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Plutella xylostella, commonly called Diamondback moth (DBM), a highly destructive and rapidly spreading 
agricultural pest originally from Europe. This pest poses a significant threat to global food security, with estimates 
suggesting that periodic outbreaks of Diamondback moth lead to annual crop losses of up to $US 4 − 5 billion 
worldwide. Given the potential for such substantial losses, it is crucial to employ various methods and techniques 
to understand the factors affecting the interaction between Diamondback moths and cabbage plants, which, 
in turn, impact cabbage biomass. In this paper, we propose a deterministic ecological model to capture the 
dynamics of Plutella xylostella infestations in cabbage biomass. The model is designed based on the life cycle 
stages of the pest, aiming at targeting the specific stage effectively. The synthetic data is generated using Least 
Square Algorithm through addition of Gaussian noise into numerically obtained values from existing literature 
to simulate real-world data. Global sensitivity analysis was done through Latin Hypercube sampling, highlights 
the significance of parameters such as 𝜓, 𝛼𝐸 and 𝛿 positively influence the growth of the diamondback moth in 
a cabbage biomass. In light of these findings, the study proposes that control strategies should be specifically 
directed towards these sensitive parameters. By doing so, we mitigate the pest population and enhance cabbage 
production.
1. Introduction

Cabbage is the nutritious vegetable which offers various health ben-
efits such as vitamins and minerals to the human body [1]. It has been 
associated with lower incidences of chronic diseases such as cancer and 
heart diseases [2,3]. Additionally, as an agricultural produce, cabbage 
plays a vital role in providing food security and income for farmers, 
contributing to a nation’s foreign currency earnings [4]. Despite of all 
its benefits, cabbages are affected by various pest infestations such as 
cutworms, diamondback moths, and plant diseases, which lead to sig-
nificant yield losses [5].

Plutella xylostella, commonly called Diamondback Moth (DBM), 
stands as a highly destructive agricultural pest, presenting substantial 
challenges to cruciferous crops, particularly cabbages [6]. The female 
moths deposit their eggs on cabbage leaves, and after some days eggs 
hatch to larva which cause significant harm by burrowing into the leaf 
tissue, as depicted in Fig. 1. This feeding behavior leads to distinct 
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diamond-shaped holes in the leaves, which, in turn, results in decreased 
plant health, stunted growth, and lower crop yields [7].

The management of Plutella xylostella in cabbages brings significant 
financial burdens in various regions. For example, China allocates ap-
proximately USD 0.77 billion annually for control effort. In Africa, the 
weekly cost for managing Plutella xylostella is estimated to be about USD 
46 097 772 [9]. These financial burdens, coupled with expenses related 
to insecticide use and genetically modified cabbage varieties is a big 
challenge to countries like Tanzania [10,11].

Integrated pest management (IPM) represents a strategy employed 
by farmers to combat pest infestations by utilizing various pest control 
tactics, as documented in numerous studies [12–17]. These approaches 
include biological control, encompassing the utilization of predators 
and parasitoids. Predators, such as lady beetles and lacewings, are 
self-sustaining species that, over their lifespan, consume a substantial 
quantity of prey. Conversely, parasitoids such as Cotesia vetalis, de-
velop either within or on an insect host, ultimately resulting in the 
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Fig. 1. The effects of larva infestations on a cabbage biomass [8].

host’s demise [18–20], implementing cropping practices like rotation 
and inter-cropping [21–23], and applying insecticides [24–26].

