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Abstract

Under-five mortality rate is one of the most essential indicator of a
country’s socio-economic well-being and public health status. Poisson
distribution under different priors such as conjugate/Gamma prior,
uniform and Jeffrey’s prior is used to obtain posterior distribution of
the unknown parameter with an application to under-five mortality
data in six East Africa countries from 1960 to 2020. The estimates
are examined through a Bayesian analysis while all the calculations
are carried out the R-statistical software and MS Excel. Among all
priors used in this study, conjugate prior was found to be compatible
for the unknown parameters of the Poisson distribution. The cases
of under-five mortality are found to reduce over time. East Africa
countries through East Africa Community (EAC) should build strong
and resilient health systems, identify and prioritize interventions to
mitigate under-five mortality among Member States.

keywords: Posterior distribution, Bayesian, Prior, Under-five Mor-
tality, Poisson Disribution

1 Introduction

The under-five mortality (U5M) rate, that is the probability of dy-
ing before 5 years of age (per 1000 live births) is one important and
essential indicator of a country’s socio-economic well-being and pub-
lic health status [7]. Millions of children under the age of 5 die each
year, mostly from avoidable causes such as pneumonia, diarrhea and
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malaria. In fact, socioeconomic factors such as place of residence,
mother’s educational level, or household wealth have been strongly as-
sociated with risk factors of U5M such as health behavior or exposure
to diseases and injuries [21]. In almost half of all cases of U5M, major
factors are malnutrition, unsafe water, sanitation and hygiene. U5M
is an important indicator not only of child health and well-being, but
of the general progress towards the Sustainable Development Goals
(SDGs) [11].
Though there has been a decline in global under five mortality rate
(U5MR) from 93 deaths per 1000 live births in 1990 to 39 in 2017,
the highest rates are still seen in sub-Saharan Africa, with an U5MR
of 76 deaths per 1000 live births in 2017, leading to 2.7 million deaths
in the region [1]. The morbidity and mortality burden of children
under 5 years of age remains unevenly distributed and high in both
South Asia and sub-Saharan Africa, with about 80% of U5M com-
monly occurring in these two regions [11]. The under-five mortality
rate (U5MR) is highest in sub-Saharan Africa where about 1 in 9
children dies [15], making sub-Saharan Africa (SSA) one of the most
affected region by U5m worldwide [7], despite the U5MR declining
globally from 69 deaths in 2000 to 38 deaths per 1000 live births in
2016, a 45% decreasing [23]. This decrease of U5MR is due to micro
and macro-economic growth, low fertility rate, improved female edu-
cation, and strengthened public health programmes [12]. One of the
indicators of the socio-economic development of any country is child
survival. Most developing nations are unable to address the root cause
of child mortality due to the inadequate public health measures and
poor health facilities [21].
As maps are used in public health to plan health interventions, monitor
outbreaks, identify vulnerable populations, and communicate health
data, mapping death rates provides invaluable visualization and anal-
ysis tools that scientists and researchers could use to address health
problems [18]. Actuaries, demographers, mathematicians and statisti-
cians have long been interested in the analysis of mortality statistics,
not just in a country’s current demographic structure, but also in es-
timating/projecting for the future [21]. The probability distribution
that represents the uncertainty about a parameter before the current
data are examined is known as prior distribution (or ’best guess’)
[6]. Because Bayesian analysis allows one to combine prior informa-
tion about a population parameter with evidence from information
contained in a sample to guide the statistical inference process, this
methodology is applied herein to obtain posterior distribution of the
unknown parameter with an application to under-five mortality data
from six East Africa countries from 1960 to 2020.

