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A B S T R A C T

This paper presents a system of non-linear differential equations describing the depletion of forest biomass
and forest-dependent wildlife population caused by human population and its associated activities. The model
incorporates the imprecise nature of the parameters, which are treated as triangular fuzzy numbers to reflect
the inherent uncertainty. We utilised α cut to transform these imprecise parameters into intervals. Subsequently,
employing the principles of interval mathematics, we effectively converted the related differential equation
into a pair of distinct differential equations. By leveraging the signed distance of the fuzzy numbers, we
further simplified the equations, resulting in a single differential equation, which led to the formulation
of a defuzzified model. The existence of equilibrium points with their stability behaviour is presented.
Furthermore, the existence of trans-critical bifurcation is analysed. Through numerical simulations, we observe
significant differences between the solutions of system in crisp and fuzzy environments. These findings
highlight the importance of using fuzzy models to accurately represent the dynamics of complex natural
systems. Consequently, we conclude that fuzzy models provide a trustworthy representation of the dynamics
of complex natural systems.
1. Introduction

Forests provide a variety of significant benefits, including eco-
logical, economic, and social advantages [1]. Ecologically, they are
crucial for preserving the world’s biodiversity, providing habitat for an
extensive range of plant and wildlife species [2]. To human, forests are
the source of wood, energy, medicine, and fodder [3]. Furthermore,
they provide vital ecosystem services such as carbon sequestration, soil
conservation, and watershed protection. Forests also have cultural and
spiritual significance for local communities and offer opportunities for
recreation and tourism. Despite the benefits that forests provide, they
are threatened by a wide range of human activities [1]. These include
unsustainable harvesting; human settlement encroachment; conversion
of the forest land; tourism and recreational pressure; forest fires; as well
as mining and fossil fuel exploitation [4].

Studies show that, around 1.6 billion people rely totally or partially
on forest resources for their livelihood [5], attempts to completely limit
people’s utilisation of the forest resources is not possible. To ensure
sustainable forest utilisation, understanding of the dynamics of human–
forest interaction is of utmost important. There is considerable number
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of theoretical and experimental studies in the pursuit of understanding
the interactions between human and forest. In the realm of theoretical
studies which is the focus of this paper, mathematical models have
become important tools for analysing the impacts of human population
and its associated activities on forest and forest-dependent wildlife
species [6].

In 1996, Shukla et al. [7] developed and analysed a non-linear
mathematical model to study the effect of changing habitat on survival
of wildlife species. According to the study, uncontrolled population
pressure leads to a decline in forest biomass density, which in turn leads
to a reduction in wildlife species density and, ultimately, extinction.
Similar studies developed and analysed models to study the effects of
forest depletion on the survival of wildlife species [8–10]. The findings
were consistence with Shukla et al. [7], that uncontrolled human pop-
ulation and its associated activities have directly and indirect negative
effects on the survival of wildlife species. Furthermore, studies identify
parameters threshold for the systems to remain permanent. Recently,
Sinha et al. [11] examined the negative impact of industrial activities
on forests and wildlife. The results showed that the density of forest
vailable online 23 August 2023
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Fig. 1. Triangular fuzzy number.
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biomass and wildlife population decreases as industrial activities in
forest regions increase. That is in the long run, to avoid the extinction of
wildlife species, the expansion of forests biomass should be very high
as compared to their uses by industries to fulfil the needs of human
population.

It can be noted that, most of works modelled human–forest interac-
tions in a crisp environment under the assumption that all parameters
are certain. But, in reality, biological parameters are not always fixed as
they vary with the surrounding environment. For instance, the growth
rate of forest biomass can differ based on factors such as soil fertility,
presence of pollinators, rainfall, and other variables, which are not uni-
form throughout. Given this perspective, the model developed in fuzzy
environment is considered to be meaningful than the crisp model [12].
In doing so, the parameters can be treated as fuzzy numbers, and the
formulated model will take into account the variability and uncer-
tainty of the parameters that influence the dynamics of forest–human
interactions.

The theory of fuzzy sets was first introduced by Zadeh [13]. Since
then, fuzzy sets have been applied to a variety of fields, including
mathematical modelling. Barros et al. [14] utilised the concept of
fuzzy differential equations in population dynamics to account for
uncertainty in the model system. However, there is a limited amount
of research available that incorporates uncertainty in the parameters
of models that analyse human–forest interactions. This is a notable
gap in the literature, as many of the parameters that affect forest
ecosystems are uncertain due to the complexity and variability of the
natural systems involved. For example, Pal et al. [15,16] applied fuzzy
differential equation and Utility Function Method (UFM) to analyse
the stability and bifurcation of harvesting predator–prey of ecological
systems. The findings reveal that the model in fuzzy environment are
good representation of the biological interactions. However, it is worth
noting that while the UFM is suitable for representing complex relation-
ships between variables, the signed distance approach is the preferred
method for optimising models and analysing their behaviour [17].
Furthermore, Panja [18] developed a fuzzy parameters based model on
depletion and conservation of forest biomass. The study includes three
compartments, forest biomass, human population and technological
efforts. The findings revealed that the fuzzy parameters have effects on
the developed model as the equilibrium levels between crisp and fuzzy
models were significantly different.

Motivated by these works, we developed the model to study the
impact of human activities on forest biomass and forest-dependent
wildlife population. The model consists of four compartments: forest
biomass, forest-dependent wildlife population, human population, and
human activities. We represented the corresponding model parameters
as triangular fuzzy numbers to account for parameter uncertainty. The
2

use of triangular fuzzy membership offers advantages such as intuitive 𝑎
nature, computational simplicity, and the ability to facilitate repre-
sentation [16]. Furthermore, we employed the Signed Distance (SD)
measure to evaluate the degree of similarity or dissimilarity between
two fuzzy sets. This optimisation approach enables us to gain insights
into the behaviour of the system within a fuzzy environment.

The rest of the paper is organised as follows: Section 2 introduces
some fundamental mathematical concepts related to fuzzy sets. Sec-
tion 3 outlines the development of the proposed model. Equilibrium
analysis of the model is presented in Section 4, while stability analysis
is presented in Section 5. Section 6 presents the numerical solution, and
Section 7 concludes the paper.

2. Preliminaries

This section provides an overview of some fundamental mathemati-
cal definitions that have been employed to investigate the depletion of
forest biomass in a fuzzy environment. The definitions are presented
and discussed in brief, the details can be obtained from the cited
references.

Definition 1 (Fuzzy Set [13,16]). A fuzzy set 𝐴 in a universe of
discourse set 𝑋 is defined as the set of pairs 𝐴 =

{(

𝑥, 𝜇𝐴(𝑥)
)

∶ 𝑥 ∈ 𝑋
}

.
he mapping 𝜇𝐴(𝑥) ∶ 𝑋 ↦ [0, 1] is the membership function of fuzzy
et 𝐴, and 𝜇𝐴(𝑥) is the membership value or degree of membership of
∈ 𝑋 in a fuzzy set 𝐴.

efinition 2 (Triangular Fuzzy Number (TFN) [19]). A Triangular Fuzzy
umber 𝐴 =

(

𝑎1, 𝑎, 𝑎2
)

(see Fig. 1) is fuzzy set of the real number R
haracterised by its continuous membership function 𝜇𝐴(𝑥) ∶ 𝑋 ↦ [0, 1]
s follows

𝐴(𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 − 𝑎1
𝑎 − 𝑎1

, if 𝑎1 ≤ 𝑥 ≤ 𝑎,

𝑎2 − 𝑥
𝑎2 − 𝑎

, if 𝑎 ≤ 𝑥 ≤ 𝑎2,

0 Otherwise.

Definition 3 (𝜶–Cut of a Fuzzy Number [19]). The 𝜶–cut of a fuzzy
number 𝐴 in 𝑋 (see Fig. 2) is the crisp set

𝐴(𝜶) =
{

𝑥 ∈ 𝑋 ∶ 𝜇𝐴(𝑥) ≥ 𝜶
}

∀𝜶 ∈ [0, 1],

𝐴(𝜶) is a non empty bounded closed interval contained in 𝑋 defined as
𝐴(𝜶) =

[

𝐴𝑙(𝜶), 𝐴𝑟(𝜶)
]

, such that 𝐴𝑙(𝜶) and 𝐴𝑟(𝜶) are lower and upper
bounds of the closed interval, respectively. Thus, the 𝜶–cut of a TFN
𝐴 is the closed and bounded interval

[

𝐴𝑙(𝜶), 𝐴𝑟(𝜶)
]

, such that 𝐴𝑙(𝜶) =
inf

{

𝑥 ∶ 𝜇𝐴(𝑥) ≥ 𝜶
}

= 𝑎1 + 𝜶(𝑎 − 𝑎1), and 𝐴𝑟(𝜶) = sup
{

𝑥 ∶ 𝜇𝐴(𝑥) ≥ 𝜶
}

=

2 − 𝜶(𝑎2 − 𝑎).
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Table 1
Description of fuzzy parameters.

