = βe−βydy.

(4.7)

42



Then F(x− y) = 1−F(x− y) = e−β (x−y) .

Equation 4.5 becomes

φ(x) = φ(0)+
λ

c

∫ x

0
e−β (x−y)

φ(y)dy. (4.8)

Since φ(0) ∈ R then differentiate throughout with respect to x gives

φ
′(x) =

d
dx

(
λ

c

∫ x

0
e−β (x−y)

φ(y)dy
)
=

λ

c
d
dx

(∫ x

0
e−β (x−y)

φ(y)dy
)
. (4.9)

But we know from Leibniz Integral Rule given by equation 1.13 ;-

d
dx

(∫ b(x)

a(x)
F(x,y)dy

)
=
∫ b(x)

a(x)

∂

∂x
(F(x,y))dy+F(x,b(x))

db(x)
dx

−F(x,a(x))
da(x)

dx
. (4.10)

Then in equation 4.8 letting a(x) = 0,b(x) = x and F(x,y) = e−β (x−y)φ(y) we have;

∂

∂xF(x,y) =−βe−β (x−y)φ(y) , da(x)
dx = 0 and db(x)

dx = 1 .

Then upon using equation 1.13 we have

d
dx

[∫ x

0
e−β (x−y)

φ(y)dy
]
=−β

∫ x

0
e−β (x−y)

φ(y)dy+φ(x). (4.11)

Thus, equation 4.9 becomes

φ
′(x) =

d
dx

(
λ

c

∫ x

0
e−β (x−y)

φ(y)dy
)
=

λ

c

[
−β

∫ x

0
e−β (x−y)

φ(y)dy+φ(x)
]
. (4.12)

Therefore
φ
′(x) =

−λβ

c

[∫ x

0
e−β (x−y)

φ(y)dy
]
+

λ

c
φ(x). (4.13)

Differentiating once again throughout with respect to x we get

φ
′′(x) =

−λβ

c
d
dx

[∫ x

0
e−β (x−y)

φ(y)dy
]
+

λ

c
φ
′(x). (4.14)

Then using the same procedure with the help of equation 4.9 and simplifying we have;

φ
′′(x) =

λ

c
φ
′(x)− λβ

c
φ(x)+

λβ 2

c

[∫ x

0
e−β (x−y)

φ(y)dy
]
. (4.15)

Now, we differentiate 4.15 for the last time to get a third order ODE

φ
′′′(x) =

λ

c
φ
′′(x)− λβ

c
φ
′(x)+

λβ 2

c
d
dx

[∫ x

0
e−β (x−y)

φ(y)dy
]
. (4.16)

43



Then using the same procedure with the help of equations 3.41 and 4.8 with simplification we
have;

φ
′′′(x) =

λ

c
φ
′′(x)− λβ

c
φ
′(x)+

λβ 2

c
φ(x)− λβ 3

c

(
β −βe−βx). (4.17)

Now, we transform a third order ODE given by equation 4.17 into a system of first order ODEs
to be solved by the fourth order Runge-Kutta Method given by equation 3.57.

Letting Z1 = φ(x), Z2 = φ ′(x) = Z′
1 and Z3 = φ ′′(x) = Z′

2 then the following system of first
order ODEs is obtained

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =

λ

c Z3 − λβ

c Z2 +
λβ 2

c Z1 − λβ 3

c

(
β −βe−βx). (4.18)

Now, this system 4.18 of first order ODEs is solved numerically using the fourth order
Runge–Kutta method given by equation 3.57, implemented using MATLAB codes and results
are discussed. Values of the parameters used for simulations are presented in Table 3.

We observe clearly in Fig. 2(a) that, as initial surplus increases the survival function also
increases this in turn will increase the survival in the Cramér-Lundberg model. It is further
observed in Fig. 2(b) that the increase in survival function tend to reduce with respect to
intensity of the counting process this suggest that the counting process should be high for faster
survival increase in the Cramér-Lundberg model.
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Figure 2: Behaviour of the survival function against the initial surplus
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4.2.1 Survival in the Cramér-Lundberg Model Compounded by Investments

In this section we are interested to study the effect of investments on the increase of the survival
in the Cramér-Lundberg model. We consider a Cramér-Lundberg model given by equation 3.1
then we shall compound this model by a constant force of interest so that we can study how the
value of the investment rate affects the survival in the Cramér-Lundberg model.

Compounding this model 3.1 by a constant force of interest we have

Xt = p+ ct −
Nt

∑
i=1

Yi + ri

∫ t

0
X(y)dy , t ≥ 0, (4.19)

where ri is the investment rate.

Then according to Kasozi and Paulsen (2005) the φ(x) for equation 4.19 satisfies the VIDE
given by equation 4.20 ;-

(rix+ c)φ ′(x)+λ

∫ x

0

(
φ(x− y)−φ(x)

)
dF(y) = 0. (4.20)

Now, Integrating by parts equation 4.20 on [0;x] will transform it into a linear VIE of the second
kind that can easily be converted into an ODE. That is,

[
(riz+ c)φ(z)

]x
0 − ri

∫ x

0
φ(z)dz+λ

∫ x

0

(
F(x− y)φ(y)−φ(y)

)
dy = 0. (4.21)

Then

(rix+ c)φ(x)− cφ(0) = ri

∫ x

0
φ(y)dy−λ

∫ x

0

(
[−1+F(x− y)]φ(y)

)
dy. (4.22)

Then we have

φ(x) =
c

rix+ c
φ(0)+

ri

rix+ c

∫ x

0
φ(y)dy+

λ

rix+ c

∫ x

0

(
[1−F(x− y)]φ(y)

)
dy,

=
c

rix+ c
φ(0)+

ri

rix+ c

∫ x

0
φ(y)dy+

λ

rix+ c

∫ x

0
F(x− y)φ(y)dy,

=
c

rix+ c
φ(0)+

∫ x

0

ri +λF(x− y)
rix+ c

φ(y)dy.

(4.23)

This means that equation 4.23 can be expressed as a linear VIE of the second kind

φ(x) = g(x)+
∫ x

0
K(x− y)φ(y)dy, (4.24)

whereby g(x) = c
rix+cφ(0) is the forcing function and K(x− y) = ri+λF(x−y)

rix+c is the kernel with
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F(x−y) = 1−F(x−y). Now, using the same procedures this VIE is transformed into an ODE
of third order.

By using equation 4.5 then 4.23 become

φ(x) =
c

rix+ c
φ(0)+

∫ x

0

ri +λe−β (x−y)

rix+ c
φ(y)dy. (4.25)

Differentiate throughout with respect to x we get

φ
′(x) =

d
dx

(
c

rix+ c
φ(0)+

∫ x

0

ri +λe−β (x−y)

rix+ c
φ(y)dy

)
,

=
d
dx

(
c

rix+ c
φ(0)

)
+

d
dx

(∫ x

0

ri +λe−β (x−y)

rix+ c
φ(y)dy

)
.

(4.26)

Since φ(0) ∈ R then

d
dx

(
c

rix+ c
φ(0)

)
=

−ric
(rix+ c)2 φ(0)+

c
rix+ c

φ
′(0) =

−ric
(rix+ c)2 φ(0). (4.27)

Also by using Leibniz integral rule we get

d
dx

(∫ x

0

ri +λe−β (x−y)

rix+ c
φ(y)dy

)
=
∫ x

0

(rix+ c)(−λβe−β (x−y))+((ri)
2 + riλe−β (x−y))

(rix+ c)2 φ(y)dy

+
ri +λ

rix+ c
φ(x).

(4.28)

Then equation 4.26 can be written as

φ
′(x)=

ri +λ

rix+ c
φ(x)− ric

(rix+ c)2 φ(0)+
∫ x

0

(rix+ c)(−λβe−β (x−y))+((ri)
2 + riλe−β (x−y))

(rix+ c)2 φ(y)dy.

(4.29)
Differentiate once again throughout with respect to x we get

φ
′′(x)=

d
dx

[
ri +λ

rix+ c
φ(x)− ric

(rix+ c)2 φ(0)+
∫ x

0

(rix+ c)(−λβe−β (x−y))+((ri)
2 + riλe−β (x−y))

(rix+ c)2 φ(y)dy
]
.

(4.30)
Then

φ
′′(x) =

d
dx

[
ri +λ

rix+ c
φ(x)

]
− d

dx

[
ric

(rix+ c)2 φ(0)
]

+
d
dx

[∫ x

0

(rix+ c)(−λβe−β (x−y))+((ri)
2 + riλe−β (x−y))

(rix+ c)2 φ(y)dy
]
.

(4.31)
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Differentiating the first two terms we have

φ
′′(x) =

ri + c
rix+ c

φ
′(x)− (ri)

2 +λ ri

(rix+ c)2 φ(x)− 2(ri)
3cx+2(ri)

2c
(rix+ c)4 φ(0)

+
d
dx

[∫ x

0

(rix+ c)(−λβe−β (x−y))+((ri)
2 + riλe−β (x−y))

(rix+ c)2 φ(y)dy
]
.

(4.32)

Then with the help of Leibniz integral rule we get

φ
′′(x) =

ri + c
rix+ c

φ
′(x)− (ri)

2 +λ ri

(rix+ c)2 φ(x)− 2(ri)
3cx+2(ri)

2c
(rix+ c)4 φ(0)

+
∫ x

0

βλ (ri +β )(rix+ c)− riλ (β +2ri)−2(ri)
3

rix+ c
e−β (x−y)

φ(y)dy

+
(ri)

2 +λ ri −λβ (rix+ c)
(rix+ c)2 φ(x).

(4.33)

Simplifications gives

φ
′′(x) =

ri + c
rix+ c

φ
′(x)− λβ

rix+ c
φ(x)− 2(ri)

3cx+2(ri)
2c

(rix+ c)4 φ(0)

+
∫ x

0

βλ (ri +β )(rix+ c)− riλ (β +2ri)−2(ri)
3

rix+ c
e−β (x−y)

φ(y)dy.

(4.34)

Now, we differentiate equation 4.34 for the last time to get a third order ODE that can be
converted into a system of ODEs that can be solved numerically by using the fourth order
Runge–Kutta method.

φ
′′′(x) =

d
dx

(
ri + c
rix+ c

φ
′(x)
)
− d

dx

(
λβ

rix+ c
φ(x)

)
− d

dx

(
2(ri)

3cx+2(ri)
2c

(rix+ c)4 φ(0)
)

+
d
dx

(∫ x

0

βλ (ri +β )(rix+ c)− riλ (β +2ri)−2(ri)
3

rix+ c
e−β (x−y)

φ(y)dy
)
.