Mathematical modeling techniques provide valuable insights into 
the dynamics of population species and their interactions with the en-
vironment, for example, modeling help us in managing the pest like 
Plutella xylostella. The scholars such as Faithpraise et al. [27], Alexan-
dridis et al. [28], Alarcón-Segura et al. [29] proposed deterministic 
models to study pest infestations in different crops including cabbages. 
On the other side of the coin, Ruttanaprommarin et al. [30] a proposed 
a stochastic mathematical models to analyze predator-prey models by 
using delay differential Equations Holling type-III. The study done by 
Umar et al. [31], employed a non-linear mathematical models to ana-
lyze predator-prey interactions by using an artificial neural network. In 
a different study, Daudi et al. [32] proposed a fractional order preda-
tor model to capture the dynamics of invasive pest in a maize crops. 
In similar vein, Sabir et al. [33] developed a Fractional order model to 
capture the predator prey interactions by using stochastic procedures 
with the application of artificial neural networks. On the other hand, 
the scholars such as Marchioro et al. [34], Hariprasad and Van Em-
den [35], employed Statistical approaches to predict DBM behavior 
in field conditions and larvae resistance to cypermethrin insecticides, 
whereas Do Carmo et al. [36], Mookiah et al. [37], have assessed the 
effectiveness of commercial pesticides against Plutella xylostella, consid-
ering their impact on beneficial insects. However, pesticides can hinder 
the life cycle of the pests but still have detrimental effects on beneficial 
insects, particularly predator ants.

The aforementioned studies and several other cited therein have cer-
tainly produced many useful results and improved the existing knowl-
edge on plant–pest interaction such as cabbage-Plutella xylostella. How-
ever, their model formulation did not consider the life cycle stages of 
the Plutella xylostella and the estimation of the parameters using Least 
Squares Algorithm was not performed, specifically the parameters that 
drive the growth of Plutella xylostella.

To fill that gap, this study estimated the parameters by employing 
the non-Linear Least Square Method with addition of Gaussian noise to 
the literature values so as to reflect the real world data for the dynamics 
of the Plutella xylostella in a cabbage farms. Finally, we check the influ-
ences of parameters to the growth of Plutella xylostella by using Latin 
Hypercube sampling method.

This manuscript is organized as follows: Section 2 captures the 
model formulation and its properties, Section 3 details the parameters 
estimations, Section 4 presents numerical analysis, including graphs and 
global sensitivity analysis, Section 5 gives the discussions of the results 
2

and Section 6 provides concluding remarks.
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2. Methodology of the study

2.1. Deterministic model formulation

The present model proposes a deterministic ordinary differential 
equations (ODEs) that describe three distinct populations: cabbage 
biomass, 𝐶(𝑡); the Plutella xylostella population comprising of Egg, 𝐸(𝑡); 
Larva, 𝐿(𝑡); and Adult stage, 𝐴(𝑡); and the predator population, 𝐻(𝑡). 
While Plutella xylostella population is age-structured pest, the typical 
Plutella xylostella life cycle includes four stages, we have simplified it 
to three by extending the transition rate of larval stage to adult moth 
stage (that extension makes pupae stage captured), making our model 
consisting of five compartments.

The Plutella xylostella life cycle begins with the deposition of eggs 
which are usually in clusters on cabbage biomass, predominantly on 
the undersides of leaves. The Eq. (1) delineates the dynamics of eggs 
within the cabbage biomass.

𝑑𝐸

𝑑𝑡
= 𝜓𝑞

(
1 − 𝐸

𝐾𝐸

)
𝐴− (𝜆𝐸 + 𝛼𝐸 )𝐸. (1)

In this equation, 𝑞 denotes the average deposition of eggs laid per fe-
male adult Plutella xylostella per day, where as 𝐾𝐸 signifies the capacity 
for egg deposition, indicating the available space for laying eggs. The 
parameter 𝜓 represents the proportion of adult female Plutella xylostella, 
while 𝛼𝐸 represents the egg hatching rate and 𝜆𝐸 is the egg-natural 
mortality.

After the period of 2 − 9 days the eggs turn to Plutella xylostella

larvae. We present the infestations dynamics of the larval on cabbages 
by Eq. (2);

𝑑𝐿

𝑑𝑡
= 𝛼𝐸𝐸 + 𝜂𝜔𝐿𝐶 − (𝜆𝐿 + 𝛿)𝐿− 𝛽ℎ𝐿𝐻. (2)

The parameter 𝛼𝐸 represents the transition rate from the egg stage to 
larvae. We assume that 𝜆𝐿 represents the natural larval mortality rate, 
and 𝛿 signifies the average duration of the larval stage until becoming 
an adult moth, estimated at 14 −16 days. The term 𝜂𝜔𝐿𝐶 describes the 
interaction between larvae and cabbage biomass, leading to the con-
version of cabbage biomass into larvae biomass, where 𝜂 represents the 
efficiency of this conversion.