2

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4411393

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



2 Methods and results

2.1 Bayesian statistics

Posterior probability distribution, which describes the epistemic (sta-
tistical) uncertainty of parameters conditional on a collection of ob-
served data [8] is best addressed using Bayesian statistics. The goal
in Bayesian computation is therefore to obtain a set of independent
draws from the posterior distribution to estimate quantities of interest
with reasonable accuracy. That is to determine the likelihood function
, then combine the prior distribution and likelihood function by ap-
plying Bayes’ Theorem [24]. In most cases, the posterior distribution
is used to obtain inferences and balancing of prior knowledge. The
posterior have also been applied in making predictions about future
events [20].
Bayesian statistics arises with a prior of probability distribution of the
parameters, and therefore, the prior distribution commonly impact the
posterior distribution [4]. Models in Bayesian analysis include likeli-
hood function which indicates the probability of information (data)
given the parameter values and the prior probability distribution [25].
The description of the likelihood function and prior include prescribed
details expressed in mathematical way. Since the posterior distribu-
tion depends more on the choice of the prior distribution [13], Let θ
be a parameter, y the data/evidence. Then, P (θ) is defined as prior,
with P (y/θ) the likelihood and P (θ/y) the posterior [9]. Thus, Baye’s
theory is given as the posterior distribution is directly proportional to
the product of prior and likelihood which is ;

P (θ/y) ∝ P (θ)× P (y/θ). (1)

In Bayesian statistics, prior distributions have a crucial role. Priors
can be obtained in many forms such as a Poisson, normal or uniform
distributions. Priors can be either an uninformative or informative
prior [3]. Informative priors upturns the accuracy of the posterior dis-
tributions by updating previous information with new one, and thus,
progressively accruing knowledge [17]. Informative priors which can
provide explanations to computational issues and increase modeling
efficiency are appropriate when prior information is available [10]. An
un-informative/non-informative prior always states general informa-
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tion about a variable. Non-informative priors strongly impact poste-
rior distributions. Bayesian studies with non-informative priors have
been shown to provide the same results to computational and theo-
retical analysis [14]. This study aims to obtain posterior distribution
of the unknown parameter of a Poisson distribution under different
priors with the application to U5M data in six East Africa countries
from 1960 to 2020.

2.2 Poisson distribution

Poisson distribution is suitable to describe the probability that a given
occasion can happen within a given period [19]. The events that can
be described by Poisson distribution are events which are indepen-
dent from each other, that is, within a given interval the event may
present from 0 to infinite times, and the possibility of an event to oc-
cur increases if the period of observation is longer [22]. The Poisson
distribution with parameter λ > 0 of a discrete random variable x is
given as

P (X = x) =
λxe(−λ)

x!
, (2)

where, e is a mathematical constant known as the base of the natural
logarithm.

2.3 Posterior Distribution

2.3.1 Posterior distribution under Jeffrey’s prior

Jeffrey’s priors commonly used in Bayesian statistics are a non-informative
prior distribution that works well with uni-dimensional parameter [16].
Jeffrey’s prior defined in terms of the Fisher information is given by

P (X = x) = PJ(λ) ∝ I(λ)1/2, (3)

where the Fisher’s information is defined as

I(λ) = −E

(
∂2L(λ/x)

∂λ2

)
, (4)

with the Log likelihood being the product of the individual Poisson
probability density function (pdf)

L(λ/x) =

n∏
i=1

fλ(xi) =

n∏
i=1

λxie(−λ)

xi!
=

λ
∑n

i=1 xie−nλ∏n
i=1 xi!

. (5)

Then,

lnL(λ/x) =
n∑

i=1

xi lnλ− nλ−
n∑

i=1

logxi, (6)
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and
∂L(λ/x)

∂λ
=

∑n
i=1 xi
λ

− n, (7)

∂2L(λ/x)

∂λ2
= −

∑n
i=1 xi
λ2

. (8)

From equation (4)

I(λ) =

(
E(
∑n

i=1 xi)

λ2

)
. (9)

Also

E(

n∑
i=1

xi) = E(nx) = nE(x) = nλ. (10)

So that

I(λ) =
nλ

λ2
=

n

λ
=⇒ I(λ) ∝ λ−1, (11)

and
PI(λ) =

√
I (λ) ∝ λ−1/2. (12)

Since posterior ∝ prior × likelihood,

P (λ/x) ∝ P (λ)× P (x/λ), (13)

and

P (x/λ) =

n∏
i=1

Pr(X = x). (14)

Thus,

P (λ/x) ∝
n∏

i=1

Pr(X = x)P (λ). (15)

P (λ/x) ∝ λ−1/2
n∏

i=1

Pr(X = x)P (λ) = λ−1/2

(
n∏

i=1

e−λλx

)
= e−nλλ

∑n
i=1 xiλ−1/2.