(4.35)

Differentiation of the first three terms gives

φ
′′′(x) =

ri + c
rix+ c

φ
′′(x)− ri(ri + c)

(rix+ c)2 φ
′(x)− λβ

rix+ c
φ
′(x)

+
λβ ri

(rix+ c)2 φ(x)+
(ri)

2c((ri)
2x+1)−2(ri)

3c(rix+ c)
(rix+ c)5 φ(0)

+
d
dx

(∫ x

0

βλ (ri +β )(rix+ c)− riλ (β +2ri)−2(ri)
3

rix+ c
e−β (x−y)

φ(y)dy
)
.

(4.36)

Then using the same procedure with the help of Leibniz integral rule and equation 3.41 we
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have;

φ
′′′(x) =

(
ri + c
rix+ c

)
φ
′′(x)−

(
ri(ri + c)
(rix+ c)2 +

λβ

rix+ c

)
φ
′(x)

+

(
βλ (ri +β )(rix+ c)− riλ (β +2ri)−2(ri)

3

rix+ c
+

λβ ri

(rix+ c)2

)
φ(x).

(4.37)

Now, we transform a third order ODE given by equation 4.37 into a system of first order ODEs
to be solved by the fourth order Runge-Kutta Method given by equation 3.57.

Letting Z1 = φ(x), Z2 = φ ′(x) = Z′
1 and Z3 = φ ′′(x) = Z′

2 then the following system of first
order ODEs is obtained

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =

(
ri+c
rix+c

)
Z3 −

(
ri(ri+c)
(rix+c)2 +

λβ

rix+c

)
Z2 +

(
βλ (ri+β )(rix+c)−riλ (β+2ri)−2(ri)

3

rix+c + λβ ri
(rix+c)2

)
Z1.

(4.38)

Now, using similar approach this system 4.38 of first order ODEs is solved numerically using
the fourth order Runge–Kutta method given by equation 3.57, implemented using MATLAB
codes and results are discussed. Values of the parameters used for simulations are presented in
Table 3.

We observe in Fig. 3(a) that, as initial surplus increases the survival function also increases
because the company become more liquid as surplus increases, as a result it is expected that
survival in the Cramér-Lundberg model will be increased. In addition to that it is also observed
in Fig. 3(b) that the rate of increase in survival function tend to increase with respect to the
value of the investment rate. For example, we see that using ri = 0.05 (that is surplus is invested
at 5%) results in lower survival function than the one obtained when the surplus is invested at
10% (that is, when ri = 0.1) and 20%(that is, when ri = 0.2).
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Figure 3: Behaviour of the survival function against the investment rate

4.2.2 Survival in the Cramér-Lundberg Model Compounded by Refinancing

Now we are interested to study the effect of refinancing on the survival in the Cramér-Lundberg
model. We consider the Cramér-Lundberg model 3.1 and compound it by a refinancing process.

Compounding this model 3.1 by a refinancing process we have

Xt = p+ ct −
Nt

∑
i=1

Yi +Mt , t ≥ 0, (4.39)

where Mt is the capital injected at time t. Let δ ≥ 0 be a preference rate to refinancing such
that δ > 0 means that the investor prefers refinancing tomorrow to refinancing today while
δ = 0 means investor prefers not to refinance. Then, according to Eisenberg (2010) the φ(x)

for equation 4.39 satisfies the VIDE given by equation 4.40 ;-

cφ
′(x)+λ

∫ x

0

(
φ(x− y)−φ(x)

)
dF(y)− (δ +λ )φ(x) = 0. (4.40)

Now, Integrating equation 4.40 by part on [0,x] will transform it into a linear VIE of the second
kind that can easily be converted into an ODE. That is,

c
(
φ(x)−φ(0)

)
+λ

∫ x

0
F(x− y)φ(y)dy−λ

∫ x

0
φ(y)dy− (δ +λ )

∫ x

0
φ(y)dy = 0. (4.41)
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cφ(x) = cφ(0)+λ

∫ x

0
φ(y)dy−λ

∫ x

0
F(x− y)φ(y)dy+(δ +λ )

∫ x

0
φ(y)dy,

= cφ(0)+λ

∫ x

0

(
1−F(x− y)

)
φ(y)dy+(δ +λ )

∫ x

0
φ(y)dy,

= cφ(0)+λ

∫ x

0
F(x− y)φ(y)dy+(δ +λ )

∫ x

0
φ(y)dy

. (4.42)

Therefore we get,

φ(x) = φ(0)+
λ

c

∫ x

0
F(x− y)φ(y)dy+

δ +λ

c

∫ x

0
φ(y)dy. (4.43)

This can be written as

φ(x) = φ(0)+
∫ x

0

δ +λ +λF(x− y)
c

φ(y)dy. (4.44)

This means that 4.44 can be expressed as a linear VIE of the second kind

φ(x) = g(x)+
∫ x

0
K(x− y)φ(y)dy. (4.45)

whereby g(x) = φ(0) is the forcing function and K(x− y) = δ+λ+λF(x−y)
c is the kernel with

F(x− y) = 1−F(x− y). Now, using the same procedure this VIE is transformed into an ODE
of third order.

By substituting F(x− y) from equation 4.5 in 4.44 results in 4.46 as follows;-

φ(x) = φ(0)+
∫ x

0

δ +λ +λe−β (x−y)

c
φ(y)dy. (4.46)

Since φ(0) is a constant differentiating throughout with respect to x gives

φ
′(x) =

d
dx

(
φ(0)+

∫ x

0

δ +λ +λe−β (x−y)

c
φ(y)dy

)
,

=
d
dx

(
φ(0)

)
+

d
dx

(∫ x

0

δ +λ +λe−β (x−y)

c
φ(y)dy

)
,

=
d
dx

(∫ x

0

δ +λ +λe−β (x−y)

c
φ(y)dy

)
.

(4.47)

Now, Leibniz integral rule gives

φ
′(x) =

δ +2λ

c
φ(x)+

∫ x

0

δ +λ −λβe−β (x−y)

c
φ(y)dy. (4.48)
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Differentiate once again throughout with respect to x we get

φ
′′(x) =

δ +2λ

c
φ
′(x)+

d
dx

(∫ x

0

δ +λ −λβe−β (x−y)

c
φ(y)dy

)
. (4.49)

Then by Leibniz integral rule we get

φ
′′(x) =

δ +2λ

c
φ
′(x)+

δ +λ −λβ

c
φ(x)+

∫ x

0

δ +λ +λβ 2e−β (x−y)

c
φ(y)dy. (4.50)

Now, we finally differentiate 4.50 to get a third order ODE that can be converted into a system
of ODEs to be solved numerically by using the fourth order Runge–Kutta method.

φ
′′′(x) =

δ +2λ

c
φ
′′(x)+

δ +λ −λβ

c
φ
′(x)+

d
dx

(∫ x

0

δ +λ +λβ 2e−β (x−y)

c
φ(y)dy

)
. (4.51)

Then using the same procedure with the help of Leibniz integral rule and equation 3.41 we
have;

φ
′′′(x) =

δ +2λ

c
φ
′′(x)+

δ +λ −λβ

c
φ
′(x)+

δ +λ +λβ 2

c
φ(x). (4.52)

Now, we transform the third order ODE given by equation 4.52 into a system of first order
ODEs to be solved by the fourth order Runge-Kutta Method given by equation 3.57.

Letting Z1 = φ(x), Z2 = φ ′(x) = Z′
1 and Z3 = φ ′′(x) = Z′

2 leads to the following system of first
order ODEs 

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =

δ+2λ

c Z3 +
δ+λ−λβ

c Z2 +
δ+λ+λβ 2

c Z1.

(4.53)

By using similar approach, this system of first order ODEs is solved numerically using the
fourth order Runge–Kutta method given by equation 3.57, implemented using MATLAB and
the results are discussed. Values of the parameters used for simulations are presented in Table
3.

We observe in Fig. 4(a) that, with the same reason of increase in liquidity, the survival function
increases with an increase in initial surplus, it is further observed in Fig. 4(b) that as preference
rate to refinancing tomorrow is increased the survival function also increases this indicate that
when the insurance company is about to reduce its survival (get ruin) then the decision to
refinance is much better to overcome the situation.
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Figure 4: Behaviour of the survival function against the preference rate to refinancing

4.3 Survival in the Diffusion-Perturbed Model

We consider the survival in a Cramér-Lundberg model when the model is perturbed. Let us
consider a perturbed Cramér-Lundberg model given by equation 3.3. This model is the same
as model 3.4 when there is no refinancing.

By using Itô’s formula we can obtain the infinitesimal generator for Xt in 3.3 given by an
equation 4.54;-

L g(x) =
1
2

σ
2g′′(x)+ cg′(x)−λg(x)+λ

∫ x

0
g(x− y)dF(y). (4.54)

This gives the VIDE given by equation 4.55;-

1
2

σ
2
φ
′′(x)+ cφ

′(x)−λφ(x)+λ

∫ x

0
φ(x− y)dF(y) = 0. (4.55)

Using 4.6 we get

1
2

σ
2
φ
′′(x)+ cφ

′(x)−λφ(x)+λ

∫ x

0
φ(x− y)βe−βydy = 0. (4.56)

This can be written as

φ
′′(x) =− 2c

σ2 φ
′(x)+

2λ

σ2 φ(x)− 2λ

σ2

∫ x

0
φ(x− y)βe−βydy. (4.57)
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Then differentiating throughout yields.

φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2λ

σ2 φ
′(x)− 2λ

σ2
d
dx

(∫ x

0
φ(x− y)βe−βydy

)
. (4.58)

Using Leibniz integral rule and equation 3.41 we get;

φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2λ

σ2 φ
′(x)− 2λ

σ2 e−βx
φ(0). (4.59)

For σ2 > 0 we have
φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2λ

σ2 φ
′(x). (4.60)

Now, we transform the third order ODE 4.60 into a system of first order ODEs to be solved by
the fourth order Runge-Kutta Method given by equation 3.57.

Letting Z1 = φ(x), Z2 = φ ′(x) = Z′
1 and Z3 = φ ′′(x) = Z′

2 leads to the following system of first
order ODEs 

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =− 2c

σ2 Z3 +
2λ

σ2 Z2.

(4.61)

By a similar approach, this system of first order ODEs is solved numerically using the fourth or-
der Runge–Kutta method given by equation 3.57, implemented using MATLAB and the results
are discussed. Values of the parameters used for simulations are presented in Table 3.