Param Description

�̃� Fuzzy intrinsic growth rate coefficients of forest biomass
𝛽0 Fuzzy depletion rate coefficients of forest biomass due to wildlife

population under natural processes
𝜂 Fuzzy proportionality constants which represent the growth of wildlife

population in the presence of forest biomass
𝛽1 Fuzzy depletion rate coefficients of forest biomass due to human population
𝛽2 Fuzzy depletion rate coefficients of forest biomass due to human activities
𝜈1 Fuzzy depletion rate coefficients of wildlife population due to human population
𝜈2 Fuzzy depletion rate coefficients of wildlife population due to human activities
𝜃 Fuzzy intrinsic growth rate coefficients of human population
𝜆 Fuzzy proportionality constants which represent the growth of

human population in the presence of forest biomass
𝜎 Fuzzy depletion rate coefficients of human population due to wild animals
�̃� Fuzzy growth rate coefficients of human activities due to human population
𝛾1 Fuzzy natural depletion rate coefficients of human activities
o
T
o
r
f
T

0
f

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

c

i

f
t
e
o
d
H
e
u
t
p
f

h
a

Fig. 2. The 𝜶–cut of a triangular fuzzy number.

Definition 4 (Interval Arithmetic [20]). Let [𝑃𝑙 , 𝑃𝑟] and [𝑄𝑙 , 𝑄𝑟] be two
interval numbers, the addition and subtraction of the interval numbers
is given as follows:

[𝑃𝑙 , 𝑃𝑟] ± [𝑄𝑙 , 𝑄𝑟] = [𝑃𝑙 ±𝑄𝑙 , 𝑃𝑟 ±𝑄𝑟].

Definition 5 (Signed Distance of Fuzzy Numbers [12,21]). Assume 𝐺 is a
fuzzy number, then the signed distance of 𝐺 measured from 0̃ denoted
y 𝑑

(

𝐺, 0̃
)

is given as

(

𝐺, 0̃
)

= 1
2 ∫

1

0

(

𝐺𝑙 (𝜶) + 𝐺𝑟 (𝜶)
)

𝑑𝜶.

3. Model formulation

We considered the crisp model developed by Fanuel et al. [22],
presented in Eq. (1), as the foundation of our study. The model assumes
that 𝐵(𝑡) is the density of forest biomass in the region under study at
any given time, while 𝑊 (𝑡) represents the density of forest-dependent
wildlife population. Furthermore, 𝑁(𝑡) represents the human popula-
tion, and 𝐻(𝑡) represents the associated human activities within the
same region at time 𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

�̇� = 𝑠𝐵
(

1 − 𝐵
𝐿

)

− 𝛽0𝐵𝑊 − 𝛽1𝐵𝑁 − 𝛽2𝐵2𝐻,

�̇� = 𝑟(𝐵)𝑊
(

1 − 𝑊
𝐾(𝐵)

)

− 𝜈1𝑊𝑁 − 𝜈2𝑊𝐻,

�̇� = 𝜃𝑁
(

1 − 𝑁
𝑀

)

+ 𝜆𝛽1𝐵𝑁 − 𝜎𝑁𝑊 ,
̇

(1)
3

⎩𝐻 = 𝛾𝑁 − 𝛾1𝐻,
with conditions 𝐵(0) ≥ 0, 𝑊 (0) ≥ 0, 𝑁(0) ≥ 0, 𝐻(0) ≥ 0, 0 ≤ 𝜆 ≤ 1.
To delve deeper into uncertainties associated with the parameters

f the model, we extended our analysis by fuzzifying the model (1).
his extension allowed us to account for the inherent imprecision that
ften exists in real-world scenarios [12]. Suppose 𝛥𝑖 is the parameter
esponsible for controlling the degree of fuzziness in a fuzzy set, it
ollows, if 𝑝𝑖 is the fuzzy parameter in the set of parameters (see
able 1) and 𝑝𝑖 is its corresponding crisp parameter, then the parameter

𝑝𝑖 is given by 𝑝𝑖 =
(

𝑝𝑖 − 𝛥𝑖, 𝑝𝑖 + 𝛥𝑖+1
)

, such that, 0 < 𝛥𝑖 < 𝑝𝑖 and 𝛥𝑖+1 >
. Thus, on utilising Hukuhara derivative concept [23], the system of
uzzy differential Eqs. (2) describes the model in fuzzy environment.

𝑑𝐵
𝑑𝑡

= �̃�𝐵
(

1 − 𝐵
𝐿

)

− 𝛽0𝐵𝑊 − 𝛽1𝐵𝑁 − 𝛽2𝐵2𝐻,

𝑑𝑊
𝑑𝑡

= 𝛽0𝜂𝐵𝑊
(

1 − 𝑊
𝐾(𝐵)

)

− 𝜈1𝑊𝑁 − 𝜈2𝑊𝐻,

𝑑𝑁
𝑑𝑡

= 𝜃𝑁
(

1 − 𝑁
𝑀

)

+ 𝜆𝛽1𝐵𝑁 − 𝜎𝑁𝑊 ,

𝑑𝐻
𝑑𝑡

= �̃�𝑁 − 𝛾1𝐻,

(2)

with initial conditions 𝐵(0) ≥ 0, 𝑊 (0) ≥ 0, 𝑁(0) ≥ 0, 𝐻(0) ≥ 0.
The first equation characterises the forest biomass dynamics, in-

orporating logistic growth with an intrinsic growth rate (�̃�) and a
carrying capacity (𝐿). Simultaneously, the second term in the equation
represents the depletion of forest biomass due to the wildlife popula-
tion under natural processes through a bilinear interaction (𝛽0𝐵𝑊 ).
Human population exert a significant influence on forest biomass
growth by utilising forest resources, this aspect is captured by the
term (𝛽1𝐵𝑁) [10]. These activities include tree cutting for wood and
medicinal purposes, as well as grazing. Moreover, the model explicitly
incorporates the detrimental impact of deforestation for agricultural,
residential, and industrial purposes on the carrying capacity of forest
resources. This decline in forest land, which cannot be replenished,
is quantified through the fourth term (𝛽2𝐵2𝐻) [10], highlighting the
rreversible nature of this degradation process.

The second equation in the model describes the dynamics of the
orest-dependent wildlife population, following a logistic growth pat-
ern. The growth rate (𝛽0𝜂𝐵) and carrying capacity (𝐾(𝐵)) are influ-
nced by the available forest biomass, reflecting the species’ reliance
n the forest ecosystem. The term 𝜈1𝑊𝑁 accounts for direct wildlife
epletion caused by illegal activities like poaching or smuggling [10].
owever, we assume that human utilisation of wildlife has negligible
ffects on the human population’s growth, as the human population
nder consideration do not depend on wildlife for livelihoods. Fur-
hermore, the term 𝜈2𝑊𝐻 captures the indirect decline in wildlife
opulation due to human activities, such as habitat destruction and
ragmentation.

The third equation in the model represents the dynamics of the
uman population, assuming logistic growth with an intrinsic rate of 𝜃
nd a carrying capacity of 𝑀 . The term 𝜆𝛽 𝐵𝑁 accounts for the human
1
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population growth due to their utilisation of forest resources [24].
Moreover, interactions with wildlife populations impact the human
population as they expand and encroach upon natural habitats, leading
to resource competition and safety concerns [25]. This interaction is
accounted for by the term 𝜎𝑁𝑊 . The fourth equation in the model
ncapsulates the dynamics of human activities, demonstrating a posi-
ive correlation with the density of the human population (�̃�𝑁) while
xhibiting a natural decline governed by the rate 𝛾1.