(16)
After some little algebraic manipulation,

P (λ/x) ∝ e−nλλ
∑n

i=1 xi− 1
2 =

(
λ
∑n

i=1 xi− 1
2

)
e−nλ. (17)

Therefore, the posterior distribution is a Gamma with

Γ

(
n∑

i=1

xi +
1

2
, n

)
. (18)

The posterior mean is E(λ/x)

µpost =

∑n
i=1 xi +

1
2

n
. (19)
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The posterior variance is var(λ/x)

µpost =

∑n
i=1 xi +

1
2

n
. (20)

σ2
post =

∑n
i=1 xi +

1
2

n2
. (21)

2.3.2 Posterior distribution under Gamma/conjugate prior

The Gamma distribution is widely used as a conjugate prior in Bayesian
statistics. A conjugate prior is an algebraic convenience, giving a
closed-form expression for the posterior; otherwise numerical integra-
tion may be necessary. Further, conjugate priors may give intuition,
by more transparently showing how a likelihood function updates a
prior distribution [5].
From equation (13), x are data or information given where P (λ/x) is
a posterior, P (xλ) is a likelihood and P (λ) is a prior.
Next, from equation (14),

P (x/λ) =

n∏
i=1

λxe−λ

x
. (22)

Then, equation (15) becomes

P (x/λ) =
n∏

i=1

λxe−λ

x
Pr(λ), (23)

and thus,

P (λ/x) ∝ λ
∑n

i=1 xie−nλ

x
Pr(λ). (24)

The appropriate prior for a Poisson model/distribution is a Gamma
distribution (α, β) given by

Pr(λ) =
λα−1e−βλ(βα)

βαΓ(α)
, (25)

where Γ(α) is a Gamma function.
The expected value of a Gamma distribution with parameter α and β
is α/β, and its variance is α/β2. So,

P (λ/x) ∝ λ
∑n

i=1 xie−nλλα−1e−βλ, (26)

and after some algebraic manipulations, one obtains

P (λ/x) ∝ λ
∑n

i=1 xi+α−1e−nλ−βλ. (27)
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Therefore, the posterior distribution is a Gamma with

Γ

(
n∑

i=1

xi + α, n+ β

)
. (28)

The posterior mean is

E(λ/x) := µpost =

∑n
i=1 xi + α

n+ β
, (29)

and the posterior variance is

var(λ/x) := σ2
post =

∑n
i=1 xi + α

(n+ β)2
. (30)

2.3.3 Posterior distribution under uniform prior

Uniform priors are unlikely representations of our actual prior state
of knowledge. Supplying prior distributions with some information al-
lows one to fit models that cannot be otherwise fitted with frequentist
methods (that regard the population value as a fixed, unvarying (but
unknown) quantity, without a probability distribution) [20].
For the case of uniform prior, from equation (23), if P (λ) ∝ 1, then

P (λ/X) = λ(
∑n

i=1 xi+1)−1e−nλ. (31)

Therefore, the posterior distribution is a Gamma with

Γ

(
n∑

i=1

xi + 1, n

)
. (32)

The posterior mean

E(λ/x) := µpost =

∑n
i=1 xi + 1

n
, (33)

and the posterior variance is

var(λ/x) := σ2
post =

∑n
i=1 xi + 1

n2
. (34)