Adult Plutella xylostella are responsible for laying eggs on cabbage 
biomass, either on the surface or underneath cabbage leaves. On aver-
age, a female DBM lays about 160 eggs during its lifespan, which hatch 
into larvae after six days and eventually develop into adults within 
15 − 18 days. The population dynamics of adult DBM is summarized 
by Eq. (3);

𝑑𝐴

𝑑𝑡
= 𝛿𝐿− 𝜆𝐴𝐴. (3)

In this regard, 𝛿 accounts for the proportion of larvae successfully pro-
gressing to the adult stage, and 𝜆𝐴 represents the average lifespan of 
DBM, typically around 18 days but ranging from 15 to 18 days.

Moreover, under favorable conditions, Plutella xylostella larvae can 
feed on cruciferous vegetables like cabbages. Accounting all cabbage 
varieties, cabbages are planted at time 𝑡 = 0 and taking 60 − 180 days 
to mature. We represent the cabbage biomass per plot as C(t), and its 
dynamics described in Eq. (4);

𝑑𝐶

𝑑𝑡
= 𝑟

(
1 − 𝐶

𝐾𝐶

)
𝐶 −𝜔𝐿𝐶. (4)

In this equation, 𝑟 signifies the growth rate of cabbage biomass, 𝐾𝐶

represents the maximum biomass of cabbage, and 𝜔 is the rate at which 
Plutella xylostella-larvae attack the cabbage biomass such as leaves.

To mitigate the severe effects of larvae on cabbage biomass, we in-
troduce predators such as Cotesia vetalis, birds, and lady beetles into the 
cabbage farm. The parameter 𝛽ℎ captures the predator’s attack rate on 
larvae. The book written by study done by Capinera [38] and an arti-

cle by Rafikov et al. [39], suggests that when food (larvae) is limited, 
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Fig. 2. The model diagram for the dynamics of Plutella xylostella and Predators 
in a cabbage biomass.

predators turn to prey, which is captured by the parameter 𝜇ℎ, repre-
senting the conversion rate of predators into prey while 𝜎ℎ is the life 
span of the predators. The population of predators is mathematically 
defined in Eq. (5);

𝑑𝐻

𝑑𝑡
= 𝜇ℎ𝛽ℎ𝐿𝐻 − 𝜎ℎ𝐻. (5)

The entire scenario is summarized following the map flow in Fig. 2
and by system of non-linear ODEs, Eq. (6), capturing the interactions 
between these populations and their dynamics on cabbage biomass;

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝐶

𝑑𝑡
= 𝑟

(
1 − 𝐶

𝐾𝐶

)
𝐶 −𝜔𝐿𝐶,

𝑑𝐸

𝑑𝑡
= 𝜓𝑞

(
1 − 𝐸

𝐾𝐸

)
𝐴− (𝜆𝐸 + 𝛼𝐸 )𝐸,

𝑑𝐿

𝑑𝑡
= 𝛼𝐸𝐸 + 𝜂𝜔𝐿𝐶 − (𝜆𝐿 + 𝛿)𝐿− 𝛽ℎ𝐿𝐻,

𝑑𝐴

𝑑𝑡
= 𝛿𝐿− 𝜆𝐴𝐴,

𝑑𝐻

𝑑𝑡
= 𝜇ℎ𝛽ℎ𝐿𝐻 − 𝜎ℎ𝐻,

(6)

with initial values,

𝐶(0) ≥ 0,𝐸(0) ≥ 0,𝐿(0) ≥ 0,𝐴(0) ≥ 0,𝐻(0) ≥ 0.