To analyse the model system (2), we transformed the fuzzy pa-
ameters into intervals by taking the 𝜶–cut on both side of the model
quation (see Definition 3). This transformation allowed us to obtain
ntervals that represent the range of possible values for each parameter,
onsidering their fuzzy nature. Subsequently, we leveraged the prin-
iples of interval mathematics to tackle the interval-based differential
quations derived from the model. By treating the intervals as mathe-
atical objects, we converted the original differential equation into a
air of distinct differential equations that encapsulate the possible be-
aviours of the system within the defined intervals. To further simplify
he analysis and gain deeper insights into the system’s dynamics, we
tilised the concept of signed distance for the fuzzy numbers as defined
n Definition 5. This approach allowed us to obtain a system of defuzzi-
ied differential Eqs. (3), which captured the essential characteristics of
he system’s behaviour under the influence of fuzzy parameters.
𝑑𝐵
𝑑𝑡

= 𝑆1𝐵
(

1 − 𝐵
𝐿

)

− 𝑆2𝐵𝑊 − 𝑆3𝐵𝑁 − 𝑆4𝐵2𝐻,
𝑑𝑊
𝑑𝑡

= 𝑆5𝐵𝑊
(

1 − 𝑊
𝐾(𝐵)

)

− 𝑆6𝑊𝑁 − 𝑆7𝑊𝐻,

𝑑𝑁
𝑑𝑡

= 𝑆8𝑁
(

1 − 𝑁
𝑀

)

+ 𝑆9𝐵𝑁 − 𝑆10𝑁𝑊 ,
𝑑𝐻
𝑑𝑡

= 𝑆11𝑁 − 𝑆12𝐻,

(3)

with initial condition 𝐵(0) ≥ 0, 𝑊 (0) ≥ 0, 𝑁(0) ≥ 0, 𝐻(0) ≥ 0.
The parameters of the deffuzified model (3) are given as follows: for

(

𝑝𝑖, 0̃
)

,

𝜅 = 𝑝𝑖 +
1
4
(

𝛥𝑖+1 − 𝛥𝑖
)

,

while for 𝑑
(

𝑝𝑖 ⊗ 𝑝𝑗 , 0̃
)

such that 𝑗 ≠ 𝑖

𝑆𝜅 =
𝑝𝑖𝑝𝑗
2

+
𝑝𝑗
4

(

𝛥𝑖+1 − 𝛥𝑖
)

+
𝑝𝑖
4
(

𝛥𝑗+1 − 𝛥𝑗
)

+ 1
4
(

𝛥𝑖𝛥𝑗 + 𝛥𝑖+1𝛥𝑗+1
)

.

The details of defuzzification process is given in Appendix A.

3.1. Boundedness and permanence of the system

Following Chen [26], the region of attraction that describes the
boundedness of the system (3) is stated in Lemma 1, while, the con-
ditions for the system to remain permanent are stated in Theorem 2.

Lemma 1. The set

𝛺 =
{

(𝐵,𝑊 ,𝑁,𝐻) ∶ 0 ≤ 𝐵 ≤ 𝐿, 0 ≤ 𝑊 ≤ 𝐾(𝐿), 0 ≤ 𝑁 ≤ 𝑁𝑚, 0 ≤ 𝐻 ≤ 𝐻𝑚
}

is the region of attraction for model system (3) and attract all solutions
initiating in the interior of positive orthant, where,

𝑁𝑚 = 𝑀
𝑆8

(

𝑆8 + 𝑆9𝐿
)

, and 𝐻𝑚 =
𝑆11𝑁𝑚
𝑆12

.

Furthermore, suppose the initial condition of the system is given by

0 =
(

𝐵0,𝑊0, 𝑁0,𝐻0
)

,

hen following Chaudhary [27], the system (3) is uniformly persistent
f there exists positive constants 𝜏1 and 𝜏2 such that each non-negative
olution
(

𝑡, 𝑦
)

,𝑊
(

𝑡, 𝑦
)

, 𝑁
(

𝑡, 𝑦
)

, and 𝐻
(

𝑡, 𝑦
)

4

0 0 0 0 e
of the system with initial conditions 𝑦0 ∈ R4
+ satisfies

min
{

lim inf
𝑡→∞

𝐵
(

𝑡, 𝑦0
)

, lim inf
𝑡→∞

𝑊
(

𝑡, 𝑦0
)

, lim inf
𝑡→∞

𝑁
(

𝑡, 𝑦0
)

, lim inf
𝑡→∞

𝐻
(

𝑡, 𝑦0
)

}

≥ 𝜏1

max
{

lim sup
𝑡→∞

𝐵
(

𝑡, 𝑦0
)

, lim sup
𝑡→∞

𝑊
(

𝑡, 𝑦0
)

, lim sup
𝑡→∞

𝑁
(

𝑡, 𝑦0
)

, lim sup
𝑡→∞

𝐻
(

𝑡, 𝑦0
)

}

≤ 𝜏2.

heorem 2. The fuzzy model system (3) with initial condition 𝑦0 is
niformly persistent provided inequalities 𝑆1 > 𝑆2𝐾(𝐿) + 𝑆3𝑁𝑚, 𝑆5 >
6𝑁𝑚 + 𝑆7𝐻𝑚, and 𝑆8 > 𝑆10𝐹2 hold.

roof. From Lemma 1, it is important to note that 0 ≤ 𝐵(𝑡) ≤ 𝐿,
≤ 𝑊 (𝑡) ≤ 𝐾(𝐿), 0 ≤ 𝑁(𝑡) ≤ 𝑁𝑚 and 0 ≤ 𝐻(𝑡) ≤ 𝐻𝑚 for sufficient large

𝑡. Similarly, from the equations of the model system (3) we obtain the
following:

lim inf
𝑡→∞

𝐵(𝑡) ≥
𝐿
(

𝑆1 − 𝑆2𝐾(𝐿) − 𝑆3𝑁𝑚
)

𝑆1 + 𝐿𝑆4𝐻𝑚
= 𝐹1 (say),

such that 𝑆1 > 𝑆2𝐾(𝐿) + 𝑆3𝑁𝑚,

lim inf
𝑡→∞

𝑊 (𝑡) ≥
𝐾(𝐹1)

(

𝑆5 − 𝑆6𝑁𝑚 − 𝑆7𝐻𝑚
)

𝑆5
= 𝐹2 (say),

uch that 𝑆5 > 𝑆6𝑁𝑚 + 𝑆7𝐻𝑚,

im inf
𝑡→∞

𝑁(𝑡) ≥
𝑀(𝑆8 − 𝑆10𝐹2)

𝑆8
= 𝐹3 (say),

such that 𝑆8 > 𝑆10𝐹2, and,

lim inf
𝑡→∞

𝐻(𝑡) ≥
𝑆11𝐹3
𝑆12

= 𝐹4 (say),

respectively. Thus, choosing

𝜏1 = min
(

𝐹1, 𝐹2, 𝐹3, 𝐹4
)

and 𝜏2 = max
(

𝐿,𝐾(𝐿), 𝑁𝑚,𝐻𝑚
)

we have the system which is permanent.

Based on Lemma 1 and Theorem 2, the solutions of the model (3)
are bounded and permanent. This allows for the use of the model to
investigate the effect of human–forest interaction on forest biomass.
The next subsections explore the presence of equilibrium points and
their stabilities.

4. Equilibrium analysis

The equilibrium points were obtained by solving the equations of
the model (3) when equated to zero. Given our assumption that the
wildlife population entirely depends on forest biomass, we observed
that the model has a total of six equilibrium points: five boundary equi-
libria denoted as 𝐸(0), 𝐸(1), 𝐸(2), 𝐸(3), 𝐸(4), and one interior equilibrium
point denoted as 𝐸∗.

𝐸(0) (0, 0, 0, 0) , 𝐸(1) (𝐿, 0, 0, 0) , 𝐸(2) (𝐵(2),𝑊 (2), 0, 0
)

,

(3)
(

0, 0,𝑀,
𝑀𝑆11

𝑆12

)

, 𝐸(4) (𝐵(4), 0, 𝑁 (4),𝐻 (4)) , 𝐸∗ (𝐵∗,𝑊 ∗, 𝑁∗,𝐻∗) .

It can be observed that the existence of 𝐸(0), 𝐸(1) and 𝐸(3) is trivial,
hence, the proof for their existence is omitted. Thus, we show the
existence of 𝐸(2), 𝐸(4) and 𝐸∗.

4.1. Existence of boundary equilibria 𝐸(2) and 𝐸(4)

Defining

𝐾(𝐵) = 𝐾0 +𝐾1𝐵, (4)

such that 𝐾1 > 0, 𝐾(0) = 𝐾0 > 0, and 𝐾 ′(𝐵) > 0 for 𝐵 > 0. Theorem 3
hich is stated without proof provides sufficient conditions for the

(2) (4)
xistence of 𝐸 and 𝐸 .
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Theorem 3. Equilibrium points 𝐸(2) and 𝐸(4) exist provided condition (5)
holds.

𝑆1 > max
{

𝑆2𝐾0, 𝑆3𝑀
}

. (5)

The presence of 𝐸(2) signifies an undisturbed forest ecosystem, unaf-
fected by the human population and its associated activities. Although
this scenario may be unrealistic, it can only be achieved when the
intrinsic growth rate of forest biomass surpasses the rate of depletion
caused by the forest-dependent wildlife population. On the other hand,
the existence of 𝐸(4) indicates the coexistence of forest biomass, the
human population, and human activities in the absence of wildlife
population. This occurs when the depletion of the forest by the human
population, at its maximum carrying capacity, is lower than its intrinsic
growth rate.