2.4 Numerical Analysis

The data set for East African countries U5M from World Bank for
the year 1960 to 2020 was considered for the study [2]. U5M rates
were estimated using Bayesian method, with the calculations using
the R-statistical software. The posterior distribution were obtained
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using different priors such as conjugate/Gamma prior, uniform and
Jeffrey’s priors. Table 1 below shows posterior mean, variance and
mode under different priors from East African Countries.
One notes that conjugate prior had smallest values of mean, variance
and mode (Table 1). Therefore, conjugate prior is well-suited for the
unknown parameters of the Poisson distribution using the East Africa
countries U5M data. The posterior is estimated using

P (λ/x) ∝ λ
∑n

i=1 xi+α−1e−nλ−βλ, (35)

where α = 1 and β = 1.
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Table 1: Posterior Description

Jaffrey’s Prior Uniform Prior Conjugate Prior
Tanzania
Mean 151.321 151.33 148.889
Variance 2.48068 2.48081 2.40143
Mode 151.305 151.313 148.873
Uganda
Mean 156.4279 156.4361 153.9129
Variance 2.564391 2.564526 2.482466
Mode 156.4115 156.4197 153.8968
South Sudan
Mean 228.8279 228.8197 225.1452
Variance 3.751277 3.751411 3.631374
Mode 228.8115 228.8197 225.129
Kenya
Mean 105.8508 105.859 104.1516
Variance 1.735259 1.735394 1.679865
Mode 105.8344 105.8426 104.355
DRC
Mean 104.3525 104.3607 102.6774
Variance 1.710696 1.71083 1.656087
Mode 104.3361 104.3443 102.6613
Burundi
Mean 158.1607 158.1689 155.6177
Variance 2.592798 2.592932 2.509964
Mode 158.1443 158.1525 155.6016
Rwanda
Mean 164.6311 164.6393 161.9839
Variance 2.698876 2.699006 2.612643
Mode 164.6149 164.623 161.9677

9

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4411393

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Figure 1 below shows the posterior mean under different priors for
all of the East African countries. Results show that South Sudan has
the highest U5M occurrence, followed by Rwanda, Burundi, Uganda,
Tanzania and Kenya, while DRC has the lowest prevalence of under-
five morality.

Figure 1: Posterior mean under different priors

Figure 2 below shows the posterior mode under different priors for
all of the seven East African countries. South Sudan has the highest
U5M incidence, followed by Rwanda, Burundi, Uganda, Tanzania and
Kenya, while DRC had the lowest occurrence of under-five morality.
Figure 3 below illustrates the posterior variance under different priors
for the East African countries. South Sudan has the highest U5M
rate, followed by Rwanda, Burundi, Uganda, Tanzania and Kenya,
while DRC had the lowest rate of U5M.
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Figure 2: Posterior mode under different priors
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Figure 3: Posterior variance under different priors
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3 Conclusion

The U5MR is a key global indicator of child health and one of the
most important measures of global health. Despite the global decline
in U5MR, sub-Saharan Africa still bears the burden of the fatalities,
which are amenable to poor health care and prevention. Using Pois-
son distribution under different priors such as conjugate/gamma prior,
uniform and Jeffrey’s prior, posterior distribution of the unknown pa-
rameter with an application to under-five mortality data in six East
Africa countries from 1960 to 2020. Using Bayesian statistical analysis
in addition to the R-statistical software and MS Excel, results show
that conjugate prior is quite compatible for the unknown parameters
of the Poisson distribution for the East Africa countries’ data. South
Sudan has the highest number of cases based on the posterior mean,
mode and variance from all priors. Furthermore, DRC has the lowest
number of cases based on posterior mean, mode and variance from the
three priors used. To mitigate under-five mortality among its mem-
ber states, East Africa countries through the East Africa Community
(EAC) should build strong and resilient health systems, identify and
prioritize interventions aiming at improving child survival in all sub-
groups of the population.This will require developing concrete national
policy/strategy/action plan aimed at reducing under-five mortality.
This study is not exhaustive. Bayesian analysis is used in this study,
but one could also use Kalman filter, which is a special case of the
former. Further studies could consider the alternative to Bayesian
analysis, the framework of Null Hypothesis Statistical Testing; Demp-
ster’s rule of combination and compare the results when Jeffrey’s prior
is used.
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