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Abstract: Advancements in machine learning techniques, availability of more data sets, and increased
computing power have enabled a significant growth in a number of research areas. Predicting,
detecting, and classifying complex events in earth systems which by nature are difficult to model is
one such area. In this work, we investigate the application of different machine learning techniques
for detecting and classifying extreme rainfall events in a sub-catchment within the Pangani River
Basin, found in Northern Tanzania. Identification and classification of extreme rainfall event is a
preliminary crucial task towards success in predicting rainfall-induced river floods. To identify a
rain condition in the selected sub-catchment, we use data from five weather stations that have been
labeled for the whole sub-catchment. In order to assess which machine learning technique is better
suited for rainfall classification, we apply five different algorithms in a historical dataset for the
period of 1979 to 2014. We evaluate the performance of the models in terms of precision and recall,
reporting random forest and XGBoost as having the best overall performances. However, because the
class distribution is imbalanced, a generic multi-layer perceptron performs best when identifying
heavy rainfall events, which are eventually the main cause of rainfall-induced river floods in the
Pangani River Basin.

Keywords: heavy rainfall; river floods; machine learning

1. Introduction

Rainfall-induced river floods are among Earth’s most common and most catastrophic
natural hazards [1]. Worldwide, flash floods account for more than 5000 deaths annu-
ally, with a mortality rate more than 4 times greater than other types of flooding [2], and
subsequently, their social, economic, and environmental impacts are significant. Accord-
ing to the Tanzania Meteorological Agency, in the last decade, the northern part of the
country has experienced its heaviest rainfall accompanied by strong winds, causing the
most severe floods of the past 50 years [3]. It is without a doubt that with the changing
climate, such events are likely to become more frequent, not only in Tanzania, as evidenced
in several reports (Burundi and Tanzania—Floods Leave Homes Destroyed, Hundreds
Displaced. https://floodlist.com/africa/burundi-tanzania-floods-late-february-2021 (ac-
cessed on 16 December 2022), Tanzania—Severe Flooding in Mtwara Region After Tor-
rential Rainfall. https://floodlist.com/africa/tanzania-flood-mtwara-january-2021 (ac-
cessed on 16 December 2022), Tanzania—12 Killed in Dar Es Salaam Flash Floods. https:
//floodlist.com/africa/tanzania-daressalaam-floods-october-2020 (accessed on 16 Decem-
ber 2022)), but across the globe. The effects of floods are notably severe in developing or
low-income countries such as Tanzania because of their vulnerability to the occurrence of
these phenomena. The vulnerability is partly due to limited human capacity and limited
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resources invested in managing the problem [4]. Understanding the trends and key pat-
terns in the occurrence of rainfall events, is an important step towards better flood risk
management plans that will help in designing more accurate early warning systems [5].

Machine learning (ML) presents the ability to identify the hidden patterns and trends
in historical climate data [6] and may be used to classify and predict key rainfall events
that are associated with the occurrence of floods. The potential of machine learning
techniques to improve the classification and prediction of extreme rainfall events has been
demonstrated by several studies in the past. The techniques provide valuable insights into
the spatial and temporal patterns of extreme rainfall events and their impacts on flood
generation, water resources management, and climate change impact assessment. In [7],
the authors proposed an event-based flood classification method to study the global river
flood generation processes. The approach is based on a combination of unsupervised
and supervised machine learning methods that can provide event-based information for
better understanding of flood generation processes. Another machine learning-based
downscaling approach is demonstrated in Pham et al. [8], where a combination of random
forest and least square support vector regression was found to improve the accuracy of
extreme rainfall predictions at a local scale. The inspiration of the method used here is that
it provides valuable insights into the extreme rainfall events and their spatial and temporal
characteristics, which are useful for water resource management and flood risk assessment.

Similarly, Ref. [9] developed a machine learning-based classification method to cate-
gorize extreme precipitation events over Northern Italy. The study employed a k-means
clustering technique to identify distinct clusters of extreme rainfall events and used decision
trees to develop a classification scheme. Despite the fact that most of these studies were
conducted in developed counties, where there is advancement in both technology and
human resources, the results show significant potential for use as models for similar studies
in other developing regions, such as Tanzania.