4.2. Existence of interior equilibrium point 𝐸∗

The points 𝐵∗,𝑊 ∗, 𝑁∗ and 𝐻∗ are positive solution of the algebraic
Eqs. (6)–(9).

𝑆1

(

1 − 𝐵∗

𝐿

)

− 𝑆2𝑊
∗ − 𝑆3𝑁

∗ − 𝑆4𝐵
∗𝐻∗ = 0, (6)

5

(

1 − 𝑊 ∗

𝐾(𝐵∗)

)

− 𝑆6𝑁
∗ − 𝑆7𝐻

∗ = 0, (7)

8

(

1 − 𝑁∗

𝑀∗

)

+ 𝑆9𝐵
∗ − 𝑆10𝑊

∗ = 0, (8)

11𝑁
∗ − 𝑆12𝐻

∗ = 0. (9)

aking Eqs. (8) and (9), after some algebraic manipulations we obtain
qs. (10) and (11), respectively.

∗ = 𝑀
𝑆8

(

𝑆8 + 𝑆9𝐵
∗ − 𝑆10𝑊

∗) = ℎ1(𝐵∗,𝑊 ∗) (𝑆𝑎𝑦), (10)

ℎ1(𝐵∗,𝑊 ∗) is non–negative provided 𝑆8 + 𝑆9𝐵∗ > 𝑆10𝑊 ∗.

∗ =
𝑆11ℎ1(𝐵∗,𝑊 ∗)

𝑆12
= ℎ2(𝐵∗,𝑊 ∗) (𝑆𝑎𝑦), (11)

Upon substitution of Eqs. (10) and (11) into Eqs. (6) and (7), we
obtained isoclines (12) and (13), respectively.

𝑆1

(

1 − 𝐵∗

𝐿

)

−𝑆2𝑊
∗−𝑆3ℎ1(𝐵∗,𝑊 ∗)−𝑆4𝐵

∗ℎ2(𝐵∗,𝑊 ∗) = 0 = 𝐻1(𝐵∗,𝑊 ∗) (𝑆𝑎𝑦),

(12)

𝑆5

(

1 − 𝑊 ∗

𝐾(𝐵∗)

)

− 𝑆6ℎ1(𝐵∗,𝑊 ∗) − 𝑆7ℎ2(𝐵∗,𝑊 ∗) = 0 = 𝐻2(𝐵∗,𝑊 ∗) (𝑆𝑎𝑦).

(13)

The isocline (12) leads us to the following inferences:

(a) When 𝑊 ∗ = 0, gives

𝐻1(𝐵∗, 0) =𝑆1

(

1 − 𝐵∗

𝐿

)

−
𝑆3𝑀

(

𝑆8 + 𝑆9𝐵∗)

𝑆8

−
𝑀𝑆4𝑆11𝐵∗(𝑆8 + 𝑆9𝐵∗)

𝑆8𝑆12
= 𝑅1(𝐵∗) (𝑆𝑎𝑦). (14)

From Eq. (12), we infer the following:

(i) When 𝐵∗ = 0,

𝑅1(0) = 𝑆1 − 𝑆3𝑀,

which is positive provided condition (5) holds.
(ii) When 𝐵∗ = 𝐿,

𝑅1(𝐿) = −
𝑆3𝑀(𝑆8 + 𝑆9𝐿) −

𝑆4𝑆11𝐿𝑀(𝑆8 + 𝑆9𝐿) < 0.
5

𝑆8 𝑆8𝑆12
(iii) The derivative of 𝑅(𝐵∗) with respect to 𝐵∗ gives,

𝑅′
1(𝐵

∗) = −
𝑆1
𝐿

−
𝑆3𝑆9𝑀

𝑆8
−

𝑆4𝑆11𝑀
(

2𝑆9𝐵∗ + 𝑆8
)

𝑆8𝑆12
< 0.

Thus, inferences (i)–(iii) lead to the conclusion that Eq. (14)
has a unique positive root in the interval (0, 𝐿).

(b) When 𝑊 ∗ → ∞, 𝐵∗ < 0,
(c) If we define

(

𝑑𝑊 ∗

𝑑𝐵∗

)

1
as the derivative of 𝑊 ∗ with respect to 𝐵∗

from the isocline (14), then we have
(

𝑑𝑊 ∗

𝑑𝐵∗

)

1
< 0.

urther, the isocline (13), leads us to the following conclusions:

(a) When 𝑊 ∗ = 0, gives 𝑅2(𝐵∗),

𝐻2(𝐵∗, 0) = 𝑆5𝐵
∗ − 𝑆6ℎ1(𝐵∗, 0) −

𝑆7𝑆11ℎ1(𝐵∗, 0)
𝑆12

= 𝑅2(𝐵∗) (𝑆𝑎𝑦).

(15)

We derive the following inferences form Eq. (15),

(i) When 𝐵∗ = 0, gives

𝑅2(0) = −𝑆6𝑀 −
𝑀𝑆11𝑆7

𝑆12
< 0.

(ii) When 𝐵∗ = 𝐿, gives

𝑅2(𝐿) = 𝑆5𝐿 −
𝑆6𝑀

(

𝐿𝑆9 + 𝑆8
)

𝑆8
−

𝑀𝑆7𝑆11
(

𝐿𝑆9 + 𝑆8
)

𝑆8𝑆12
,

𝑅2(𝐿) is positive provided

𝑆5𝐿 >
𝑆6𝑀

(

𝐿𝑆9 + 𝑆8
)

𝑆8
+

𝑀𝑆7𝑆11
(

𝐿𝑆9 + 𝑆8
)

𝑆8𝑆12
.

(iii) Further, the derivative of 𝑅2(𝐵∗) with respect to 𝐵∗ gives

𝑅′
2(𝐵

∗) = 𝑆5 −
𝜈1𝑆9𝑀
𝑆8

−
𝑆7𝑆9𝑆11𝑀

𝑆8𝑆12
,

𝑅′
2(𝐵

∗) is positive, provided

𝑆5 >
𝜈1𝑆9𝑀
𝑆8

+
𝑆7𝑆11𝑆9𝑀

𝑆8𝑆12
.

With these considerations (i–iii), 𝑅2(𝐵∗) = 0 has a positive
root 𝐵∗ which is unique in the interval (0, 𝐿).

(b) 𝑊 ∗ > 0 as 𝐵∗ → ∞,
(c) If we define

(

𝑑𝑊 ∗

𝑑𝐵∗

)

2
as the derivative of 𝑊 ∗ with respect to 𝐵∗

from the isocline (15), then we have
(

𝑑𝑊 ∗∕𝑑𝐵∗)
2 > 0.

hese considerations lead to the conclusion that (𝐵∗,𝑊 ∗) is unique in
he regions of 0 < 𝐵∗ < 𝐿 and 0 < 𝑊 ∗ < 𝐾(𝐿), if and only if

𝑑𝑊 ∗∕𝑑𝐵∗)
1 < 0, and

(

𝑑𝑊 ∗∕𝑑𝐵∗)
2 > 0.

he expressions of both (𝑑𝑊 ∗∕𝑑𝐵∗)1 and (𝑑𝑊 ∗∕𝑑𝐵∗)2 are determined
rom Eqs. (14) and (15), respectively. To verify the conditions for
niqueness of the points (𝐵∗,𝑊 ∗), we used the following counter
xample; assume that human population (𝑁) and human activities (𝐻)
ave no effect on forest biomass (𝐵), that is, 𝑆3 = 0, 𝑆4 = 0, then we
oted that,

𝑑𝑊 ∗∕𝑑𝐵∗)
1 = −𝑆1∕𝑆2𝐿 < 0.

imilarly, taking Eq. (4), under maximum values of 𝐵∗ and 𝑊 ∗, when
orest-dependent wildlife population (𝑊 ) is unaffected by human pop-
lation (𝑁) and human activities (𝐻), that is, 𝑆6 = 0, 𝑆7 = 0,
ives

∗ ∗)
𝑑𝑊 ∕𝑑𝐵 2 = 𝐾1 > 0.
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Under this counter example, uniqueness conditions are satisfied. Thus,
this concludes the existence proof for 𝐵∗ and 𝑊 ∗. Once the values of
𝐵∗ and 𝑊 ∗ are known, the values of 𝑁∗ and 𝐻∗ can be evaluated from
qs. (11) and (12), respectively.