2.2. Boundedness of the model solution

Theorem 1. The ecological deterministic model shown by system (6) has a 
unique solution in ℝ5

+ which lies in a region Ω with sub-regions Ω𝑐 , Ω𝑥, and 
Ωℎ, such that;

Ω𝑐 =
{
𝐶 ∈ℝ+ ∣ 0 ≤ 𝐶 ≤ 𝐾𝐶

}
,

Ω𝑥 =
{
(𝐸,𝐿,𝐴) ∈ℝ3

+ ∣ Θ ≤
𝑥

ℎ
(𝜓𝑞 + 1)

(
1 − 𝑒−ℎ𝑡

)
+Θ(0)𝑒−ℎ𝑡

}
,{

𝜎ℎ

} (7)
3

Ωℎ = 𝐻 ∈ℝ+ ∣ 𝐿 =
𝜇ℎ𝛽ℎ

.
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Proof. The model consists of three populations: the cabbage biomass, 
the diamondback moth stages and the population of predators. We ini-
tiated our proof by using the function Θ(𝑡), as depicted in Eq. (8), to 
represent the population of diamondback moth at various stages.

Θ(𝑡) = 𝐸(𝑡) +𝐿(𝑡) +𝐴(𝑡), (8)

then from Eq. (8), we have,

𝑑Θ(𝑡)
𝑑𝑡

= 𝑑𝐸(𝑡)
𝑑𝑡

+ 𝑑𝐿(𝑡)
𝑑𝑡

+ 𝑑𝐴(𝑡)
𝑑𝑡

,

≤ 𝐴(𝜓𝑞 + 1) −
(
𝛼1𝐿+ 𝛼2𝐴

)
,

≤ 𝑚(𝜓𝑞 + 1) − ℎΘ, for 𝑚 =max (𝐸(0),𝑀) and ℎ =min
(
𝛼1, 𝛼2

)
.

(9)

𝑑Θ(𝑡)
𝑑𝑡

+ ℎΘ ≤ 𝑚(𝜓𝑞 + 1). (10)

Solving Eq. (10) analytically we have the following:

Θ(𝑡) ≤ 𝑚

ℎ
(𝜓𝑞 + 1)

(
1 − 𝑒−ℎ𝑡

)
+Θ(0)𝑒−ℎ𝑡. (11)

As lim
𝑡→∞

Φ(𝑡), then the solution of Eq. (11) becomes;

Φ(𝑡) ≤ 𝑚

ℎ
(𝜓𝑞 + 1) . (12)

Similarly, to assess the boundedness of the predator population we 
solved the equation for predators, and we obtained the condition for 
its boundedness shown in Eq. (13):

𝐿 =
𝜎ℎ

𝜇ℎ𝛽ℎ

. (13)

Therefore, utilizing Theorem 1 the model system Eq. (6) is mathemati-
cally and ecologically well posed in a region Ω. □

2.3. Equilibrium points of the model

In this subsection, we investigate the presence of equilibrium points 
for the system denoted by Eq. (6). Specifically, we identify a total of 
five equilibrium points that are positive in nature. i.e. 𝒰1, 𝒰2, 𝒰3, 𝒰4, 
and 𝒰5:

(a) Equilibrium point 𝒰1 (0,0,0,0,0). This is trivial equilibrium point 
and always exist.

(b) Pest free equilibrium point 𝒰2
(
𝐾𝐶,0,0,0,0

)
. This always exists.

(c) Equilibrium point 𝒰3
(
0,𝐸3,𝐿3,𝐴3,𝐻3

)
, such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐸3 =
𝐾𝐸𝜓𝑞𝜎ℎ𝛿

𝐾𝐸𝜇ℎ𝛽ℎ𝑓1𝜆𝐴+𝜓 𝑞𝜎ℎ𝛿
,

𝐿3 =
𝜎ℎ

𝛽ℎ𝜇ℎ
,

𝐴3 =
𝜎ℎ𝛿

𝛽ℎ𝜇ℎ𝜆𝐴
,

𝐻3 =
1
𝛽ℎ

(
𝑓2 − 𝛼𝐸

)
,

where

𝑓1 = 𝛼𝐸 + 𝜆𝐸,

𝑓2 = 𝛿 + 𝜆𝐿,
(14)

with condition that,

𝑓2 > 𝛼𝐸. (15)( )

(d) Equilibrium point 𝒰4 𝐶4,𝐸4,𝐿4,𝐴4,0 , such that
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Table 1

Numerical values of the parameters.