We observe in Fig. 5(a) that, with the same reason of increase in liquidity, the survival function
increases with the increase in initial surplus, it is further seen that when volatility coefficient is
increased the survival function tends to decrease indicating that it is much risk and very likely
to have more survival when the perturbation is low.
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Figure 5: Behaviour of the survival function against diffusion coefficient in perturbed model

4.3.1 Survival in the Diffusion-Perturbed Model Compounded by Investment

We now consider the effect of investments on the increase of survival in the Cramér-Lundberg
model when there is perturbation in the model. Let us consider a perturbed Cramér-Lundberg
model given by equation 3.3 and then compound this model by a constant force of interest so
that we can study how the value of the investment rate affects the survival in the perturbed
Cramér-Lundberg model.

Compounding this model 3.3 by a constant force of interest we have

Xt = p+ ct +σWt −
Nt

∑
i=1

Yi + ri

∫ t

0
X(y)dy , t ≥ 0, (4.62)

where ri is the investment rate.

By using Itô’s formula we can obtain the infinitesimal generator for Xt given by an equation
4.63 ;-

L g(x) =
1
2

σ
2g′′(x)+(rix+ c)g′(x)−λg(x)+λ

∫ x

0
g(x− y)dF(y). (4.63)

This gives the VIDE given by equation 4.64

1
2

σ
2
φ
′′(x)+(rix+ c)φ ′(x)−λφ(x)+λ

∫ x

0
φ(x− y)dF(y) = 0. (4.64)
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Using 4.6 we get

1
2

σ
2
φ
′′(x)+(rix+ c)φ ′(x)−λφ(x)+λ

∫ x

0
φ(x− y)βe−βydy = 0. (4.65)

This can be written as

φ
′′(x) =−2(rix+ c)

σ2 φ
′(x)+

2λ

σ2 φ(x)− 2λ

σ2

∫ x

0
φ(x− y)βe−βydy. (4.66)

Then differentiating throughout we have.

φ
′′′(x) =−2(rix+ c)

σ2 φ
′′(x)+

2(λ − ri)

σ2 φ
′(x)− 2λ

σ2
d
dx

(∫ x

0
φ(x− y)βe−βydy

)
. (4.67)

Applying Leibniz integral rule and equation 3.41 we get;

φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2(λ − ri)

σ2 φ
′(x)− 2λ

σ2 e−βx
φ(0). (4.68)

For σ2 > 0 we have
φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2(λ − ri)

σ2 φ
′(x). (4.69)

Now, we transform the third order ODE given by equation 4.60 into a system of first order
ODEs to be solved by the fourth order Runge-Kutta Method given by equation 3.57.

Letting Z1 = φ(x), Z2 = φ ′(x) = Z′
1 and Z3 = φ ′′(x) = Z′

2 leads to the following system of first
order ODEs 

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =− 2c

σ2 Z3 +
2(λ−ri)

σ2 Z2.

(4.70)

By a similar approach, this system of first order ODEs is solved numerically using the fourth or-
der Runge–Kutta method given by equation 3.57, implemented using MATLAB and the results
are discussed. Values of the parameters used for simulations are presented in Table 3.

We observe in Fig. 6(a) that, with the same reason of increase in liquidity, the survival function
increases with the increase in initial surplus, it is further observed in Fig. 6(b) that as the value
of the investment rate was increased the survival function was decreasing indicating that in
the perturbed model investment should be made with careful observation because increasing
investment rate without considering which kind of investment should be made, that is risk or
risk-free, may lead to lower survival to the insurance company.
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Figure 6: Behaviour of the survival function against the investment rate in perturbed model

4.3.2 Survival in the Diffusion-Perturbed Model Compounded by Refinancing

In this section we study the effect of refinancing on the increase of survival in the perturbed
Cramér-Lundberg model. Let us consider a perturbed Cramér-Lundberg model given by equa-
tion 3.3 and then we shall compound this model by refinancing to get new model for this
investigation purpose.

Compounded this model 3.3 by a refinancing process we have

Xt = p+ ct +σWt −
Nt

∑
i=1

Yi +Mt , t ≥ 0, (4.71)

where Mt is the capital injected/refinanced at time t. Once again let δ ≥ 0 be a preference rate to
refinancing such that δ > 0 means that the investor prefers refinancing tomorrow to refinancing
today while δ = 0 means investor prefers not to refinance. Then, according to Eisenberg (2010)
the φ(x) for equation 4.71 satisfies the VIDE given by equation 4.72 ;-

1
2

σ
2
φ
′′(x)+ cφ

′(x)− (λ +δ )φ(x)+λ

∫ x

0
φ(x− y)dF(y) = 0. (4.72)

Using 4.6 we get

1
2

σ
2
φ
′′(x)+ cφ

′(x)− (λ +δ )φ(x)+λ

∫ x

0
φ(x− y)βe−βydy = 0. (4.73)
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This can be written as

φ
′′(x) =− 2c

σ2 φ
′(x)+

2(λ +δ )

σ2 φ(x)− 2λ

σ2

∫ x

0
φ(x− y)βe−βydy. (4.74)

Then differentiating throughout we have.

φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2(λ +δ )

σ2 φ
′(x)− 2λ

σ2
d
dx

(∫ x

0
φ(x− y)βe−βydy

)
. (4.75)

Using Leibniz integral rule and equation 3.41 we get;

φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2(λ +δ )

σ2 φ
′(x)− 2λ

σ2 e−βx
φ(0). (4.76)

For σ2 > 0 we have
φ
′′′(x) =− 2c

σ2 φ
′′(x)+

2(λ +δ )

σ2 φ
′(x). (4.77)

Now, we transform a third order ODE given by equation 4.77 into a system of first order ODEs
to be solved by the fourth order Runge-Kutta Method given by equation 3.57.

Letting Z1 = φ(x), Z2 = φ ′(x) = Z′
1 and Z3 = φ ′′(x) = Z′

2 leads to the following system of first
order ODEs 

Z′
1 = Z2,

Z′
2 = Z3,

Z′
3 =− 2c

σ2 Z3 +
2(λ+δ )

σ2 Z2.

(4.78)

By using similar approach, this system 4.78 of first order ODEs is solved numerically using the
fourth order Runge–Kutta method given by equation 3.57, implemented using MATLAB codes
and results are discussed. Values of the parameters used for simulations are presented in Table
3.

We observe in Fig. 7(a) that the survival function increases as initial surplus increases due to
increase in company’s liquidity, we further observe in Fig. 7(b) that as the preference rate to
refinancing increases the survival function also increases this indicate the refinancing behave in
the same way as in non-perturbed model, thus when the insurance company is about to reduce
its survival (get ruin) the decision to refinance is better to be taken early for the sake of securing
the company.
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Figure 7: Behaviour of the survival function against preference rate to refinancing in perturbed
model

4.4 Numerical Results for the Value Function

We proceed by analysing numerically the optimal value function given by equation 3.28. First
we present a 3D plot shown in Fig. 8 that shows how the optimal value function behaves
generally over initial wealth and time. Then, upon using a plot of value function against time
shown in Fig. 9, the behaviours of the optimal value function is further studied against absolute
risk aversion of the given utility function. Finally, the behaviour of the optimal value function
is also studied against the volatility of the stock price, this can be observed in Fig. 10.

4.4.1 Numerical Experiments and Discussion of Results of the Value Function

Now, we analytically study the mathematical characteristics of the optimal value function given
by equation 3.28. Mainly, the target in here was to maximise the exponential utility of the
terminal wealth. Values of the parameters used for simulations are presented in Table 3 some
were assumed and some were obtained from other studies.

In Fig. 8 we observe an increase in optimal value function at terminal time, this increase is
observed to be irrespective of the initial wealth. Finally the value function attain its maximum
value and this value is maintained for all time and initial wealth.
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Figure 8: Dependence of the value function over the initial wealth and time

In Fig. 9 we observe that an insurance company has increasing absolute risk aversion (IARA)
but also as wealth increases the value function also increases very rapidly at initial time. Ac-
cording to Johnson (2017) this implies that as wealth increases an insurance company will hold
fewer investments in risky assets.
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Figure 9: Behaviour of the value function against the absolute risk aversion and capital
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In Fig. 10(a) we observe like two graphs coincide but a zoomed graph given in Fig. 10(b) we
clearly observe that the value function increase with the increase on the volatility of the stock
price which in turns it indicate that taking relatively higher risk on risk assets will give the
insurance company a much better expected wealth utility. Actually this results resemble with
the results of Hu et al. (2018) since insurance company’s utility maximazation can really be
realized for a large volatility of the stock price.
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Figure 10: Behaviour of the value function against the volatility of the stock price

Also in Fig. 11(a) we observe like two graphs coincides but a zoomed graph given in Fig.
11(b) clearly shows that the value function increases with the increase in the possibility of
recovery of the insurance company since we see that with the possibility of recovery of 25%
the value function has small value as compared to 80% of possibility of recovery. In turn, this
indicates that when an insurance company has a higher possibility of recovery it will have a
better expected wealth utility since its value function is somehow larger.
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Figure 11: Behaviour of the value function against possibility of recovery of insurance company

4.5 Numerical Results for the Survival Function

In this section, the system 3.58 of first order ODEs is solved numerically using the fourth
order Runge–Kutta method given by equation 3.57, implemented using MATLAB codes and
results are discussed. Values of the parameters used for simulations are presented in Table
3. Generally, we observe similar numerical behavior in the fourth year, where the survival
function increases because of liquidity improvement in the insurance company due to capital
injection and investments.