. Stability analysis

Stability analysis is a key tool to understand system dynamics. Local
symptotic stability requires solutions to converge to an equilibrium
oint when initial conditions are close to that point, while global
symptotic stability convergence to an equilibrium point regardless of
nitial conditions [28,29].

.1. Local stability analysis

The local stability behaviour of the boundary equilibria is deter-
ined by examining the sign of the eigenvalues of the corresponding

acobian matrix. The general Jacobian matrix of the system (3) is given
s  . Theorem 4 provides the summary of the stability analysis of the
oundary equilibria 𝐸(0), 𝐸(1), 𝐸(2), 𝐸(3), and 𝐸(4).

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑎1 −𝑆2𝐵 −𝑆3𝐵 −𝑆4𝐵2

𝑎2 𝑎3 −𝑆6𝑊 −𝑆7 𝑊
𝑆9𝑁 −𝑆10𝑁 𝑎4 0
0 0 𝑆11 −𝑆12

⎞

⎟

⎟

⎟

⎟

⎠

here

1 = 𝑆1

(

1 − 𝐵
𝐿

)

−
𝑆1𝐵
𝐿

− 𝑆2 𝑊 − 𝑆3𝑁 − 2𝑆4𝐵𝐻,

2 = 𝑆5 𝑊
(

1 − 𝑊
𝐾 (𝐵)

)

+
𝐾1𝑆5𝑊 2

(𝐾 (𝐵))2
,

3 = 𝑆5𝐵
(

1 − 𝑊
𝐾 (𝐵)

)

−
𝑆5𝐵𝑊
𝐾 (𝐵)

− 𝑆6𝑁 − 𝑆7𝐻,

4 = 𝑆8

(

1 − 𝑁
𝑀

)

−
𝑆8𝑁
𝑀

+ 𝑆9𝐵 − 𝑆10𝑊 .

heorem 4. Stability analysis of the equilibria 𝐸(0), 𝐸(1), 𝐸(2), 𝐸(3), and
(4).

i. The equilibrium point 𝐸(0) is always unstable.
ii. The equilibrium point 𝐸(1) is always unstable.
iii. The equilibrium point 𝐸(2) is unstable provided inequality 𝑆8 +

𝑆9𝐵(2) > 𝑆10𝑊 (2) hold.
iv. The equilibrium point 𝐸(3) is unstable provided either 𝐸(4) or 𝐸∗ exists,

that is, 𝑆1 > 𝑆3𝑀 .
v. The equilibrium point 𝐸(4) is unstable if 𝑆5𝐵(4) > 𝑆6𝑁 (4) + 𝑆7𝐻 (4).

On the other hand, assessing the stability of an interior equilib-
ium point 𝐸∗ using eigenvalue inferences is very tricky. We used the
yapunov direct method after linearising the system (3). Theorem

heorem 5. The model system (3) is locally asymptotically stable around
he equilibrium point 𝐸∗ provided conditions (16)–(20) hold.

𝑊 ∗

𝐾 (𝐵∗)
+

𝐾 ′ (𝐵∗)𝐵∗𝑊 ∗

(𝐾 (𝐵∗))2

)2
<

(

2𝐵∗ (𝑆1 + 𝑆4𝐻∗𝐿
)

3𝑆2𝐿𝐾 (𝐵∗)

)

, (16)

(

𝑆2𝑆6
𝑆5

+
𝑆3𝑆10
𝑆9

)2
<
(

2𝑆2𝐵∗

3𝐾 (𝐵∗)

)(

𝑆3𝑆8
𝑆9𝑀

)

, (17)

𝑆11
)2 <

2𝑆3𝑆8𝑆12
3𝑆9𝑀

, (18)

(

𝑆7
𝑆5

)2
<

4𝑆12𝐵∗

9𝑆2𝐾 (𝐵∗)
, (19)

2
4 < 2𝑆12

(

𝑆1 + 𝑆3𝐻∗𝐿
3𝐵∗2𝐿

)

. (20)
6

The proof of this theorem is given in Appendix B).
.2. Global stability analysis

The global stability behaviour of the system (3) at 𝐸∗ is evalu-
ated using Lyapunov’s stability theory [22]. Theorem 6 establishes the
conditions for the system’s global stability behaviour at 𝐸∗.

Theorem 6. The interior equilibrium 𝐸∗ if exists is globally stable inside
the region of attraction 𝛺 provided conditions (20)–(25) hold.
(

𝜙𝐿𝐾(𝐿)
𝐾2

0

+ 𝑊 ∗

𝐾 (𝐵∗)

)

<
(

𝑆1 + 𝑆4𝐻∗𝐿
3𝑆2𝐾 (𝐵∗)

)

, (21)

𝑆2𝑆6
𝑆5

+
𝑆3𝑆10
𝑆9

)2
<
(

2𝑆2𝐿
3𝐾 (𝐵∗)

)(

𝑆3𝑆8
𝑆9𝑀

)

, (22)

(

𝑆11
)2 <

2𝑆3𝑆8𝑆12
3𝑆9𝑀

, (23)

𝑆7
𝑆5

)2
<

4𝑆12𝐿
9𝑆2𝐾 (𝐵∗)

, (24)

2
4 < 2𝑆12

(

𝑆1 + 𝑆3𝐻∗𝐿
3𝐿3

)

. (25)

The proof of this theorem is given in Appendix C).

.3. Existence of trans-critical bifurcation

The inferences on stability analysis of equilibrium point 𝐸(3) shows
hat the point is stable whenever 𝑆3 > 𝑆∗

3 = 𝑆1∕𝑀 and when 𝑆3
ecreases to 𝑆∗

3 , 𝐸(3) loses its stability and the interior equilibrium point
∗ emerges. Thus, if 𝑆3 is bifurcation parameter where an exchange of

tability between 𝐸(3) and 𝐸∗ takes place at 𝑆3 = 𝑆∗
3 , then, there is a

rans–critical bifurcation between these two equilibrium points. Thus,
he matrix of the linearised system (3) around the equilibrium point
(3) with 𝑆3 evaluated at 𝑆∗

3 = 𝑆1∕𝑀 is given as


(

𝐸(3), 𝑆∗
3
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

0 −
(

𝑆6𝑆12𝑀 + 𝑆7𝑆11𝑀
𝑆12

)

0 0

𝑆9𝑀 −𝑆10 𝑀 −𝑆8 0
0 0 𝑆11 −𝑆12

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

t can be noted that the matrix 
(

𝐸(3), 𝑆∗
3
)

has a simple zero eigenvalue
nd three negative eigenvalues. This property allows the use of Centre
anifold Theory [30] to study the dynamics of the system (3) near
∗
3 . It follows, the right eigenvector of 

(

𝐸(3), 𝑆∗
3
)

corresponding to 0
igenvalues denoted by 𝒘 =

[

𝑤1, 𝑤2, 𝑤3, 𝑤4
]𝑇 is given as

=
[

𝑆3𝑆8𝑆12
𝑆1𝑆9𝑆11

, 0,
𝑆12
𝑆11

, 1
]𝑇

,

consequently, the left eigenvector 𝒗 is given by

𝒗 =
[

𝑆1𝑆9𝑆11
𝑆3𝑆8𝑆12

, 0, 0, 0
]

,

such that 𝒗.𝒘 = 1. Therefore, on utilising [31, Theorem 4.1], the
coefficients of 𝑎 and 𝑏 are given as follows:

𝑎 =
4
∑

𝑘,𝑖,𝑗=1
𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘
𝜕𝑋𝑖𝜕𝑋𝑗

(

𝐸(3), 𝑆∗
3
)

,

𝑣1𝑤
2
1
𝜕2𝑓1
𝜕𝐵2

(

𝐸(3), 𝑆∗
3
)

+ 2𝑣1𝑤1𝑤3
𝜕2𝑓1
𝜕𝐵𝜕𝑁

(

𝐸(3), 𝑆∗
3
)

,

𝑎 = −2𝑣1

[

𝑤1𝑤3
𝑆1
𝑀

+𝑤2
1

(

𝑆1
𝐿

+
𝑆4𝑆11𝑀

𝑆12

)]

< 0,

=
4
∑

𝑘,𝑖=1
𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘
𝜕𝑋𝑖𝜕𝑆3

(

𝐸(3), 𝑆∗
3
)

= 𝑣1𝑤1
𝜕2𝑓1
𝜕𝐵𝜕𝑆3

,

𝑏 = −𝑀 < 0.
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Fig. 3. Time evolution of model solutions (a) Forest biomass (b) Wildlife population (c) Human population and (d) Human activities in crisp and fuzzy environment.
We observe that 𝑎 < 0 and 𝑏 < 0, when 𝑆3 < 𝑆∗
3 , the boundary

quilibrium 𝐸(3) is unstable and there exists a positive stable interior
quilibrium point 𝐸∗. When 𝑆3 > 𝑆∗

3 , 𝐸(3) becomes stable while positive
interior equilibrium loses its feasibility and negative unstable interior
equilibrium emerges. Thus, there is exists a trans–critical bifurcation
between 𝐸(3) and 𝐸∗ with bifurcation parameter 𝑆3.