Furthermore, Ref. [10] presented a study that used three different machine learning
algorithms (XGBoost, LightGBM, and CatBoost) to forecast daily stream flow in a mountain-
ous catchment. The study compared the performance of the three algorithms and showed
that machine learning can provide accurate stream flow forecasts, which are valuable
for water management and flood prediction. An analysis of physical causes of extreme
precipitation [11] can also be used to identify key climatic variables that drive extreme
precipitation events, and machine learning based approaches can be applied to predict the
occurrence of extreme precipitation.

We apply five machine learning techniques, namely random forest, extreme gradient
boost, support vector machine, k-nearest neighbors, and multilayer perceptron to identify
and classify rainfall events in the Karanga–Weruweru–Kikafu sub-catchment, located
within the Pangani River Basin, Tanzania. Random forest is preferred for its robustness to
large and noisy data sets [12] and its ability to handle imbalanced data sets [13,14]. XGBoost
is computationally efficient [15], and it can also perform better on imbalanced data sets [16].
SVM is suitable for high-dimensional input space and modeling complex, non-linear
relationships between inputs and outputs [17,18]. k-nearest neighbors, although considered
to be one of the simplest machine learning algorithms, has been successful in a number
of applications, from recognition of handwritten texts [19] to satellite image scenes [20]
and mostly success in classification problems with irregular decision boundaries. MLP
is a feed-forward neural network that has also shown success in classification problems,
including extreme natural events such as droughts [21].

We compare these techniques and discuss the suitability of each in successfully classi-
fying rainfall events. To train these models, a historical labeled data set from the Pangani
Water Board (PWB) and the Tanzania Meteorological Agency (TMA) collected from five
stations located across the Karanga–Weruweru–Kikafu sub-catchment was used. The na-
ture of the data set gives us an imbalanced multi-class classification problem. There are
three categories in the target class (heavy, light and no rain). Of these, heavy rainfall is the
smallest, making up just 0.32% of the whole data set. The distribution is highly skewed
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towards the majority class, in this case, light rain, which makes up 83.22% of the whole
data set, leaving 16.46% to the no rain class. This simply means for every single example of
a heavy rainfall event, there are 51 examples of no rain and 260 examples of light rain.

2. Materials and Methods

The study area under consideration is situated in the northern part of Tanzania in the
south of the Kilimanjaro region. The Karanga–Weruweru–Kikafu (KWK) sub-catchment
(Figure 1) and the villages along the Kikuletwa river are intensely affected by flash river
floods from heavy rainfall. The aim of this work was to classify rainfall intensity among
three classes (heavy, light, none). The categories are based on the rate of precipitation per
period, with precipitation of more than 64.5 mm in a day classified as heavy, anything
below that up to precipitation greater than zero (0) millimeters per day classified as light
rain, and 0.00 classified as no rain. Data records for the study covering the period from
1979 to 2014 was provided by Tanzania Meteorological Agency (TMA), and the Pangani
Basin Water Board(PBWB).

Figure 1. Karanga–Weruweru–Kikafu(KWK) sub-catchment.

The data contain daily weather data from the five stations (Machame, Kibosho, Lya-
mungo, Moshi Airport, and Kahe) for 35 years, with seven parameters, namely maximum
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and minimum temperatures in Celsius (◦C ), precipitation in millimeters (mm), wind speed
in meters per second (m/s), relative humidity expressed as percentage, solar irradiance
in mega-joules per square metre (MJ/m2), and rain category. The parameters are mea-
sured uniformly across all the locations and we applied data for the same period for all
the stations.