In Fig. 12 we observe an increase in survival function at the fourth year due to liquidity in
the insurance company. The survival function is observed to increase as the intensity of the
counting process increases. This is due to the fact that as the counting process increases the
insurance company services its clients much faster. As a result it becomes healthier and hence
its probability of survival is increased.
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Figure 12: Dependence of the survival function on the intensity of the counting process

In Fig. 13 we observe that an insurance company has increasing survival function due to capital
injection that leads to more liquidity but we further note that when instantaneous rate of stock
return is increased the survival function is decreasing due to the fact that the risk is much higher.
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Figure 13: Dependence of the survival function on the instantaneous rate of stock return
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Since return volatility is a measure of the dispersion of returns for a given security, we observe
in Fig. 14, that an insurance company has inverse relationship with the return volatility, we
note that when return volatility is increased just by 0.02 the survival function is decreasing very
quickly due to the fact that the higher the volatility, the riskier the security. These results show
that the survival function is extremely sensitive to the return volatility and support the earlier
observations on the instantaneous rate of stock return. As a result, this study suggests that more
investments should be made in risk-free assets rather than in risky assets when this situation
occurs.
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Figure 14: Dependence of the survival function on the return volatility

4.6 Conclusion

In this chapter, we presented and discussed the study findings. We analysed the survival func-
tion in various scenarios and established that it increases with the surplus process and invest-
ment rate while it decreases with the increase in the diffusion coefficient. Additionally, we
analysed the value function in various scenarios and found out that it increases with the volatil-
ity of the stock price, the possibility of recovery, and the intensity of the counting process.
However it decreases with the increase in the instantaneous rate of stock return. In the next
chapter we present the general conclusion and recommendations basing on the research find-
ings and we suggest some possible problems for future research.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, a way of maximizing the exponential utility of terminal wealth has been pro-
posed. In addition, a risk process compounded by refinancing and investment was formulated.
Thereafter a stochastic differential equation for the wealth was derived and an optimal control
problem for maximizing the expected utility of terminal wealth was formulated and solved. An
approach to treating the possibility of recovery after ruin for insurance companies was devel-
oped and proposed for the first time in insurance mathematics.

The study investigated the behaviour of the value function numerically and the results indicated
that the value function increases irrespective of the initial wealth and time. The results on
studying the behaviour of the value function with respect to the volatility of the stock price
were similar to those of Hu et al. (2018) since it was observed that insurance company’s utility
maximization can be realized for large volatility of the stock price.

Additionally, this study observed that in case ruin occurs and a company performs refinancing,
the value function increases very rapidly with the increase in refinancing amount. This obser-
vation was also supported by the behaviour of value function with respect to the possibility of
recovery after ruin. It was also observed that as the possibility of recovery after ruin increases
the value function also increases.

On the other hand, this study used the basic Cramér-Lundberg model to derive the Volterra
Integro Differential Equation (VIDE) for the survival function of the insurance company. After
some conversions, the VIDE was solved numerically by the Runge-Kutta method of order four.
The results indicated that it is possible to maximise the survival function for the insurance
company’s portfolio and this in turns helps the company to reduce the possibility of ruin. The
study further established that increasing the claim intensity has a positive effect in terms of
increasing the survival function and hence reducing probability of ruin.
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5.2 Recommendations

This study didn’t consider the risks associated with refinancing or investment caused by un-
foreseen events such as war, credit crunch like what happened in 2008, and other unpredictable
events. Based on the research findings, this study recommends all insurance companies to have
well-trained staff in risk management who can study the company’s portfolio and give sugges-
tions to managers on how to avoid or minimize ruin and how to recover in case ruin occurs.

Also this study recommends that insurance companies should take steps to increase their claim
intensities since this has the positive impact in improving the companies’ services to customers.
The study also recommends that insurance companies should invest more in risk-free assets
when the instantaneous rate of stock return and return volatility are much higher or increased
as this decision will reduce the company’s risk.

The following are the recommendations for the possible future research areas as an extension
of this research:

(i) Incorporation of the use of stochastic interest rates instead of the fixed one for both stocks
and bonds to realize the actual fluctuation of the interest rates at any given time.

(ii) Due to some constraints and the wideness of the research, this study did not incorporate
data collection, and thus model validation was not part of the study. Other researchers can
check the possibility of model validation and the inclusion of reinsurance in the model.

(iii) To solve the obtained systems of ODEs by using MAPLE SOFTWARE. It will lead to
analytical solutions ready for further analysis.

65



REFERENCES

Abbas, A. O., & Ning, L. (2016). Factors that drive the development of insurance industry in
tanzania. World Journal of Finance and Investment Research, 1(1), 1–12.

Abbas, A. O., & Yushan, C. (2016). Does effective working capital management increase prof-
itability? evidence: Tanzania insurance company. Journal of Accounting and Financial

Management, 2(4), 12–20.

Ankirchner, S., Klein, M., & Kruse, T. (2019). A verification theorem for optimal stop-
ping problems with expectation constraints. Applied Mathematics & Optimization,
79(1), 145–177.

Asanga, S., Asimit, A., Badescu, A., & Haberman, S. (2014). Portfolio optimization un-
der solvency constraints: A dynamical approach. North American Actuarial Journal,
18(3), 394–416.

Asimit, A. V., Badescu, A. M., Siu, T. K., & Zinchenko, Y. (2015). Capital requirements and
optimal investment with solvency probability constraints. IMA Journal of Management

Mathematics, 26(4), 345–375.

Asmussen, S., & Albrecher, H. (2010). Ruin probabilities. Vol. 14. World scientific Singapore.

Badaoui, M., Fernández, B., & Swishchuk, A. (2018). An optimal investment strategy for
insurers in incomplete markets. Risks, 6(2), 31.

Belhaj, M. (2010). Optimal dividend payments when cash reserves follow a jump-diffusion
process. Mathematical Finance: An International Journal of Mathematics, Statistics

and Financial Economics, 20(2), 313–325.

Björk, T., Murgoci, A., & Zhou, X. Y. (2014). Mean–variance portfolio optimization with state-
dependent risk aversion. Mathematical Finance: An International Journal of Mathe-

matics, Statistics and Financial Economics, 24(1), 1–24.

Brachetta, M., & Ceci, C. (2019). Optimal proportional reinsurance and investment for stochas-
tic factor models. Insurance: Mathematics and Economics, 87, 15–33.

Brachetta, M., & Schmidli, H. (2019). Optimal reinsurance and investment in a diffusion model.
arXiv preprint arXiv:1903.12426.

Browne, S. (1995). Optimal investment policies for a firm with a random risk process: Ex-
ponential utility and minimizing the probability of ruin. Mathematics of Operations

Research, 20(4), 937–958.

66



Bulinskaya, E., Gusak, J., & Muromskaya, A. (2015). Discrete-time insurance model with cap-
ital injections and reinsurance. Methodology and Computing in Applied Probability,
17(4), 899–914.

Cai, J., & Xu, C. (2006). On the decomposition of the ruin probability for a jump-diffusion sur-
plus process compounded by a geometric brownian motion. North American Actuarial

Journal, 10(2), 120–129.
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Abstract. In this paper, we propose and analyze the perturbed mathematical model for 
modeling the portfolio of insurance companies with possibilities of recovery after ruin. 
Return on investment and refinancing are used as approaches for overcoming ruin. The 
model is analyzed for different cases of possibilities of recovery after ruin within [0, 1]. 
The results indicate that the return on investment plays an important role in reducing the 
ultimate ruin and that as the possibility of recovery for insurance companies increases the 
return on investment reduces the ruin at a fast rate. Finally, the study recommends that all 
insurance companies should have well trained staff in risk management who can study the 
company’s portfolio and gives suggestions to managers on how to avoid or minimize ruin 
and how to recover in case ruin occurs. 
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AMS Mathematics Subject Classification (2010): 37N40 

1. Introduction  
Risks affect many aspects of human life and in some cases may even result in financial 
loss. Therefore it is important to secure expensive property and insurance provides that 
security. In [1], Kasumo observed that the provision of insurance requires competent 
management as poor management may lead to the eventual ruin of the insurance 
company, resulting in its failure to fulfill its obligations. This happens when the insurer’s 
surplus level falls below zero, thus making the       company bankrupt.  
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According to [2] insurance refers to a contract that is represented by a policy 
where individuals or entities receive financial protections from a given insurance 
company against losses. In [3], Kozmenko and       Oliynyk have observed and suggested that 
in fulfilling its obligations, an insurance company will have a collection of investments 
that generate income to cover clients’ claims and this collection of investments for an 
insurance company is known as an insurance portfolio. In addition, an insurance company 
holding a portfolio with many liquid investments reduces the investor’s risk since these 
investments enables the company to fulfill claims whenever they arise.  

One of the best measures that an insurance company should take is risk 
management on its portfolio. Several measures are available for managing risk in an 
insurance company. Refinancing and investment are some of the measures to overcome 
the risks of the insurance company and give optimal returns to the shareholders. [4] 
reveals that using investment, the insurer distributes part of those risks to the paying 
investments which in turn can save a company to cover clients’ benefits during ruin. [5] 
worked under the martingale invariance hypothesis and assumed the existence of 
conditional density to study the optimal reinsurance and investment of the insurer where 
the surplus process of the insurer was assumed to satisfy a jump-diffusion process and 
the dynamics of the risky stock price followed a Heston model. They considered 
proportional reinsurance and also investment optimization problems for insurers existing 
in financial markets depending on risky stock assets, a savings account, and corporate 
bonds, while [6] studied ruin probability based on a dual risk model having risk-free 
investments. 

Through investment and refinancing strategies, insurers may protect themselves 
against any potentially big losses or at least ensure that their earnings will remain 
relatively stable when there is a possibility of recovery after ruin. In the literature (see, for 
example, [7,8,9]) many optimization problems have arisen as part of the risk management     
process to study how insurance companies can control ultimate ruin. I n  [10], studied  
how to optimize the control in investments and reinsurance problems for an insurer using 
a jump-diffusion risk process but with the independence of the Brownian motions while 
[4] studied the optimal investment and reinsurance problem for an insurer and a reinsurer 
using jump-diffusion processes. This paper seeks to establish the ways of minimizing ruin 
through portfolio management by maximizing insurance portfolio for the case of 
exponential utility function when there are possibilities of recovery after ruin. 

This paper is organized as follows: In Section 2, we propose a model for 
maximizing insurance portfolio for a case of exponential utility function when there        are 
possibilities of recovery after ruin. We investigated the behaviour of the value function 
for the proposed model. In Section 3 the numerical simulations were carried out and their 
results are presented. In the last section, we present the conclusion recommendation and 
possible extension of the paper. 

 
2. Model formulation and analysis  
We now present the model formulation and its analysis. In this work, we consider 
continuous time stochastic processes in the time interval [ ]T,0  where ∞<< T0 ..   A 
stochastic process is a family of random variables ( ) [ ]TttXX

,0∈=  defined on the probability 

space ),,( PFΩ  and valued in a measurable space ),( FΩ  and indexed by timet . For 
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each Ω∈ω , the mapping      ( ) [ ] ( )ωω ;,0: tXTtX →∈  is called the path of the process for the 
eventω . All stochastic quantities and random variables are defined on a large enough    
stochastic basis ( ) [ ] ),,,( ,0 PFF Tt∈Ω  satisfying the usual conditions, that is to say, 

( ) [ ]TtF ,0∈
 is right continuous and P -complete, P  is the probability measure defined on 

F and ( ) [ ]TtF ,0∈  is an augmented filtration. 