Parameters Baselines Ranges Source Estimates

𝜆𝐿 0.1500 [27]
𝜆𝐸 0.3700 [27]
𝛼−1

𝐸
7 𝑑𝑎𝑦𝑠 [2 − 9] 𝑑𝑎𝑦𝑠 [38]

𝛿−1 14 𝑑𝑎𝑦𝑠 [8 − 16] 𝑑𝑎𝑦𝑠 [8,38] 16 𝑑𝑎𝑦𝑠

𝜆−1
𝐴

18 𝑑𝑎𝑦𝑠 [15 − 18] 𝑑𝑎𝑦𝑠 [8,38]
𝐾𝐶 30 leaves 𝑃 𝑙𝑎𝑛𝑡−1 [27,40]
𝐾𝐸 104 [105 − 108] − 106
𝜂 0.03 𝑑𝑎𝑦−1 [0.01 − 0.07] 𝑑𝑎𝑦−1 − 0.02 𝑑𝑎𝑦−1

𝜓 0.04 𝑑𝑎𝑦−1 [0.02 − 0.7] 𝑑𝑎𝑦−1 − 0.07 𝑑𝑎𝑦−1

𝜔 6×10−5 𝑑𝑎𝑦−1 [6×10−8 − 6 × 10−4] 𝑑𝑎𝑦−1 − 6×10−6 𝑑𝑎𝑦−1

𝑞 160 [38]
𝑟 0.05 [27]
𝛽ℎ 0.03 [0.02 − 0.07] − 0.04

Fig. 3. Describes that the parameters 𝜓 , 𝛿, 𝑟, 𝛽 and 𝛼 are within the range.
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐶4 =
𝑓2−𝛼𝐸

𝜂𝜔
,

𝐸4 =
𝐾𝐸𝜓𝑞𝑟𝛿

(
𝐾𝐶𝜂𝜔+ 𝑓2 − 𝛼𝐸

)
𝐾𝐸𝐾𝐶𝜂𝜔2𝑓1𝜆𝐴 +𝜓𝑞𝑟𝛿

(
𝐾𝐶𝜂𝜔+ 𝑓2 − 𝛼𝐸

) ,

𝐿4 =
𝑟
(
𝐾𝐶𝜂𝜔+𝑓2−𝛼𝐸

)
𝜂𝜔2𝐾𝐶

,

𝐴4 =
𝑟𝛿
(
𝐾𝐶𝜂𝜔+𝑓2−𝛼𝐸

)
𝜂 𝜔2𝐾𝐶 𝜆𝐴

.

(e) Equilibrium point 𝒰5
(
𝐶5,𝐸5,𝐿5,𝐴5,𝐻5

)
, where

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝐶5 =
(

𝜔𝜎ℎ

𝑟𝛽ℎ𝜇ℎ
+ 1

)
𝐾𝐶,

𝐸5 =
𝜓 𝑞𝜎ℎ𝛿𝐾𝐸

𝜇ℎ𝛽ℎ𝑓1𝜆𝐴𝐾𝐸+𝜓 𝑞𝛿𝜎ℎ
,

𝐿5 =
𝜎ℎ

𝛽ℎ𝜇ℎ
,

𝐴5 =
𝛿𝜎ℎ

𝛽ℎ𝜇ℎ𝜆𝐴
,

𝐻5 =
𝑟𝜇ℎ

(
𝐾𝐶𝜂 𝜔𝛽ℎ+𝑓2

)
−
(
𝑟𝜇ℎ𝛼𝐸+𝜎ℎ𝜂 𝜔2𝐾𝐶

)
𝑟𝜇ℎ𝛽ℎ

2 ,
4

provided that,
ℎ 𝐸

𝑟𝜇ℎ

(
𝐾𝐶𝜂 𝜔𝛽ℎ + 𝑓2

)
>
(
𝑟𝜇ℎ𝛼𝐸 + 𝜎ℎ𝜂 𝜔2𝐾𝐶

)
. (16)

Therefore, the equilibrium points 𝒰1, 𝒰2, 𝒰3, and 𝒰4 remains pos-
itive if the condition stated in Eq. (15) holds. Also, the equilibrium 
point 𝒰5 exists if the condition stated in Eq. (16) remain true.