It is worth noting that the data were consolidated from two main sources: the ground
gauges and the satellite estimates. The basis of the consolidation and the decision to com-
pliment the ground gauge data with the satellite estimates were based on several previous
studies that were performed to test the validity of the satellite estimates over the region.
Three studies, Refs. [22–24], investigated the spatio-temporal characteristics and accuracy
of satellite-derived rainfall estimates in Tanzania in comparison to ground-based measure-
ments. The studies revealed a positive correlation between the two data sources, indicating
the potential of satellite-based rainfall estimates to be a useful complement to ground-based
measurements, especially in areas with complex topography and limited ground-based
measurement stations. Nevertheless, the satellite estimates exhibited a tendency to overes-
timate the ground-based measurements, and their accuracy varied in different locations.
The findings suggest that the use of satellite-based rainfall estimates can enhance rainfall
monitoring and prediction in regions where traditional measurement methods are sparse
or challenging to implement, albeit with the need for continual improvements in their
accuracy and uncertainty estimation.

2.1. Data Preparation

The data from each station were checked for missing values before being merged
into a single data set. Simple line plots were used to verify whether all stations had
similar patterns in the features and to identify any outliers. Simple statistical analysis was
performed on the numerical features and are summarized in Table 1.

Table 1. Descriptive statistics of weather variables used in training.

Variable Count Mean Std. Dev. Min 25th
Percentile

75th
Percentile

Max temperature (◦C ) 10,389 22.71 3.08 13.26 20.53 24.93
Min temperature (◦C ) 10,389 12.90 1.96 5.71 11.61 14.41

Precipitation (mm) 10,389 3.17 6.34 0.00 0.15 3.66
Wind (m/s) 10,389 2.49 0.55 0.65 2.14 2.87

Relative humidity (%) 10,389 0.76 0.10 0.32 0.69 0.84
Solar (MJ/m2) 10,389 16.92 7.23 0.00 11.18 22.19

Data were split into training and testing set in a ratio of 80% to 20%. In order to
even out the distribution and to ensure that the distribution of the target variable is
maintained in both the training and testing data sets, as there is an imbalance in the target
class distribution, we applied stratified sampling. In total there were six features and
one target class from each location. The features are maximum temperature, minimum
temperature, precipitation, wind, relative humidity, and solar irradiance, and the target
is rainfall category. Further feature engineering was performed, where all the object type
columns were encoded to numeric type. The encoding was mainly for the target class
which was the only object type. The target class had three classes, heavy rain, labeled “H”,
encoded as “0” (class 0); light rain, labeled “L”, encoded as “1” (class 1); and no rain labeled
“N”, encoded as “2” (class 2). Pivoting was also performed to put the data in a format that
is convenient for model training. Training data were normalized using MinMaxScaler from
sklearn library.

2.2. Model Building

Two main things were considered during this stage before starting the models: first,
the target class distribution and second, the multi-class classification. Our target class was
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somehow severely imbalanced, with the distribution being highly skewed towards the
majority class, light rain (83.22%), followed by no rain (16.46%), and heavy rainfall, which
is our class of interest, is the minority (0.32%). This simply means for every single example
of heavy rainfall, we had 51 examples of no rain and 260 examples of light rain.

Consideration on the part of multi-class classification was to use a multi-class strategy
from scikit-learn (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass
.OneVsRestClassifier.html, accessed on 25 November 2022) library known as the one-vs-
the-rest (OvR) classifier. OvR is a heuristic technique of dealing with multi-class problems
by fitting one classifier per class. For each classifier, the class is fitted against all the other
classes. One of the implementations of OvR is from the sklearn library, which provides
a separate OneVsRestClassifier class that allows the one-vs-rest strategy to be used with
any classifier. A classifier that is inherently for binary classification is just provided to the
OneVsRestClassifier as an argument.

Each model was then trained, tested, and evaluated. Because our problem falls
under multi-class imbalanced classification, selecting a metric for evaluation was the
most important step in the project. An incorrect metric would mean choosing the wrong
algorithm and consequently solving a different problem from the one that you intend
to solve.