In reality, the income of the insurer is not deterministic, there exist fluctuations in the 
number of customers, claim arrivals, and premium income [11]. If both refinancing 
(capital injection) and investment are absent, then the basic model for the insurance 
process can be given by a perturbed risk process tX  defined by 

0,
,

1
,, ≥−++= 

=

tYWctpX
tXN

i
iXtXXt σ                               (1) 

In this case, c is the premium rate, that is the insurer’s premium income per unit time 
assumed to be received continuously and is calculated by the expected value principle, 
that is ( ) XXc µλθ+= 1 where 0>θ  is the relative safety loading of    the insurer. Also 

pX =0
  is the initial capital of the insurance company and 

XW  is a standard Brownian 

motion independent of the compound Poisson process
=

tXN

i
iXY

,

1
,
. Here Xλ  is the intensity of 

the counting process 
tXN ,
 for the claims and let 

XF  be the distribution function of the 

claims
iXY ,
. It is assumed that 

XF  is continuous and concentrated on[ )∞,0 . We interpret 

equation (1) above as follows: ct  is the premium income received by an insurance 
company up to timet . The Brownian term 

XXWσ  is meant to take care of small 

perturbations in    premium income and claim sizes, tXN ,  is the claim number process and 

iXY ,
 are claim sizes. It is assumed that  ( ) 00 =XF  and at least one of 

Xσ  or Xλ  is non-zero. 

A vast number of researchers have studied this classical risk process perturbed      by 
diffusion in the insurance industry, some of them being [1,4,11,12,13,14]. 

For refinancing process we let M be an increasing process with 0
0

=−M . The process 

with refinancing (capital injections) is denoted by tt
M
t MXX +=  with 

tX  being the surplus 

process and pX =0
. The capital injection process M  has to be chosen   such that 0≥M

tX

for all t  (almost surely); it could then be optimal to inject capital already before the 
process reaches zero. Therefore, by using equation (1) the model with refinancing will be 
given by equation (2) below;     

0,
,

1
,, ≥+−++= 

=
tMYWctpX t

N

i
iXtXX

M
t

tX

σ                               (2) 

For the investment process, we assume the risk-free (bond) price process is given by 
dtBrdB tt 0=                                                              (3)  

where 00 ≥r  is the risk-free interest rate, which is assumed to be constant. tB is the price of 

the risk-free bond at a timet . 
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According to [15] stocks are an important way for the company to raise funds. Let 
us also describe the risky asset (stock) price process by the Geometric Brownian Motion 
(GBM) given by 

tStStt dWSdtrSdS ,σ+=                                                           (4)  

where tS  is the price of t h e  stock at time t , 0≥r  is the expected instantaneous      

rate of stock return, 0≥Sσ  is the volatility of the stock price and 0:, ≥tW tS is a 

standard Brownian motion defined on the complete probability space  
( ) [ ] ),,,( ,0 PFF Tt∈Ω . [16] gave the generalized return on investment      process tR  as 

0,0, 0
1

,,

,

=≥++= 
=

RtSWrtR
tRN

i
iRtRRt σ                                      (5) 

where tRW ,  is a Brownian motion independent of the surplus process tR , also 
=

tRN

i
iRS

,

1
,

   

is a compound Poisson process with intensity Rλ which represents the sudden changes in 
income (jumps), the term 

tRRW ,σ  represents the fluctuation in income    of an insurance 

company and the rt  is the non-risky part of the investment process. If we assume 

0=Rλ , that is, there are no jumps, the resulting model which was also discussed by [17] 
is the Black- Scholes option pricing formula given by 

0,0, 0, =≥+= RtWrtR tRRt σ                                              (6) 

Equation (6) above is the return on investment model, where r is the risk-free part, hence 

rtRt = means that one unit invested at time zero will be worth rte at timet . 

 
2.1. Stochastic differential equation for the wealth 
In this section, a basic insurance process with investment, which is expressed by the 
stochastic differential equation for the wealth after refinancing, is formulated. Now let us 
consider the investment problem of an insurance company that seeks to transfer current 
wealth into the bond and stock. The company’s preference is to choose a dynamic 
portfolio strategy in order to maximize the expected utility of wealth at some future time 
T.  Therefore in order to describe      the company’s actions the portfolio strategy is 
formulated. 

Assume that the joint distribution of the tXW , and tSW ,  that are used is bivariate 

normal and we denote their correlation coefficient byρ , that is tWWE tStX ρ=][ ,, . The 

company needs to monitor its wealth, let the amount of money invested  in risky asset 
(stock) at time t  under investment policy π  be denoted by tπ , where { }tπ  is a 

portfolio strategy suitable and admissible control process, that  is to say tπ  satisfies 

∞< dt
T

t

0

2π  a.s., for all ∞<T . Let { }0, ≥tZt  denote the corresponding wealth process, 

then the dynamic of tZ  is given by 
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( ) M
t

t

t
t

M
t

t

t
tt dX

B

dB
X

S

dS
dZ +−+= ππ                                      (7) 

with 00 >= zZ  being the initial wealth of the company.  

By substituting equations (3) and (4) above into equation (7) then the wealth process with 
investment and refinancing will follow the stochastic differential equation 

( )( ) M
ttStSt

M
ttt dXdWdtrXrdZ ++−+= ,0 πσππ                            (8) 

where M
tX  is given by equation (2). 

2.2. Optimal control problem for maximizing the expected utility of terminal 
wealth 
In [18], the authors studied the problem of the expected utility of wealth in the discrete 
time for a given investor. In the study it was conjectured that minimizing the ruin 
probability is strictly related to maximizing the exponential utility of terminal wealth of 
the investor, the assumption behind the conjecture was that the investor is allowed to 
borrow an unlimited amount of money and without risk-free       interest rate. 

Let a strategy α  describe the stochastic process{ }tt M,π  , where tπ  the amount 

invested in the risky asset at time t  and tM  is the capital refinanced/injected at time t  

and denote the set of all admissible strategies bySα . Suppose now that the insurer is 

interested in maximizing the utility function of its terminal wealth,    say at timeT . The 

utility function ( )zu  is typically increasing and concave ( )( )0'' <zu . For a strategyα  
let’s define the utility attained by the insurer from     state z at time t  as follows;  

( ) ( )( ) ( )[ ]ztZTZuztV =Ε=,α                                              (9) 

Therefore the objective is to find the optimal value function 

( ) ( )ztVztV
S

,sup, α
αα∈

=                                                     (10) 

and the optimal strategy { }*** , tt Mπα  such that ( ) ( )ztVztV ,,* =α
. 

 
2.3. Maximizing the exponential utility of terminal wealth  
An ordinary investor under discrete time and space was studied by [18] where it was 

found that when the investor had an exponential utility function  such as ( ) zezu θ−−=
and aiming at maximizing the utility of terminal wealth at fixed terminal time, then the 
optimal policy was an investment of a fixed constant amount.        The conclusion given 
by a strategy was in general optimal for minimizing the probability of ruin or 
maximizing the probability of survival. 
Using equations (9) and (10) above, let *

tπ  denote the optimal policy and suppose that 

the company is now having an exponential utility of the form (11) below, where 0>γ

and 0>θ . 

( ) zezu θ

θ
γλ −−=                                                            (11) 
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This kind of utility function has constant absolute risk aversion (ARA) since

( ) ( ) θ=− zuzu ''' , it plays a very important role in actuarial and insurance mathematics 
at large. 
 
Theorem 2.1. The optimal policy of maximizing expected utility at a terminal time T is 
investing at each time Tt ≤ a constant amount given by 

SS
t

r

σ
ρ

θσ
π −= 2

*                                                           (12) 

Then the optimal value function becomes 

( ) ( ) ( ){ }θθ
θ
γλ QtTzztV −+−−= exp,                                     (13) 

where ( ).Q  is the quadratic function defined by 

( ) ( )
2

00
0

22

2
1

1
2
1








 −−
















 −−−−=
SS

M
t

rrrr
rXQ

σ
θ

σ
ρθρθ                     (14) 

Proof: For our problem of maximizing utility of terminal wealth at a fixed terminal time
T . Then the HJB equations for Tt < can be obtained as follows 

( ){ }
( ) ( )





=
=

zuzTV

ztVt
t

,

0,sup π
π l

                                                  (15) 

where ( ) ( )[ ]t

t T
zt ZuztV π

π
,sup, Ε=  this is the same as saying for each (t, z) we need to 

solve the nonlinear PDE of (15) and there after find the value of tπ  that will maximize 

the function (16) below 

( ) [ ] [ ] zztStSz
M
ttttt VVrXrrVf 12

2

1 22
00 ++++−+= πρσπσπππ                       (16) 

 
Suppose we assume that the HJB equation (15) consists of a classical solution V  that 

satisfies 0>
z

V  and  0<
zz

V  now differentiating with respect to tπ and equating to zero 

in (16) the following optimizer is obtained 
















 −−−=
zz

z

SS
t V

Vrr
2

0

σσ
ρπ                                                (17) 

Substituting equation (17) back into equation (16) then after some simplifications 
equation (15) become 

( )
( ) ( )









=

<=−+






 −−


















 −−+

zuzTV

TtforV
V

Vrr
V

rr
rXV zz

zz

z

S
z

S

M
tt

,

01
2

1

2

1 2
22

00
0 ρ

σσ
ρ

                     (18) 

The PDEs obtained in equation (18) above are quite different from those obtained in 
other studies of utility maximization such as those by [19, 20]. Since we want to solve the 
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PDE under a given case when( ) zezu θ

θ
γλ −−= . To solve the PDE in equation (18) 

above under this case let’s assume that it has the solution of the following form 

( ) ( )tTgzezu −+−−= θ

θ
γλ                                                          (19) 

where ( ).g  is a given suitable function, with this assumption, then 

( ) ( )[ ] ( )[ ]
( ) ( )[ ][ ]
( ) ( )[ ][ ]








−=
−−=

−−−=

2,,

,,

',,

θλ
θλ

λ

ztVztV

ztVztV

tTgztVztV

zz

z

t

                              (20) 

Since the boundary condition is ( ) zezTV θ

θ
γλ −−=,  this mean that ( ) 00 =g now let us 

insert (20) into (18) and simplify to get 

( ) ( ) 0
2

1
1

2

1
'

2

00
0

22 =






 −−
















 −−−−+−−
SS

M
t

rrrr
rXtTg

σ
θ

σ
ρθρ                    (21) 

Now letting ( ) ( )
2

00
0

22

2
1

1
2
1








 −−
















 −−−−=
SS

M
t

rrrr
rXQ

σ
θ

σ
ρθρθ  gives 

( ) ( )θQtTg =−'                                                          (22) 

Integrating equation (22) and using ( ) 00 =g  gives the value function (13). Since the 
value function is known, we can now obtain the control (12) by substituting the values of 

zV  and zzV  from equation (20) into equation (17). 
            Finally we need to show that the value function and the control obtained above 
are optimal. This is revealed upon checking the value function (13) since it is seen to be 
twice continuously differentiable thus we conclude that it satisfies the conditions of  
classical verification theorems as stated by [21], therefore these are the optimal value 
function and controls. 
 