3. Parameter estimation of the basic model

In this section, we focus on parameter estimation, a crucial and crit-
ical aspect in improving the accuracy of quantitative predictions for 
time-based problems with real-world data. Specifically, we address the 
issue of Plutella xylostella infestations in cabbage production, aiming to 
estimate numerical values that will assist us to understand its dynamics 
and effectively manage its infestations in a cabbage farm. In the process 
of estimation, we utilized the Least Square Algorithm (LSA). In compar-
ison to Maximum Likelihood Estimation, the LSA stands out for its ease 
of application and robustness, making it a straightforward and resilient 
choice.

To implement the Least Squares Algorithm for our model system (6), 
we utilize numerical values obtained from various literature sources as 
initial guesses to generate a noise data sets that reflects real data. To 

achieve this, Gaussian noise with a mean (𝜇 = 0) and standard deviation 
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Fig. 4. Illustrations of the global variations of the model parameters with re-
spect to Egg stage.

(𝜎 = 1) was added to the literature data points. We initiated the process 
by calculating the solution of literature data (𝐿𝑖) using the Eq. (17). The 
model solution with noise data is represented by 𝐺𝑖 with its solution 
captured by the Eq. (18), where 𝑖 = 1, 2, 3, ...𝑛.

𝐿𝑖 = 𝑓
(
𝑥𝑖, 𝜃

)
(17)

𝐺𝑖 = 𝐿𝑖 + Gaussian Noise (18)

To get the optimal parameter values with minimum residuals, we cal-
culated the sum of squared residuals, which is obtained by taking the 
difference between observed and expected values.

The Eq. (19) describes the sum of squared residuals of our model 
system (Eq. (6)), where 𝜃 is the set of the parameters of our choice;

𝜃̂ = argmin
𝜃

𝑛∑
𝑖=1

(
𝐺𝑖 − 𝑓

(
𝑥𝑖, 𝜃

))2
. (19)

After we are done with the estimation process, we have summarized 
our model parameters shown in Table 1.

4. Numerical visualizations

4.1. Global sensitivity of the model parameters

In this part, we investigate how the model responds to variations in 
each parameter within a specified uncertainty range, using the baseline 
values provided in Table 1. We employ the Latin hypercube sampling 
method to derive the partial rank correlation coefficients (PRCC). Be-
fore checking the sensitivities of the parameters of interests, we checked 
if they fall within the given range, as clearly demonstrated in Fig. 3.

The graphical results in Fig. 4 describes the robust positive influence 
of 𝛼𝐸 and 𝛿 with the life cycle stage of Plutella xylostella. On the other 
hand, the scatter plots shown in Fig. 5 exemplifies the strong positive 
correlation of parameters 𝛼𝐸 , 𝜓 and 𝑞 with the growth of eggs. The 
Fig. 7 clearly shows that, the parameters 𝛼𝐸 and 𝛿 has strong positive 
correlation with the growth of larvae and the adult moths respectively. 
Conversely, the Fig. 6 shows that the attack rate (𝛽ℎ) has a strong neg-
ative influence to the development of larva and adult moth. If we vary 
the value of 𝛽ℎ we will minimize the population of moth infestation in 
the cabbage biomass.

In this regard, to reduce the outbreak of moths stages in the cabbage 
biomass, we have to apply the intervention strategies to the more sen-
sitive parameters or with positive influence to the growth of larva and 
adult moths. The interventions such as pest control campaign, habitat 
5

management and applicable IPM methods for Plutella xylostella control.
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Fig. 5. The parameters 𝛼𝐸 , 𝑞, and 𝜓 has strong positive correlation to the 
growth of egg population.

5. Discussions of the results

This section discusses the estimation of parameters for a proposed 
mathematical model involving predators, cabbage biomass, and the life 
cycle of Plutella xylostella. The estimation process begins with litera-
ture values as initial guesses. Later, Gaussian noise is introduced to 
these literature values, and subsequently, the residuals are minimized 
to achieve a well-fitting model. We have generated figures by using 
the initial conditions: 𝐶(0) = 5, 𝐸(0) = 100, 𝐿(0) = 100, 𝐴(0) = 100, 
𝐻(0) = 150 to verify the entire process of estimating parameters and 
model fitting, as described below.