6. Numerical simulations

We carried out numerical simulation to study the effects of fuzzy
parameters on the dynamics of the system. Since the problem is not
a case study for a specific species, the parameter values in Table 2
and some hypothetical parametric values of 𝛥𝑖 are used. Upon using
these parametric values, numerical solution were computed by taking
advantage of MATLAB built in ODE solver ode45. Starting with initial
condition 𝐵(0) = 2, 𝑊 (0) = 1, 𝑁(0) = 10, 𝐻(0) = 1, the dynamics
of forest biomass, wildlife population, human population and human
activities converge to the equilibrium levels (see Figs. 3(a)–3(d)). From
that figure, it can be noted that equilibrium levels of four compartments
are different in two different environments (crisp and fuzzy) suggesting
that fuzzy parameters have impact on the dynamics of the model, thus
adjusting the values of 𝛥𝑖 to control fuzziness of parameter will leads
to decisions based on uncertain or imprecise information.

Furthermore, taking different initial conditions, we plotted the
phase diagrams in 𝐵 − 𝑊 − 𝑁 and 𝐵 − 𝑊 − 𝐻 which are shown
in Figs. 4(a)–4(b), we observed that regardless of the starting points,
the solutions converge to the interior equilibrium point suggesting that
the interior equilibrium point is globally asymptotically stable for the
fuzzy model. In other planes, non–linear stability can be demonstrated
in similar way. To verify the existence of a transcritical bifurcation
between 𝐸(3) and 𝐸∗ numerically we obtained the critical value of
7

the bifurcation parameter 𝑆3 as 𝑆∗
3 = 0.00812. Moreover, we plotted

the evolution of the model’s solutions as the bifurcation parameter
𝑆3 varies while other parameters kept fixed, as shown in Figs. 5(a)–
5(b). We observed that when the value of 𝑆3 crosses the critical
value, a change in feasibility and stability occurs between 𝐸(3) and
𝐸∗, suggesting the presence of a transcritical bifurcation as shown in
analytical analysis.

Similarly, we investigated how the system’s behaviour changes
with parametric variations of some critical parameters. These crit-
ical parameters were determined from the stability analysis of the
interior equilibrium points 𝐸∗. Figs. 6(a)–6(d), 7(a)–7(d), and 8–8(d)
demonstrate the change in the system’s stability due to changes in
parameter responsible for depletion of forest biomass due to human
activities (𝑆4), human activities growth rate (𝑆11) and depletion rate
of forest-dependent wildlife population due to human activities (𝑆7),
respectively. The figures clearly demonstrate that ensuring the long-
term stability of the system necessitates keeping these parameters
below critical values. Specifically, the depletion rate of forest biomass
due to human activities should not exceed 0.01, while the growth rate
of human activities must be limited to 0.1. Furthermore, the depletion
rate of the wildlife population resulting from human activities should
be constrained to 0.07, assuming all other parameters remain un-
changed. These findings offer practical guidance for sustainable forest
management and wildlife conservation efforts in the studied region.

7. Discussion and conclusion

Depletion of forest biomass poses a significant threat to global
ecosystems and biodiversity. Forests play a crucial role in maintaining
Earth’s ecological balance, making their degradation have far-reaching

consequences. The loss of forest biomass is primarily driven by human
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Table 2
Parameter values and sources.

Parameter Value Source Parameter Value Source

𝑠 0.8 [10,32,33] 𝑀 100 [10,34]
𝐿 100 [10,34,35] 𝐾0 10 Assumed
𝛽0 0.05 [9] 𝐾1 3 [9]
𝜂 0.9 [9] 𝜆 0.05 [33]
𝛽1 0.003 [33] 𝜎 0.001 [33]
𝛽2 0.0004 Assumed 𝜃 0.5 [10,33]
𝜈1 0.002 [33] 𝛾 0.004 Assumed
𝜈2 0.0001 [33] 𝛾1 0.05 [33]

𝛥1 = 0.79, 𝛥2 = 0.05, 𝛥3 = 0.05, 𝛥4 = 0.01,
𝛥5 = 0.0025, 𝛥6 = 0.001, 𝛥7 = 0.00039, 𝛥8 = 0.0001,
𝛥9 = 0.89, 𝛥10 = 0.005, 𝛥11 = 0.0019, 𝛥12 = 0.0004,
𝛥13 = 0.00009, 𝛥14 = 0.00005, 𝛥15 = 0.09, 𝛥16 = 0.005,
𝛥17 = 0.045, 𝛥18 = 0.006, 𝛥19 = 0.0008, 𝛥20 = 0.0009,
𝛥21 = 0.0078, 𝛥22 = 0.0002, 𝛥23 = 0.0038, 𝛥24 = 0.0005,
𝛥25 = 0.045, 𝛥26 = 0.006.
Fig. 4. Non–linear stability of the interior equilibrium point 𝐸∗ in (a) 𝐵 −𝑊 −𝑁 and (b) 𝐵 −𝑊 −𝐻 planes.
Fig. 5. Trans–critical bifurcation between 𝐸(3) and 𝐸∗ with respect to the depletion rate of forest biomass due to human population (𝑆3), (a) Forest biomass (b) Wildlife population
(c) Human population and (d) Human activities. Other parameter values were kept fixed.
8
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Fig. 6. Evolution of the solution of (a) Forest biomass (b) Wildlife population (c) Human population and (d) Human activities for different values of 𝑆4. Other parameter values
are kept fixed.

Fig. 7. Evolution of the solution of (a) Forest biomass (b) Wildlife population (c) Human population and (d) Human activities for different values of 𝑆11. Other parameter values
were kept fixed.
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Fig. 8. Evolution of the solution of (a) Forest biomass (b) Wildlife population (c) Human population and (d) Human activities for different values of 𝑆4. Other parameter values
are kept fixed.
o

M
R

activities, including deforestation, illegal logging, and unsustainable
land-use practices. The consequences of forest biomass depletion are
profound, leading to habitat loss for countless plant and animal species,
increasing the risk of extinction, and disrupting entire ecosystems. To
establish sustainable strategies for forest conservation, understanding
the dynamics of human–forest interactions is of paramount importance.

Thus, this paper presents a system of non-linear differential equa-
tions that describes the depletion of forest biomass and forest–
dependent wildlife population caused by human population and its
associated activities in a fuzzy environment. The model assumes that
the parameters are triangular fuzzy numbers due to their intuitive
nature, ease of use, computational simplicity, and ability to facilitate
representation. The fuzzy model was defuzzified using the signed dis-
tance of the fuzzy numbers. The bounded space of the model solutions
and the conditions for the system to remain uniformly persistent are
presented. The paper also identifies the potential equilibrium points
of the fuzzy model whereby one non-negative interior equilibrium
point and five non-negative boundary equilibria were found, and their
stabilities were analysed. The paper also presents the Trans-critical
bifurcation concerning the forest depletion rate resulting from human
population.

The simulation results presented demonstrate significant differences
in the equilibrium levels of all variables between the crisp and fuzzy
models. These findings underscore the considerable impact of imprecise
parameter values on the stability of the model system, particularly
affecting the equilibrium levels of forest biomass and forest-dependent
wildlife. This highlights the crucial role of fuzzy parameters in under-
standing and predicting the behaviour of the system under uncertain
conditions. Furthermore, regardless of the initial conditions, all solu-
tions converge to the interior equilibrium points, signifying the global
asymptotic stability of these points. This stability is essential for ensur-
ing the long-term viability of the system. In addition to analysing the
model’s stability, we conducted a study on the parametric variations
of critical parameters. Our investigation identified threshold values of
10
0.01, 0.1, and 0.07 for the depletion rate of forest biomass due to
human activities, the natural growth rate of human activities, and the
depletion rate of wildlife population due to human activities, respec-
tively. Maintaining these parameters below the identified thresholds is
vital for preserving the system’s stability and ecological balance.