2.4. Treating possibility of recovery after ruin for insurance companies 
In this section, an approach on how to handle the possibility of recovery after ruin for 
insurance companies is suggested and developed for the first time in insurance 
mathematics. We assume that an insurance company had wealth 

−τ
tX  before the time of 

ruin suppose an insurance company has a possibility [ ]1,0∈γ  of recovery after ruin, 

where 0=γ  means that the company has no possibility of recovery at all and 1=γ
means the company has a possibility of recovering a full wealth after ruin. Now, this 
study suggests that the new wealth or capital of the company for running the insurance 
business be given by the following formula 

−
=

τ
γ t

N
t XX                                                           (23) 
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Therefore, this approach is used in performing the simulation on different cases of 
possibilities γ under different situations of wealth or capital tX when compounded with 

investment and/or refinancing. 
 
3. Numerical experiments and discussion of results 
We numerically observe the mathematical characteristics of the optimal value function 
given by equation (13) above. Mainly, the target here was to maximize the exponential 
utility of the terminal wealth. All the model simulations in this paper were performed in 
an HP ENVY 17 with an Intel(R) Core(TM) i7-8550U CPU processor at 1.80GHz to 
1.99GHz and 16.0GB of RAM and the figures were constructed by using MATLAB 
R2020a. Values of the parameters are presented in Table 1 below, some were estimated 
and some were obtained from other studies. 

 

Table 1: Model parameters and their values                                                                                   

Symbol  Definition                                                Value(s)                  Source 

Sσ          The volatility of the stock price 0.2, 1.3  [22] 

λ            Number of claims received per unit time             10, 20, 200           Estimated 
θ            Safety loading of the insurer                                 0.8, 2, 3, 5                     [1]  

M
tX       Refinanced surplus process                             50, 70, 100, 1000       Estimated 

r            Instantaneous rate of stock return 0.05                           [13]        

0r           Risk-free interest rate for the bond                       0.02, 0.04                      [23]    

ρ           Correlation coefficient 0.03                            [4] 

γ            Possibility of recovery                                      2%, 25%, 80%            Estimated 
 

In Figure 1 we observe an increase in optimal value function at the terminal time, 
this increase is observed to be irrespective of the initial wealth. Finally the value function 
attains its maximum value and this value is maintained for all time and initial wealth. 

 
Figure 1: Dependence of the value function over the initial wealth and time. 

 
In Figure 2 we observe that an insurance company has increasing absolute risk aversion 
(IARA) but also as wealth increases the value function also increases very rapidly at the 
initial time. According to [24] this implies that as wealth increases an insurance company 
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is advised to hold fewer investments in risky assets likewise this paper recommends that 
an insurance company should hold as few investments in risky assets as possible. 

(a) (b) 
 Figure 2: Behaviour of the value function with respect to absolute risk aversion and 
capital 

In Figure 3(a) it appears as if the two graphs coincide but a zoomed graph given 
in figure 3(b) shows that the value function increase with the increase in the volatility of 
the stock price. It is clearly observed from Figure 3(b) that when volatility was increased 
from 0.2 to 1.3 the value function also increased its value, this in turn indicates that 
taking a relatively higher risk on risky assets will give the insurance company a much 
better expected wealth utility. These results confirm the results of [4] since the insurance 
company’s utility maximization can be realized for large volatility of the stock price. 

(a) (b) 
Figure 3: Behaviour of the value function with respect to the volatility of the stock price 
 

Also in Figure 4(a) we observe like two graphs coincides but a zoomed graph 
given in Figure 4(b) clearly shows that the value function increases with the increase in 
the possibility of recovery of the insurance company since we see that with the possibility 
of recovery of 25% the value function has small value as compared to 80% of possibility 
of recovery. In turn, this indicates that when an insurance company has a higher 
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possibility of recovery it will have a much better expected wealth utility since its value 
function is much larger. 

(a) (b) 
Figure 4: Behaviour of the value function with respect to the possibility of recovery of 
the insurance company. 
 
4. Conclusion 
In this study, we have proposed a way of maximizing the exponential utility of terminal 
wealth. We also formulated a risk process compounded by refinancing and investment 
thereafter a stochastic differential equation for the wealth was derived and an optimal 
control problem for maximizing the expected utility of terminal wealth was formulated 
and solved. An approach to treating the possibility of recovery after ruin for insurance 
companies was developed and suggested for the first time in insurance mathematics. 

We were able to investigate the behavior of the value function numerically and 
the results indicated that the value function increases irrespective of the initial wealth and 
time. The results on studying the behavior of the value function with respect to the 
volatility of the stock price were similar to those of [4] since we observed that insurance 
company’s utility maximization can be realized for large volatility of the stock price. 
Also, this study observed that in case ruin occurs and a company performs refinancing 
the value function increases very rapidly with the increase in refinancing amount. This 
observation was also supported by the behavior of value function with respect to the 
possibility of recovery after ruin, we also observed that as the possibility of recovery after 
ruin increases the value function also increases. 

This study recommends that all insurance companies should have well-trained 
staff in risk management who can study the company’s portfolio and give suggestions to 
managers on how to avoid or minimize ruin and how to recover in case ruin occurs. 

Further study can be done as an extension where one can incorporate the use of 
stochastic interest rates instead of the fixed one for both stocks and bonds to realize the 
actual fluctuation of the interest rates at any given time. 
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In this paper, the intention was to reduce the possibility of ruin in the insurance company bymaximizing its survival function.�is
paper uses a perturbed classical risk process as the basic model. �e basic model was later compounded by re�nancing and return
on investment. �e Hamilton–Jacobi–Bellman equation and integro-di�erential equation of Volterra type were obtained. �e
Volterra integro-di�erential equation for the survival function of the insurance company was converted to a third-order ordinary
di�erential equation which was later converted into a system of �rst-order ordinary di�erential equations. �is system was then
solved numerically using the fourth-order Runge-Kutta method. �e results show that the survival function increases with the
increase in the intensity of the counting process but decreases with an increase in the instantaneous rate of stock return and return
volatility. �is is due to the fact that the insurance company faces more risk. �us, this paper suggests that in this situation, more
investments should be made in risk-free assets.

1. Introduction

�e insurance industry is currently undergoing a funda-
mental transformation in terms of operations and com-
petitiveness. Several disruptive factors in business have given
rise to new players in the market with disruptive business
models to outperform their competitors. Investment and
re�nancing can be used as survival approaches when in-
surance players consider how they should react to this major
shift. With investing and re�nancing, an insurance company
can manage to operate much better even if it had su�ered
from ruin provided the investments are done properly and
re�nancing is done adequately and timely [1].

According to Kolm et al. [2] in investments, there is a
trade-o� between risks and returns. In turn, to increase the
expected returns from investment, investors must be willing
to tolerate greater risks. Portfolio management theory helps

to model the trade-o� for the given collections of several
possible investments [3]. Investigation into companies that
have su�ered from ruin is one of the very important areas of
actuarial research. Some research studies have been done to
investigate portfolio optimization, most of them applying
reinsurance and re�nancing approaches (see, e.g., Kasumo
[4], Liu, and Yang [5]). However, more research is needed on
those companies that have su�ered from ruin because little
has been done to investigate how these companies can be
managed �nancially to become pro�table again.

Oyatoye and Arogundade [6] applied a stochastic model
for predicting the optimum portfolio of insurance businesses
at an acceptable risk exposure level, excluding ruin e�ects.
�ey underscored the importance of this because it would
guarantee the acceptable risk levels for a viable insurance
company and evaluate the retention rate of the insurance
portfolio at a given risk rate. But, it would also provide good
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knowledge on the importance of reinsurance in risk ad-
justment in times of larger claims. Finally, it would examine
the unbearable risk level that would require coinsurance.
Risk return analysis and catastrophe exposure analysis were
performed. It was observed that there is a need to revert to
stochastic modelling, which canvases the use of risk, vari-
ances, and expected values for mathematical computation.

Recently, considerable attention on the part of insurance
companies has been given to the procedures of forming an
assigned insurance portfolio because it serves as an indicator
of the quality of insurance liabilities. Oliynyk [7] studied the
basic methodological principles of formation and manage-
ment of the insurance portfolio to achieve equilibrium and
ensure that the financial stability of insurance companies is
maintained. One of the stages in the company’s insurance
portfolio management process is to deal with portfolio
optimization. +is stage was discussed by Oliynyk [7] as it
leads to the reduction of risks and an increase in profitability
levels. +e study finally observed that the proposed scientific
and methodical approach to building and managing an
insurance portfolio to achieve its equilibrium based on
nonlinear programming has a differentiated character. For
each company, this model chooses an optimal structure of an
insurance portfolio that ensures maximal profits and min-
imal risks.

Ma et al. [8] extended the work of Zhu et al. [9] to include
defaultable securities. +e insurer was given a chance of
buying proportional reinsurance and put his wealth in stock,
a defaultable corporate bond, and a money account. +e
intention was to maximize their expected utility of wealth. In
their work, Ma et al. [8] chose the constant elasticity of
variance (CEV) process to describe the stocks’ behaviour.
+e reason for selecting a CEV model was that it could also
be used as an alternative model for describing the stochastic
volatility behaviour of the stocks’ price. It had several em-
pirical pieces of evidence to support it. Using stochastic
control theory, they derived a Hamilton–Jacobi–Bellman
(HJB) equation and later divided the original problem into
two parts a predefault case and a postdefault case. Value
functions and expressions of the optimal strategy were
derived. Finally, they presented numerical examples as il-
lustrations of their results. +eir study did not consider
converting the Volterra integro-differential equations into
an ordinary differential equation.