2.3. Model Evaluation

Because we are dealing with a highly skewed data set, we chose precision and recall
as our performance evaluation metrics. Precision (Equation (1)) is a ratio of the number of
true positives divided by the sum of the true positives and false negatives. In other words,
it provides information on how good a model is at predicting the positive class.

Precision =
True Positives

True Positives + False Positives
(1)

Recall (Equation (2)) on the other hand is the ratio of the number of true positives divided
by the sum of the true positives and the false negatives.

Recall =
True Positives

True Positives + False negatives
(2)

One important aspect of precision and recall to take note is that the calculations do not
consider the use of the truenegatives. The focus is on the correct prediction of the minority
class. A precision–recall curve is a plot of the precision on the y-axis and the recall on
the x-axis for different thresholds. They give a more informative picture of an algorithm
in skewed data sets, as has also been evident in a number of studies [25,26]. In that
sense, we identified our positive class to be H for heavy rainfall and other collectively as
negative classes (no rain and light rain). Nevertheless, precision and recall are in a trade-off
relationship: at some point you may need to optimize one at the expense of the other [27].
Contextually, at some point you would want classifier that is good at minimizing both the
false positives and false negatives, meaning that it would make more sense to have a model
that is equally good at identifying cases were a false alarm of a heavy rainfall event occurs
and when an alarm is not on when there is an event coming. In the view of that, we applied
another metric called F1_score. F1_score is the harmonic mean (Equation (3)) of precision
and recall and ranges from 0 to 1.

F1_score =
2 × (precision × recall)

precision + recall
(3)

3. Results

In our experiments, five different machine learning algorithms were used to identify
and classify extreme rainfall events between three rainfall categories. As stated in the
Introduction, the ability to identify extreme rainfall events is crucial for predicting rainfall-

https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html
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induced river floods. The results from our evaluation show that overall random forest and
XGBoost performed better than the rest, as we can see from the F1_scores summarized
in Table 2.

Table 2. Summary of F1_score measures for the models.

Random Forest XGBoost Support Vector
Machine KNN Multi-Layer

Perceptron

0.998 0.998 0.878 0.898 0.950

Ideally, the scores from F1_score mean that both XGBoost and random forest have
perfect precision and recall when you give equal importance to both false negatives and
false positives. However, that is not the case in our problem. In classifying the heavy rains,
which in our case is the minority class, false negatives were the most important. Intuitively,
in our context, it is not helpful if we are successful in predicting all data points as negative,
that is, not a heavy rainfall event. Instead, we focused on identifying the positive cases:
the occurrence of a heavy rainfall event. Referring back to the definitions of the metrics, this
simply means that we maximized the recall, the ability of our model to find all the relevant
cases within a given data set. This notion is supported by a number of past studies [28–31].
In the view of that, F1_score is not the determinant for the appropriate model to use in
this scenario; as was previously mentioned, it is the harmonic mean, and thus it takes
into account both the precision and recall. Our main goal is to favor the minimization of
the false negatives and not to cast equal importance to both the false negatives and false
positives. We focused on having a model with high recall which is able to identify most
of the heavy rainfall events (true positives), that way saving lives and properties from the
consequences that accompany such events.

On the other hand, of course that is at the expense of issuing false alarms of heavy
rainfall events as though they would happen (false positive) when they will not. Potentially,
the associated costs of false positives will be unnecessary anxiety for people and at the
worst, costs associated with taking unnecessary precautions. In most cases, the false
positives will not be fatal. Therefore, because false negatives will results in fatalities and
destruction, we want to have our classification threshold to favor the optimization of recall
over precision.

This is the point where we turn our attention to the precision–recall curves for more
insight. In a precision–recall curve, the goal is to maximize the area under the curve (AUC),
which represents the overall performance of the classifier. A higher AUC indicates better
performance in terms of balancing precision and recall and therefore a better ability to
identify instances of the minority class.