These findings shed light on the significance of fuzzy parameters
in modelling complex systems and provide valuable insights into the
behaviour and sustainability of the studied ecosystem. Thus, it can be
concluded that fuzzy model is more trustworthy this is because crisp
models are a particular case of fuzzy models, further, the use of fuzzy
parameters in the model may leads to a more accurate representation
of the dynamics of forest depletion. Nonetheless, future studies could
emphasise the incorporation of spatial dynamics into the model and the
integration of real-world data to improve prediction precision. Further-
more, inclusion of time delay in ecological interactions to account the
temporal dynamics that influence the overall stability and sustainability
of the system could be an area of interest.
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Appendix A. Defuzzification process

Taking the 𝜶 cut on both sides of model system (see Definition 3)
gives

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝐵
𝑑𝑡

(𝜶) =
(

�̃�
)

(𝜶)𝐵
(

1 − 𝐵
𝐿

)

−
(

𝛽0
)

(𝜶)𝐵𝑊 −
(

𝛽1
)

(𝜶)𝐵𝑁 −
(

𝛽2
)

(𝜶)𝐵2𝐻,

𝑑𝑊
𝑑𝑡

(𝜶) =
(

𝛽0 ⊗ 𝜂
)

(𝜶)𝐵𝑊
(

1 − 𝑊
𝐾(𝐵)

)

−
(

𝜈1
)

(𝜶)𝑊𝑁 −
(

𝜈2
)

(𝜶)𝑊𝐻,

𝑑𝑁
𝑑𝑡

(𝜶) =
(

𝜃
)

(𝜶)𝑁
(

1 − 𝑁
𝑀

)

+
(

𝜆 ⊗ 𝛽1
)

(𝜶)𝐵𝑁 −
(

𝜎
)

(𝜶)𝑁𝑊 ,

𝑑𝐻
𝑑𝑡

(𝜶) =
(

�̃�
)

(𝜶)𝑁 −
(

𝛾1
)

(𝜶)𝐻.

(A.1)

More precisely, system (A.1) can be written as
[( 𝑑𝐵

𝑑𝑡

)

𝑙
(𝜶) ,

( 𝑑𝐵
𝑑𝑡

)

𝑟
(𝜶)

]

=
[

𝑠𝑙 (𝜶) , 𝑠𝑟 (𝜶)
]

𝐵
(

1 − 𝐵
𝐿

)

−
[

(𝛽0)𝑙 (𝜶) , (𝛽0)𝑟 (𝜶)
]

𝐵𝑊

−
[(

𝛽1
)

𝑙 (𝜶) ,
(

𝛽1
)

𝑟 (𝜶)
]

𝐵𝑁 −
[(

𝛽2
)

𝑙 (𝜶) ,
(

𝛽2
)

𝑟 (𝜶)
]

𝐵2𝐻,

( 𝑑𝑊
𝑑𝑡

)

𝑙
(𝜶) ,

( 𝑑𝑊
𝑑𝑡

)

𝑟
(𝜶)

]

=
[

(𝛽0)𝑙𝜂𝑙 (𝜶) , (𝛽0)𝑟𝜂𝑟 (𝜶)
]

𝐵𝑊
(

1 − 𝑊
𝐾(𝐵)

)

−
[

(𝜈1)𝑙 (𝜶) , (𝜈1)𝑟 (𝜶)
]

𝑊𝑁 −
[(

𝜈2
)

𝑙 (𝜶) ,
(

𝜈2
)

𝑟 (𝜶)
]

𝑊𝐻,
[( 𝑑𝑁

𝑑𝑡

)

𝑙
(𝜶) ,

( 𝑑𝑁
𝑑𝑡

)

𝑟
(𝜶)

]

=
[

𝜃𝑙 (𝜶) , 𝜃𝑟 (𝜶)
]

𝑁
(

1 − 𝑁
𝑀

)

−
[

𝜎𝑙 (𝜶) , 𝜎𝑟 (𝜶)
]

𝑁𝑊

+
[

𝜆𝑙
(

𝛽1
)

𝑙 (𝜶) , 𝜆𝑟
(

𝛽1
)

𝑟 (𝜶)
]

𝐵𝑁,
[( 𝑑𝐻

𝑑𝑡

)

𝑙
(𝜶) ,

( 𝑑𝐻
𝑑𝑡

)

𝑟
(𝜶)

]

=
[

𝛾𝑙 (𝜶) , 𝛾𝑟 (𝜶)
]

𝑁 −
[(

𝛾1
)

𝑙 (𝜶) ,
(

𝛾1
)

𝑟 (𝜶)
]

𝐻.

n utilising the properties of the interval theory (see Definition 4) gives
( 𝑑𝐵
𝑑𝑡

)

𝑙
(𝜶) = 𝑠𝑙 (𝜶)𝐵

(

1 − 𝐵
𝐿

)

− (𝛽0)𝑙 (𝜶)𝐵𝑊 −
(

𝛽1
)

𝑙 (𝜶)𝐵𝑁 −
(

𝛽2
)

𝑙 (𝜶)𝐵
2𝐻,

( 𝑑𝐵
𝑑𝑡

)

𝑟
(𝜶) = 𝑠𝑟 (𝜶)𝐵

(

1 − 𝐵
𝐿

)

− (𝛽0)𝑟 (𝜶)𝐵𝑊 −
(

𝛽1
)

𝑟 (𝜶)𝐵𝑁 −
(

𝛽2
)

𝑟 (𝜶)𝐵
2𝐻,

( 𝑑𝑊
𝑑𝑡

)

𝑙
(𝜶) = (𝛽0)𝑙𝜂𝑙 (𝜶)𝐵𝑊

(

1 − 𝑊
𝐾(𝐵)

)

− (𝜈1)𝑙 (𝜶)𝑊𝑁 −
(

𝜈2
)

𝑙 (𝜶)𝑊𝐻,

𝑑𝑊
𝑑𝑡

)

𝑟
(𝜶) = (𝛽0)𝑟𝜂𝑟 (𝜶)𝐵𝑊

(

1 − 𝑊
𝐾(𝐵)

)

− (𝜈1)𝑟 (𝜶)𝑊𝑁 −
(

𝜈2
)

𝑟 (𝜶)𝑊𝐻,

(𝑑𝑁
𝑑𝑡

)

𝑙
(𝜶) = 𝜃𝑙 (𝜶)𝑁

(

1 − 𝑁
𝑀

)

+ 𝜆𝑙
(

𝛽1
)

𝑙 (𝜶)𝐵𝑁 − 𝜎𝑙 (𝜶)𝑁𝑊 ,

(𝑑𝑁
𝑑𝑡

)

𝑟
(𝜶) = 𝜃𝑟 (𝜶)𝑁

(

1 − 𝑁
𝑀

)

+ 𝜆𝑟
(

𝛽1
)

𝑟 (𝜶)𝐵𝑁 − 𝜎𝑟 (𝜶)𝑁𝑊 ,

(𝑑𝐻
𝑑𝑡

)

𝑙
(𝜶) = 𝛾𝑙 (𝜶)𝑁 −

(

𝛾1
)

𝑙 (𝜶)𝐻,

(𝑑𝐻
𝑑𝑡

)

𝑟
(𝜶) = 𝛾𝑟 (𝜶)𝑁 −

(

𝛾1
)

𝑟 (𝜶)𝐻,

where

(𝑝𝑖)𝑙 (𝜶) = 𝑝𝑖 − 𝛥𝑖 + 𝜶𝛥𝑖, (𝑝𝑖)𝑟 (𝜶) = 𝑝𝑖 − 𝛥𝑖+1 + 𝜶𝛥𝑖+1.

hereafter, we used the signed distance (see Definition 5) to defuzzify
he system,

𝑑
(

𝑑𝐵
𝑑𝑡

, 0̃
)

= 𝑑
(

�̃�, 0̃
)

𝐵
(

1 − 𝐵
𝐿

)

− 𝑑
(

𝛽0, 0̃
)

𝐵𝑊 − 𝑑
(

𝛽1, 0̃
)

𝐵𝑁 − 𝑑
(

𝛽2, 0̃
)

𝐵2𝐻,

𝑑
(

𝑑𝑊 , 0̃
)

= 𝑑
(

𝛽0 ⊗ 𝜂, 0̃
)

𝐵𝑊
(

1 − 𝑊
)

− 𝑑
(

𝜈1, 0̃
)

𝑊𝑁 − 𝑑
(

𝜈2, 0̃
)

𝑊𝐻,
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𝑑𝑡 𝐾(𝐵) a
𝑑
(

𝑑𝑁
𝑑𝑡

, 0̃
)

= 𝑑
(

𝜃, 0̃
)

𝑁
(

1 − 𝑁
𝑀

)

+ 𝑑
(

𝜆 ⊗ 𝛽1, 0̃
)

𝐵𝑁 − 𝑑
(

𝜎, 0̃
)

𝑁𝑊 ,

𝑑
(

𝑑𝐻
𝑑𝑡

, 0̃
)

= 𝑑
(

�̃� , 0̃
)

𝑁 − 𝑑
(

𝛾1, 0̃
)

𝐻.