Shareholders of insurance businesses are interested in
optimizing the returns from the insurance portfolio as well
as ensuring that the business remains afloat over a long-time
horizon. To achieve this, the company managers have to
optimally run the business to maximize returns and reduce
ruin probability. Even with extra care, many times, ruin is
inevitable. Most studies in the literature, for example,
Schmidli [10], Kasozi et al. [11], and Kasumo et al. [12], do
not consider refinancing as a measure to overcome ruin once
it hits. +is paper seeks to develop and analyse an insurance
portfolio optimizationmodel incorporating investments and
refinancing strategies and then find the best way tomaximize
the insurance company’s survival function.

+e rest of the paper is organized as follows: in Section 2,
we derive a Volterra integro-differential equation (VIDE)

corresponding to the model for maximizing the survival
function for insurance companies. In Section 3, the nu-
merical simulations were carried out using the fourth-order
Runge-Kutta method after converting VIDE into a third-
order ordinary differential equation that was later converted
into a system of ODEs of the first order. +e results are
presented and discussed. In the last section, we present a
conclusion for this paper.

2. Materials and Methods

2.1. Model Formulation and Analysis. For a mathematical
formulation of the problem, we assume all the stochastic
quantities and random variables are defined on a complete
filtered probability space (Ω,F, (F)t∈[0,T],P), satisfying the
usual conditions. +e filtration (F)t∈[0,T], which represents
the information available at time t and forms the basis for the
decision making, is right continuous and P-complete.

Due to the fact that there exist fluctuations in the real
market, for example, the amount of premium income, claim
arrivals, and a number of customers are not static or uni-
form, the model must capture these phenomena by con-
sidering the perturbed Cramér-Lundberg process Xt as in
Kasumo et al. [12], given by

Xt � p + ct + σXWX,t − 􏽘

NX,t

i�1
YX,i, t≥ 0, (1)

where p> 0 is the initial capital, WX is a standard Brownian
motion independent of the compound Poisson process
􏽐

NX,t

i�1 YX,i, and c is the premium rate per unit time which is
calculated by the expected value principle; that is, c � (1 +

θ)λXμX where θ> 0 is the relative safety loading of the in-
surer and λX is the intensity of the counting process NX,t for
the claims.

We proceed as in Schmidli [1] by assuming that the
insurance company managers engage in the process of
refinancing or capital injections, given by XM

t � Xt + Mt,
whereXt is the surplus process and Mt is the capital injected.
Finally, using equation (1), the insurance model with capital
injections is given by

X
M
t � p + cMt + σXWX,t − 􏽘

NX,t

i�1
YX,i + Mt, t≥ 0, (2)

where cM is the premium rate during the capital injection.
To manage its portfolio, we assume the insurance

company can undertake investment in either risk-free or
risky assets. We assume the risk-free price process was
modelled as in Meng et al. [13], given by

dBt � r0Btdt, (3)

where r0 ≥ 0 is the constant risk-free interest rate and Bt is
the price of the risk-free bond at time t. Let us further assume
as in Badaoui et al. [14] that the risky asset, such as the stock
price process, is given by the geometric Brownian motion
(GBM)
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dSt � σSStdWS,t + rStdt, (4)

where St is the price of a stock at time t, r≥ 0 is the expected
instantaneous rate of stock return, σS ≥ 0 is the volatility of
the stock price, and WS,t: t≥ 0􏽮 􏽯 is a standard Brownian
motion defined on the complete probability space
(Ω,F, (F)t∈[0,T],P).

If we further assume that there are no jumps, the Paulsen
et al.’s work [15] suggested that the return on investment
process Rt will be given by the Black-Scholes option pricing
formula of the form

Rt � rt + σRWR,t t≥ 0, R0 � 0, (5)

where r is the risk-free part of the investment. Hence, Rt � rt

means that one unit invested at time zero will be worth ert at
time t.

2.2. Risk Process with Refinancing and Investment. +is
section obtains the insurance process compounded with
refinancing and investment. It is a careful combination of
equations (2) and (5). In the case of reinsurance and in-
vestment, the process has been extensively studied for ul-
timate ruin probability in studies such as Kasozi et al. [16],
Paulsen et al. [15], Paulsen and Gjessing [17], and Paulsen
and Rasmussen [18] among others. +is paper follows a
similar approach as in Kasozi et al. [16]. +e process
PM � PM

t􏼈 􏼉t∈[0,∞), which represents the insurance portfolio,
is given by

P
M
t � X

M
t + 􏽚

t

0
P

M
s

−
( )dR(s), (6)

which is the solution of the stochastic differential equation

dP
M
t � dX

M
t + P

M
t
−

( )dR(t), (7)

where p � PM
0 > 0 is the initial capital of the insurance

company same as in equation (2), XM
t is the primary in-

surance process given in equation (2), R(t) is the return on
investment process in equation (5), and PM(t− ) stands for
the insurer’s surplus just before time t.

2.3. Maximizing Survival Function or Minimizing Probability
of Ruin. Let us consider equation (6) to maximize survival
function or minimize the probability of ruin for the in-
surance company. Since both X and R have stationary in-
dependent increments, P is a homogeneous robust Markov
process. By using Itô’s formula, the infinitesimal generator
for P can be given by

Lg(p) �
1
2

σ2Rp
2

+ σ2X􏼐 􏼑g″(p) + rp + cM( 􏼁g′(p)

+ λX 􏽚
∞

0
(g(p − (y∧M)) − g(p))dFX(y).

(8)

+e integro-differential operator presented in equation
(8) is quite complicated, and explicit analytical computa-
tions are hard to perform. However, Paulsen and Gjessing

[17] have introduced and proved the following beneficial
results.

Let τp � inf t: Pt < 0􏼈 􏼉 be the time of ruin where τp �∞
means ruin never occurs, and then, let ψ(p) � P(τp <∞) be
the probability of eventual ruin to occur.

Assuming that ψ(p) is bounded and twice continuously
differentiable on p≥ 0 with a bounded first derivative there,
where at p � 0 is meant the right-hand derivative, and that ψ
solves Lψ(p) � 0 on p> 0 together with the boundary
conditions

ψ(p) � 1 on p< 0,

ψ(0) � 1 if σ2X > 0,

limp⟶∞ψ(p) � 0.

(9)

Paulsen and Gjessing [17] have shown that

ψ(p) � P τp <∞􏼐 􏼑. (10)

Assuming that qα(p) is bounded and twice continu-
ously differentiable on p≥ 0 with a bounded first deriv-
ative there, where at p � 0 is meant the right-hand
derivative, and Paulsen and Gjessing [17] have also shown
that if qα solves Lqα(p) � 0 on p> 0 together with the
boundary conditions

qα(p) � 1 on p< 0,

qα(0) � 1 if σ2X > 0,

limp⟶∞qα(p) � 0,

(11)

then

qα(p) � E e
ατp􏼂 􏼃. (12)

Now, using Paulsen et al. [15] idea, we replace the first
part of the theorem with the survival function ϕ(p) � 1 −

ψ(p) with boundary conditions given as follows:

ϕ(p) � 0 on p< 0,

ϕ(0) � 0 if σ2X > 0,

limp⟶∞ϕ(p) � 1.

(13)

Because maximizing the survival function influences the
minimization of the probability of ruin which increases the
probability of survival for the insurance company, the goal is
now to maximize the survival function ϕ(p). +erefore, the
value function, in this case, is defined by

V(p) � supM≥0ϕ
M

(p), (14)

and if it exists, we determine the corresponding refinancing
strategy Mt ∈ [0,∞) that will satisfy the objective function.
+erefore, we are interested in finding the optimal refi-
nancing strategy in the presence of investments in risky and
risk-free assets.We refer to this strategy as optimal because it
maximizes survival function, which is the same as mini-
mizing the probability of ultimate ruin. In other words, the
survival function is the objective function, and the refi-
nancing strategy Mt is the control variable to be adjusted
such that the objective function is maximized.

Journal of Mathematics 3



2.4. Hamilton–Jacobi–Bellman Equation and Integro-Differ-
ential Equation. In this section, the HJB equation for the
value function given by equation (14) is derived and solved.
+en, the integro-differential equation for the survival
function is formulated and solved too. In the literature,
several HJB equations of a similar kind have been used, and
for example, the reader may refer to Schmidli [10], Paulsen
et al. [15], Kasozi et al. [11], and Kasumo et al. [12] for more
details.

2.4.1. Hamilton–Jacobi–Bellman Equation. To derive the
HJB equation for the value function given by equation (14),
we follow a similar approach as in Kasozi et al. [11]. Let (0, h]

be a small interval and suppose that for each surplus p(h)> 0
at time h we have a refinancing strategy Mε such that

δMε(p(h))> δ(p(h)) − ε. Let also that Mt � M ∈ [0,∞)

for t≤ h. +en, as in Kasozi et al. [11], by Markov property,
one has the following equation:

ϕ(p)≥ϕM
(p) � E ϕMε

P
M

(h)􏼐 􏼑􏼐 􏼑; τp > h􏽨 􏽩

� E ϕMε
P

M τp∧h􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨 􏽩

≥E ϕMε
P

M τp∧h􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨 􏽩 − ε,

(15)

where ε ∈ (− ∞, ∞) one can choose ε � 0 to get

ϕ(p)≥E ϕMε
P

M τp∧h􏼐 􏼑􏼐 􏼑􏼐 􏼑􏽨 􏽩. (16)

Let us assume that ϕ(p) is twice continuously differ-
entiable; by using Itô’s formula, we obtain

ϕ P
M τp∧h􏼐 􏼑􏼐 􏼑 � ϕ(p) + 􏽚

τp∧h

0
rp + cM( 􏼁ϕ′ P

M
(s)􏼐 􏼑 +

1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″ P
M

(s)􏼐 􏼑􏼚

+ λX 􏽚
p

0
ϕ P

M
(s) − (y∧M)􏼐 􏼑dFX(y) − ϕ P

M
(s)􏼐 􏼑􏼢 􏼣􏼩ds,

(17)

where y∧M � max(M, Yi) denote the retained amount to
the insurance company.

Now, put (17) into (16) to get

E 􏽚
τp∧h

0
rp + cM( 􏼁ϕ′ P

M
(s)􏼐 􏼑 +

1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″ P
M

(s)􏼐 􏼑􏼚􏼢

+ λX 􏽚
p

0
ϕ P

M
(s) − max M, Yi( 􏼁􏼐 􏼑dFX(y) − ϕ P

M
(s)􏼐 􏼑􏼢 􏼣􏼩ds􏼣≤ 0.