In addition to the overall AUC, the shape and position of the curve can also provide
insights into the performance of the classifier. A curve that is close to the top-right corner
of the plot indicates a classifier with high precision and high recall, whereas a curve
that is close to the bottom-left corner indicates a classifier with low precision and low
recall. The shape of the curve can also reveal whether the classifier is biased towards
precision or recall, which can inform the selection of a decision threshold that balances the
two [32]. In Figures 2–6, we show the precision–recall curves for each of the considered
classification algorithms.
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Figure 2. Precision–recall curve for SVM.

Figure 3. Precision–recall curve for random forest.
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Figure 4. Precision–recall curve for XGBoost.

Figure 5. Precision–recall curve for multi-layer perceptron.
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Figure 6. Precision–recall curve for KNN.

First, Figure 2 shows a precision–recall curve for a support vector machine in which
the PR curve for the heavy rain class (class 0) is slightly below the micro-average PR curve,
indicating a lower precision value for this class. The PR curve for the light rain class (class
1) is higher than both the micro-average PR curve and the PR curve for the heavy rain
class, indicating high precision and recall values for this class. The PR curve for the no
rain class (class 2) is below the micro-average PR curve and the PR curve for the light rain
class, indicating relatively low precision and recall values for this class. Overall, the micro-
average PR curve is high, with an AP value of 0.96, indicating a high level of precision and
recall across all three classes.

Figure 3 illustrates the PR curve for a random forest classifier, with a precision–recall
curve for the heavy rain class slightly below the micro-average precision–recall curve,
indicating slightly lower precision values for this class, but with relatively high recall
values. The precision–recall curve for the no rain class and light rain are all aligned at the
top-left corner with the micro-average precision–recall curve, indicating a perfect level
of precision and recall values for these classes. The micro-average precision–recall curve,
with an AP value of 1, indicates a perfect level of precision and recall across all three classes.

Figure 4 depicts the precision–recall curves for XGBoost, suggesting that the classi-
fier is highly accurate and consistent in identifying both light rain and no rain classes,
with high precision and recall values for both. The precision–recall curve for the heavy
rain class is slightly below the micro-average precision–recall curve, indicating slightly
lower precision values for this class but relatively high recall values. Overall, XGBoost
shows high performance in identifying rainfall classes, particularly for the light rain and
no rain classes.

Figure 5 shows the precision–recall curve for the multilayer-perceptron classifier, with
light rain (class 1) closest to the top-right corner of the plot, followed by the precision–recall
curve for heavy rain (class 0), and then the curve for no rain (class 2), which is the lowest
and is to the left of the other two curves, indicating that MLP had a lower level of precision
and recall in identifying the no rain class as compared to the other two classes. However,
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overall the classification model has achieved high precision and recall rates for all three
classes, as indicated by the high micro-average AP of 0.99.

Finally, Figure 6 illustrates the PR curve for KNN classification with an overall micro-
average AP of 0.94, indicating a relatively good performance across all three classes.
The curve for light rain (class 1) has the highest AP of 0.97, indicating the best perfor-
mance for this class. The curve for heavy rain (class 0) has an AP of 0.77, which is lower
than class 1 and suggests that the classifier is less accurate in identifying instances of heavy
rain compared to light rain. The curve for no rain (class 2) has an AP of 0.70, which is the
lowest of the three classes, indicating that the classifier has the most difficulty identifying
instances of no rain.

Despite the fact that random forest and XGBoost were the best performers overall
when we put equal weight on both the false negatives and the false positives, it was the
generic multilayer perceptron that performed the best when we focused on the minority
positive class. The multilayer perceptron (MLP) was 98% accurate in identifying our class
of interest, as can be seen in the precision–recall curves of Figure 5.

4. Discussion

To obtain deeper insight into the results highlighted above, we see that we based the
evaluation on two sets of metrics, the precision–recall (PR) curve and the F-scores, to assess
the models’ ability to classify the minority class in a data set. The evaluation of algorithms
in classifying the minority class in imbalanced data sets is a topic of ongoing research in the
field of machine learning. For example, in a study by Batista et al. [33], the authors found
that precision–recall curves were more reliable for evaluating imbalanced data sets than
other metrics such as ROC curves.