In Figs. 8(a)–(e), we present the best fits of the synthetic data 
generated using the estimated parameter values. Moreover, the auto-
correlation of residuals for these estimated values falls within the range 
that signifies the observed correlation within the residuals.

To assess the validity of the estimated parameter values, we examine 
the nature of the distribution of their residuals across all model outputs. 
The results affirm their validity, as these residuals exhibit a normal dis-
tribution, by using the Histogram of residuals, Quantile-Quantile Plots 
and Auto-correlation

The Fig. 9 describes the histogram of residuals which provides jus-
tification that the proposed model fitting and the estimated parameter 

values stem from the same probability distribution function.
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Fig. 6. Illustrates that predator attack rate (𝛽ℎ) to larva negatively affects the 
growth of adult moth and Larva population.

A QQ plot, short for quantile-quantile plot, is a visual aid used for 
evaluating whether a given data sets could reasonably originate from 
a specific theoretical distribution, like the normal or exponential distri-
bution [41]. It is constructed by graphing two sets of quantiles against 
each other. If both sets of quantiles are derived from the same distri-
bution, we should observe the data points aligning closely to a straight 
line. Basing on our data set, it is well illustrated in Fig. 10 where both 
sets of quantiles genuinely follow a normal distribution confirming that 
our data comes from the same distribution. Also, Fig. 11 illustrates the 
auto-correlation values remain within an acceptable range for all 100 
lags.

As both of these assumptions have been met, we successfully ob-
tained the optimal numerical values for our parameters that minimize 
the squares of the residuals.

Therefore, basing on these estimations, we now utilize our estimated 
parameters to check the dynamics of diamondback moth infestations in 
cabbage biomass by performing the numerical visualizations. Finally, 
Fig. 12 (a)-(e), clearly demonstrates the ODE solution and the fitted 
data.

6. Conclusion

This paper presents a proposed nonlinear ODE model to study the 
dynamics and estimation of the parameters for diamondback moth in-
6

festations in a cabbage biomass using secondary data sources as the 
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Fig. 7. Describes the parameters 𝛼𝐸 and 𝛿 has positive influence to Larva and 
Adult Moth population respectively.

initial guess and adding Gaussian noise to the literature datasets based 
on the non-linear least-squares algorithm. This approach has been im-
plemented to estimate parameters as it is ease and more robust than 
other method Maximum likelihood. A good agreement has been ob-
tained between the simulation output and the literature data values, 
as well as the Gaussian noise data. The estimated parameters assist us 
in studying the dynamics of Plutella xylostella infestations in cabbage 
production. We also performed a global sensitivity analysis of all the 
parameters of interest to better understand which parameters influence 
the growth rates and development of Plutella xylostella, thereby hinder-
ing cabbage production. The parameters that are sensitive to the growth 
of Plutella xylostella are 𝜓 , 𝛼𝐸 and 𝛿. Therefore, this study recommends 
that if we want to minimize the population of Plutella xylostella to an ac-
ceptable level, controls should be applied to these parameters. Hence, 
we maximize cabbage production.

This study is constrained by the unavailability of real data that could 
have been used for parameter estimation. Consequently, we opted to 
utilize White Gaussian noise data, which mirrors real-world conditions, 
to simulate the dynamics of the pest in a cabbage biomass.

Furthermore, this method provides the foundation for estimating pa-
rameters to our proposed model system. In future research, we aim 
to explore fractional-order differential equations as studied by Nos-
rati Firoozsalari et al. [42], Aghaei and Parand [43]. On top of that, 
as we are in the era of Artificial intelligence and the prevalence appli-

cation of machine learning in pest management, we plan to incorporate 
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Fig. 8. Shows the noise data versus fitted solution.
7

Fig. 9. Exemplifies the Histogram of residuals for standardized model parameters.
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Fig. 10. The QQ-plots to describe the normalization of the model data.
8

Fig. 11. The Auto-Correlation diagram describing the model validity of the model data.
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Fig. 12. Illustrates the ODE solution versus the fitted solution.
image segmentation algorithms that will assist us in knowing the level 
of infestations of Plutella xylostella in a cabbage biomass.
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