(18)

Provided the limit and expectation can be interchanged,
then dividing the later equation by h and letting h⟶ 0
gives the following equation:

rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p) + λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁dFX(y) − ϕ(p)􏼢 􏼣≤ 0. (19)

+is equation (19) must hold for all M> 0, that is, to
write

supM>0 rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p) + λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁dFX(y) − ϕ(p)􏼢 􏼣􏼢 􏼣≤ 0. (20)

Suppose that there is an optimal strategy M ∈ [0,∞)

such that limt↓0M(t) � M(0). +en, using a similar ap-
proach, we have
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rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p)

+ λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁dFX(y) − ϕ(p)􏼢 􏼣 � 0.

(21)

Finally, this gives the HJB equation

supM>0 rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p) + λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁dFX(y) − ϕ(p)􏼢 􏼣􏼢 􏼣 � 0, (22)

whose boundary conditions are ϕ(p) � 0 on p< 0 and
limp⟶∞ϕ(p) � 1.

An optimal strategy is obtained from the solution set
(ϕ(p), M∗(p)) of equation (22), in which M∗(p) is a point
at which the supremum in (22) is obtained. +e insurance

company has a nonnegative net premium income if
c> (1 + η)λXE[(M − Yi)

+].
Let M be the value where the equality holds, that is,

c � (1 + η)λXE[(M − Yi)
+], but the aim is to find a nonde-

creasing solution to equation (22), and let us write it as follows:

Table 1: Model parameters and their values.

Symbol Definition Value (s) Source
σX Premium volatility 0.25 Zou et al. [22]
σR Return volatility 0.1 Mtunya et al. [23]
p Initial capital 10000 Assumed
λX Intensity of the counting process 2, 5, 10 Kasumo et al. [12]
cM Premium rate left to the company 2 Kasumo [24]
M Capital refinanced 600 Assumed
r Instantaneous rate of stock return 0.05, 0.5 Kasozi et al. [11]
β Mean of the exponential distribution 0.5 Kasumo [24]
Y Capital risked 500 Assumed
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Figure 1: Dependence of the survival function on the intensity of the counting process.
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supM>M rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p) + λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁dFX(y) − ϕ(p)􏼢 􏼣􏼢 􏼣 � 0, (23)

whose boundary conditions are ϕ(p) � 0 on p< 0 and
limp⟶∞ϕ(p) � 1.

According to Hipp and Plum [19], the function ϕ(p) will
satisfy equation (23), only if ϕ(p) is strictly increasing,
strictly concave, twice continuously differentiable, and it
satisfies the second condition; that is, limp⟶∞ϕ(p) � 1.

Now, let us assume that ϕ(p) solves the HJB equation
(22), according to Hipp and Vogt [20] if ϕ(p) is a smooth
solution of the HJB equation (22), then the supremum over
M> M is either attained at M � 0 when there is no refi-
nancing for small claims or at M � p or M <M<p.

2.4.2. Integro-Differential Equation. From the HJB equation
(22), the integro-differential equation for the survival
function ϕ(p) takes the following form:

Lϕ(p) � 0, p≥ 0, (24)

where L is the infinitesimal generator defined by equation
(8) for the underlying risk process with refinancing and
investment given by equation (6). +us, from the HJB
equation (22), the integro-differential equation for the
survival function is given by

rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p)

+ λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁dFX(y) − λXϕ(p) � 0,

(25)

for 0<p≤∞.
Equation (25) is a second-order integro-differential

equation of Volterra type (VIDE). In this paper, the VIDE
given by equation (25) is converted into an ordinary dif-
ferential equation (ODE) that can be solved numerically to
determine the optimal strategies.

2.4.3. Converting VIDE into ODEs. In this section, we begin
the process of solving VIDE given by equation (25). +e
equation is firstly converted into an ODE, and later, it will be
solved numerically. +e equation will be solved, assuming

that the claims are exponentially distributed. If σR � 0 and
r � 0, then there is no investment. For this case, the ana-
lytical solution to a similar problem is given by Belhaj [21],
and if λX � 0, a similar case was solved analytically by
Paulsen and Gjessing [17]; however, when λX ≠ 0, σR ≠ 0, and
r≠ 0, equation (25) has no analytical solution.

Consider exponential distribution given by

fX(y) � βe
− βy

,

FX(y) � 1 − e
− βy

,

dFX(y) � βe
− βy

dy .

(26)

+en, equation (25) become

rp + cM( 􏼁ϕ′(p) +
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ″(p)

+ λX 􏽚
p

0
ϕ p − max M, Yi( 􏼁( 􏼁βe

− βydy − λXϕ(p) � 0,

(27)

for 0<p≤∞.
Differentiating the above equation with respect to p and

simplifications give
1
2

σ2Rp
2

+ σ2X􏼐 􏼑ϕ‴(p) + rp + cM + σ2Rp􏼐 􏼑ϕ″(p)

+ r − λX( 􏼁ϕ′(p) − λXβe
− βpϕ p − max M, Yi( 􏼁( 􏼁 � 0,

(28)

for 0<p≤∞.
Equation (28) is an ODE that will be solved numerically.

3. Numerical Results and Discussion

We transform the third-order ODE given by equation (28)
into a system of first-order ODEs that will be solved nu-
merically by using the Runge–Kutta method. Letting
Z1(x) � ϕ(p), Z2(x) � ϕ′(p) � Z1′(x), and
Z3(x) � ϕ″(p) � Z2′(x), then by using equation (28), the
following system of first-order ODE is obtained.

Z1′ � Z2,

Z2′ � Z3,

Z3′ �
2

σ2Rp
2

+ σ2X􏼐 􏼑
λXβe

− βp
Z1 p − max M, Yi( 􏼁( 􏼁 − r − λX( 􏼁Z2 − rp + cM + σ2Rp􏼐 􏼑Z3􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

In this section, system (29) of first-order ODEs is solved
numerically using the fourth-order Runge–Kutta method,
implemented using MATLAB codes, and results are

discussed. Simulations and graphics were performed using
MATLAB R2020a. Values of the parameters used are pre-
sented in Table 1.
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In Figure 1, we observe an increase in survival function
in the fourth year. +e survival function is observed to in-
crease as the intensity of the counting process increases. +is
is because as the counting process increases, the insurance
company services its clients much faster. As a result, it be-
comes healthier, and hence, its probability of ruin is reduced.

In Figure 2, we observe that an insurance company has
an increasing survival function due to capital injection. Still,

we further note that when the instantaneous rate of stock
return increases, the survival function decreases since the
risk is much higher. +ese results are comparable to those of
Gajek and Zagrodny [25], who studied reinsurance ar-
rangements to maximize insurers’ survival probability,
similar to minimizing ruin.

Since volatility measures the dispersion of returns for a
given security, we observe in Figure 3 that an insurance
company has an inverse relationship with the return vola-
tility. We note that when returning volatility increases just
by 0.02, the survival function decreases very quickly because
the higher the volatility, the riskier the security.+ese results
show that the survival function is extremely sensitive to the
return volatility and support the earlier observations on the
instantaneous rate of stock return. As a result, this paper
suggests that more investments should be made in risk-free
assets rather than in risky assets when this situation occurs.

4. Conclusion

In this paper, we have used the basic Cramér-Lundberg
model to derive the Volterra integro-differential equation
(VIDE) for the survival function of the insurance company.
After some conversions, the VIDE was solved numerically
by the Runge-Kutta method of order four. +e results in-
dicate that it is possible to maximize the survival function of
the insurance company’s portfolio which helps the company
reduce the possibility of ruin. +e study further established
that increasing the claim intensity has a positive effect in
terms of increasing the survival function and reducing the
probability of ruin. +erefore, it is recommended that in-
surance companies increase their claim intensities. +is
paper has also concluded that insurance companies should
invest more in risk-free assets when the instantaneous rate of
stock return and return volatility is much higher or
increased.
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Introduction

MODEL EQUATION WITHOUT REFINANCING

Maximizing Survival Function

Conclusion

Model Formulation

The insurance industry is currently undergoing a fundamental transformation in terms of op
erations and competitiveness. Several disruptive factors in business have given rise to new pl
ayers in the market with disruptive business models to outperform their competitors. Invest
ment and refinancing can be used as survival approaches when insurance players consider h
ow they should react to this major shift. With investing and refinancing, an insurance compa
ny can manage to operate much better even if it had suffered from ruin provided the invest
ments are done properly and refinancing is done adequately and timely.

Shareholders of insurance businesses are interested in optimizing the returns from the insura
nce portfolio as well as ensuring that the business remains afloat over a long-time horizon.
To achieve this, the company managers have to optimally run the business to maximize retur
ns and reduce ruin probability. Even with extra care, many times, ruin is inevitable.

Risk Process with Refinancing and Investment

We are interested in finding the optimal refinancing strategy in the presence 

of investments in risky and risk-free assets. We refer to this strategy as optim

al because it maximizes survival function, which is the same as minimizing the 

probability of ultimate ruin.

Numerical results and discussion

Model parameters and their values.

We have used the basic Cramer-Lundberg model to derive the Volterra Integro Diff

erential Equation (VIDE) for the survival function of the insurance company. After so

me conversions, the VIDE was solved numerically by the Runge-Kutta method of orde

r four. The results indicate that it is possible to maximize the survival function of the i

nsurance company’s portfolio which helps the company reduce the possibility of ruin.

The study further established that increasing the claim intensity has a positive effect

in terms of increasing the survival function and reducing the probability of ruin. Ther

efore, it is recommended that insurance companies increase their claim intensities. W

e also concluded that insurance companies should invest more in risk-free assets whe

n the instantaneous rate of stock return and return volatility are much higher or incr

eased.
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• The survival function is observed to i
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ng process increases.

• An insurance company has an increas

ing survival function due to capital in

jection. Still, we further note that whe

n the instantaneous rate of stock retu

rn increases, the survival function dec

reases since the risk is much higher.

• Finally, we observe that an insurance

company has inverse relationship wit

h the return volatility.

RISK-FREE (BOND) 

RISKY-FREE (STOCK) 

MODEL EQUATION WITH REFINANCING

RETURN ON INVESTMENTS 

Carefully combining model equation for refinancin
g and an equation of return on investment we obt
ain the following model equation for refinancing a
nd investments

Which is the solution of the stochastic differential
equation

Where 𝑝 = 𝑃0
𝑀 > 0p is the initial capital of the in

surance company
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