4.1. Precision–Recall Curve Results Analysis

The precision–recall curve is a valuable metric for evaluating algorithms in imbalanced
data sets, particularly when the positive class is rare. The PR curve provides a graphical
representation of the trade-off between precision and recall, where precision measures
the proportion of correct positive predictions among all positive predictions, and recall
measures the proportion of correct positive predictions among all actual positive samples.

The micro-average PR curves of each model (see again Figures 2–6) summarize the
overall performance of the model in all classes. The micro-average PR curve is computed
by treating all the classes as a single binary classification problem. The micro-average
PR curve A.P (average precision) score for the support vector machine (SVM), random
forest, XGBoost, multi-layer perceptron (MLP), and k-nearest neighbors (KNN) models
were 0.96, 1, 1, 0.99, and 0.94, respectively. On the other hand, looking at the individual
class PR curves, the models achieved high precision–recall performances for classes 1 and
2, indicating a high ability to classify the absence of rain (class 2) and light rain (class 1).
However, all models showed lower performance in predicting the occurrence of heavy rain
(class 0), which is the minority class in the imbalanced data set.

Among the models, SVM (Figure 2) achieved the lowest A.P score of 0.96, and its PR
curve for class 0 had the lowest A.P score of 0.87, indicating that the SVM model has the
lowest ability to predict the minority class. On the other hand, the random forest (Figure 3),
XGBoost (Figure 4), and MLP (Figure 5) models showed high performance in predicting
the minority class, with A.P scores of 1, 1, and 0.99, respectively. The PR curves for class 0
for these models also achieved high A.P scores of 0.97, 0.91, and 0.98, respectively. KNN
(Figure 6) achieved a moderate A.P score of 0.94, and its PR curve for class 0 had an A.P
score of 0.77.

4.2. F1_score Results Analysis

The F-score is a single number that summarizes the harmonic mean of precision and
recall. It is another useful metric for evaluating model performance in imbalanced data
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sets. The F-scores of the models (Table 2) were as follows: random forest (0.998), XGBoost
(0.998), SVM (0.878), KNN (0.898), and MLP (0.95).

Comparing the results of the two sets of metrics, the random forest and XGBoost
models achieved the highest F-scores of 0.998, indicating their superior overall performance
in predicting the occurrence of heavy rain. These models also showed high PR curve
performance, particularly for class 0. The MLP model achieved the second-highest F-score
of 0.95, indicating high performance in predicting the minority class. The SVM model had
the lowest F-score of 0.878, consistent with its lower PR curve performance, particularly for
class 0.

Overall, the random forest and XGBoost models showed the highest performance
in predicting heavy rain events, whereas the SVM model had the lowest performance.
The MLP model also demonstrated a good performance in predicting the minority class. It
is important to note that the imbalanced nature of the data set presented a challenge to all
models in predicting the minority class, and thus, the models’ performance in this aspect
should be carefully considered.

The PR curve analysis revealed that the random forest, XGBoost, and MLP models
had high precision and recall performance, particularly for the minority class, whereas
the SVM and KNN models had lower precision and recall performance, especially for the
minority class. These results suggest that the random forest, XGBoost, and MLP models
are more suitable for the prediction of heavy rain events in an imbalanced data set.

On the other hand, the F-score results revealed that the random forest and XGBoost
models had the highest F-score, indicating their superior overall performance in predicting
heavy rain events. The MLP model also showed a high F-score, but the SVM and KNN
models had a lower F-score. These results suggest that the random forest, XGBoost,
and MLP models are more suitable for predicting heavy rain events in an imbalanced data
set based on the F1_score.

It is important to consider that the models’ performance might be affected by the
choice of evaluation metrics, and it is recommended to use multiple evaluation metrics to
assess model performance. In this study, the PR curve and F-score were used to provide
a comprehensive evaluation of the models’ performance. Regarding the boundary and
external conditions of our approach, we used a data set of meteorological features collected
from a local weather station. These features include temperature, wind speed, humidity,
pressure, and others, which are known to affect rainfall. We ensured the quality of the data
set by removing missing values and outliers. Furthermore, we randomly split the data set
into training and testing sets to evaluate the models’ generalization performance.