Upon evaluating and substituting the values of the respective
signed distance gives the defuzzified system (3) in the form of crisp
model.

Appendix B. Proof of Theorem 5

Proof. To prove Theorem 5, we start by linearising the system (3),
about 𝐸∗ by using the following transformations: 𝐵 = 𝐵∗ + 𝑏, 𝑊 =
𝑊 ∗ + 𝑤, 𝑁 = 𝑁∗ + 𝑛, 𝐻 = 𝐻∗ + ℎ, where 𝑏, 𝑤, 𝑛 and
ℎ are small perturbations around the equilibrium 𝐸∗. The following
linearised system is obtained:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑏
𝑑𝑡

= −
(

𝑆1𝐵∗

𝐿
+ 𝑆4𝐵∗𝐻∗

)

𝑏 − 𝑆3𝐵∗𝑤 − 𝑆3𝐵∗𝑛 − 𝑆4𝐵∗2ℎ,

𝑑𝑤
𝑑𝑡

=

(

𝑆5𝑊 ∗
(

1 − 𝑊 ∗

𝐾(𝐵∗)

)

+
𝑆5𝐾1𝐵∗𝑊 ∗2

(𝐾(𝐵∗))2

)

𝑏 −
(

𝑆5𝐵∗𝑊 ∗

𝐾(𝐵∗)

)

𝑤

− 𝑆6𝑊 ∗𝑛 − 𝑆7𝑊 ∗ℎ,

𝑑𝑛
𝑑𝑡

= 𝑆9𝑁∗𝑏 − 𝑆10𝑁∗𝑤 −
𝑆8𝑁∗

𝑀
𝑛,

𝑑ℎ
𝑑𝑡

= 𝑆11𝑛 − 𝑆12ℎ.

(B.1)

Following Lata [10], to apply the Lyapunov direct method we consid-
ered the positive definite function (B.2),

𝑉 = 1
2

(

1
𝐵∗ 𝑏

2 +
𝑘1
𝑊 ∗𝑤

2 + 𝑘2𝑛
2 + 𝑘3ℎ

2
)

, (B.2)

here 𝑘1, 𝑘2 and 𝑘3 are positive constants. Upon differentiating func-
ion (B.2) with respect to 𝑡 along the solutions of linearised system
B.1), we obtain

𝑑𝑉
𝑑𝑡

= −
(

𝑆1
𝐿

+ 𝑆4𝐻
∗
)

𝑏2 − 𝑘1

(

𝑆5𝐵∗

𝐾(𝐵∗)

)

𝑤2 − 𝑘2
𝑆8𝑁∗

𝑀
𝑛2 − 𝑘3𝑆12ℎ

2

+
(

−𝑆2 + 𝑘1𝑆5
)

𝑏𝑤 − 𝑘1

(

𝑆5𝑊 ∗

𝐾(𝐵∗)
−

𝑆5𝐾1𝐵∗𝑊 ∗

𝐾(𝐵∗)2

)

𝑏𝑤

+
(

−𝑆3 + 𝑘2𝑆9𝑁
∗) 𝑏𝑛 + −𝑆4𝑏ℎ −

(

𝑘1𝑆6 + 𝑘2𝑆10𝑁
∗)𝑤𝑛

− 𝑘1𝑆7𝑤ℎ + 𝑘3𝑆11𝑛ℎ.

(B.3)

Choosing arbitrary 𝑘1 = 𝑆2∕𝑆5, 𝑘2 = 𝑆3∕𝑆9𝑁∗, and 𝑘3 = 1, which
re all positive constants, it is worth noting that 𝑑𝑉 ∕𝑑𝑡 is negative
efinite provided conditions (16) to (20) hold. This completes the proof
f Theorem 5.

ppendix C. Proof of Theorem 6

roof. We consider the following positive definite function [36] to
rove the theorem

=
(

𝐵 − 𝐵∗ − 𝐵∗ ln 𝐵
𝐵∗

)

+ 𝑙1
(

𝑊 −𝑊 ∗ −𝑊 ∗ ln 𝑊
𝑊 ∗

)

+𝑙2
(

𝑁 −𝑁∗ −𝑁∗ ln 𝑁
𝑁∗

)

+
𝑙3
2
(

𝐻 −𝐻∗)2 ,

(C.1)

where 𝑙1, 𝑙2 and 𝑙3 are positive constants. The time derivative of (C.1)
nd upon substitution of the values of 𝑑𝐵∕𝑑𝑡, 𝑑𝑊 ∕𝑑𝑡, 𝑑𝑁∕𝑑𝑡 and
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O

|

s
a

𝑑𝐻∕𝑑𝑡 gives

𝑑𝑈
𝑑𝑡

= (𝐵 − 𝐵∗)
[

−
(

𝑆1

𝐿
+ 𝑆4𝐻

∗
)

(𝐵 − 𝐵∗) − 𝑆2(𝑊 −𝑊 ∗) − 𝑆3(𝑁 −𝑁∗)

−𝑆4𝐵(𝐻 −𝐻∗)
]

+ 𝑙1 (𝑊 −𝑊 ∗)
[

𝑆5 (𝐵 − 𝐵∗) −
𝑆5𝐵
𝐾(𝐵∗)

(𝑊 −𝑊 ∗)

−𝑆6(𝑁 −𝑁∗) − 𝑆7(𝐻 −𝐻∗)
]

+ 𝑙1 (𝑊 −𝑊 ∗)
[

−
(

𝑆5𝐵𝑊 𝛤 (𝐵)
)

(𝐵 − 𝐵∗)

−
(

𝑆5𝑊 ∗

𝐾(𝐵∗)

)

(𝐵 − 𝐵∗)
]

+ 𝑙2(𝑁 −𝑁∗)
[

−
𝑆8

𝑀
(𝑁 −𝑁∗) + 𝑆9(𝐵 − 𝐵∗)

−𝑆10(𝑊 −𝑊 ∗)
]

+ 𝑙3(𝐻 −𝐻∗)
[

−(𝑆13 − 𝑆12𝐵
2)(𝐻 −𝐻∗) + 𝑆11(𝑁 −𝑁∗)

+𝑆12(𝐵𝐻∗ + 𝐵∗𝐻∗)(𝐵 − 𝐵∗)
]

.

𝑑𝑈
𝑑𝑡

=
(

𝐵 − 𝐵∗)
[

−
(

𝑆1
𝐿

+ 𝑆4𝐻
∗
)

(

𝐵 − 𝐵∗) − 𝑆2(𝑊 −𝑊 ∗)

− 𝑆3(𝑁 −𝑁∗) − 𝑆4𝐵(𝐻 −𝐻∗)
]

+𝑙1
(

𝑊 −𝑊 ∗)
[

𝑆5
(

𝐵 − 𝐵∗) −
𝑆5𝐵
𝐾(𝐵∗)

(𝑊 −𝑊 ∗)

− 𝑆6(𝑁 −𝑁∗) − 𝑆7(𝐻 −𝐻∗)
]

+𝑙1
(

𝑊 −𝑊 ∗)
[

−
(

𝑆5𝐵𝑊 𝛤 (𝐵)
) (

𝐵 − 𝐵∗) −
(

𝑆5𝑊 ∗

𝐾(𝐵∗)

)

(

𝐵 − 𝐵∗)
]

+𝑙2(𝑁 −𝑁∗)
[

−
𝑆8
𝑀

(𝑁 −𝑁∗) + 𝑆9(𝐵 − 𝐵∗) − 𝑆10(𝑊 −𝑊 ∗)
]

+𝑙3(𝐻 −𝐻∗)
[

−𝑆12(𝐻 −𝐻∗) + 𝑆11(𝑁 −𝑁∗)
]

.

where,

𝛤 (𝐵) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
𝐾(𝐵)

− 1
𝐾(𝐵∗)

𝐵 − 𝐵∗ , 𝐵 ≠ 𝐵∗

−𝐾 ′(𝐵∗)
(𝐾(𝐵∗))2

, 𝐵 = 𝐵∗.

n utilising mean value theorem we have

𝛤 (𝐵)| =
𝜙
𝐾2

0

,

uch that 0 < 𝐾 ′(𝐵) ≤ 𝜙. Choosing arbitrary, 𝑙1 = 𝑆2∕𝑆5, 𝑙2 = 𝑆3∕𝑆9
nd 𝑙3 = 1. We observe that 𝑑𝑈∕𝑑𝑡 is negative definite provided

conditions (21) to (25) hold. This completes the proof of Theorem 6.
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