We acknowledge that the external conditions, such as the terrain, geographical location,
and topography, may affect the rainfall patterns, and our study did not specifically consider
these factors. However, we believe that our approach provides a general framework that
can be adapted to different settings by using relevant meteorological data.

On the other hand, it is important to note that these results were obtained using
default hyperparameters, and there may be additional improvements that can be made
by fine-tuning the models. However, these results still provide valuable insights into the
relative performance of different algorithms in predicting rainfall classes in imbalanced
data sets. Future studies could also investigate the impact of hyperparameter tuning on the
models’ performance in identifying extreme rainfall events.

Furthermore, the results consolidate the justification of applying ML models as com-
pared to other models such as physical and numerical ones. This is consistent with studies
such as that conducted by Chen et al. [34], where the authors found that the accuracy
of machine learning models (MLP, RBF, SVM) was significantly better than that of the
numerical model in both training and verification stages, as measured by root mean square
error and R2. However, they noted that the numerical model’s generalization ability is
superior to the machine learning models’ due to its inclusion of physical mechanisms.
Physical-based models and machine learning are used for real-time irrigation manage-
ment [35]. The authors compared the performance of these two modeling approaches in
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predicting soil moisture content and optimizing irrigation scheduling. The study finds
that machine learning models generally outperform physics-based models in predicting
soil moisture content, particularly when the models are trained using large data sets with
high temporal resolution. However, the authors note that physics-based models can still
be useful in certain contexts, such as when the available data are limited or when detailed
knowledge of the physical processes involved is required.

5. Conclusions

The objective of this study was to evaluate different machine learning techniques for
detecting and distinguishing heavy rainfall events in a sub-region of the Pangani River
Basin in Northern Tanzania. The study employed five different algorithms to identify heavy
rainfall occurrences between 1979 and 2014. The models’ performance was assessed using
precision–recall metrics and F-score to determine the most suitable method for the task.
Based on the evaluation results, random forest and XGBoost demonstrated superior overall
performance. However, it was observed that the multi-layer perceptron (MLP) performed
better in identifying heavy rainfall events, which are the leading cause of floods in the
Pangani River Basin.

The study’s results suggest that MLP, despite being outperformed by other algorithms
in overall performance, was the most effective technique for identifying heavy rainfall
events, highlighting the significance of precision and recall in detecting the minority class
in imbalanced classification. The highly imbalanced class distribution in the data set makes
it challenging to identify heavy rainfall events, making the use of MLP a vital approach in
the process.

The findings of this study align with previous research that has emphasized the im-
portance of selecting appropriate performance metrics to evaluate algorithms’ effectiveness
in detecting rare events. Moreover, the study contributes to the literature by demonstrating
that the MLP approach is well-suited for recognizing heavy rainfall events in the Pangani
River Basin. The research provides valuable insights into the potential of machine learning
algorithms in identifying heavy rainfall events, enabling policymakers to take proactive
measures in flood management and control. To the government of Tanzania, the study
recommends that the ministry responsible for monitoring flood and water levels in rivers
and other water bodies should collect water level data with respect to weather parameters.
This will enable the replication of the developed model in other rivers and assist in future
studies in similar areas.

Overall, these models have potential applications in various fields that require accurate
predictions of rare events, such as climate prediction, disaster management, and risk
assessment. However, further research is needed to explore the models’ performance in
different settings and under different conditions, such as changes in climate patterns and
data sources.

Future research could also focus on developing more robust models that can handle
highly imbalanced data sets and improving feature engineering techniques to enhance
model performance. Additionally, ensemble techniques and meta-learning approaches
could be explored to improve the models’ generalization and transfer learning abilities.
Overall, the study provides insights into the potential of machine learning algorithms in
predicting rare events and highlights the need for further research to develop more accurate
and robust models.
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