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Molecular clusters Cs3X3 and Cs4X4 (X = Br, I): 
Quantum chemical study of structure and 
thermodynamic properties
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Abstract: The properties of trimer Cs3X3 and tetramer Cs4X4 (X = Br, I) molecules 
have been studied using DFT with B3LYP5 functional and MP2 and MP4 methods. 
Two equilibrium geometrical structures of trimers, hexagonal (D3 h) and “butterfly-
shaped” (Cs), and one for tetramers, distorted cubic (Td), are confirmed to exist; 
geometrical parameters and vibrational spectra are determined. The relative 
concentration of Cs3X3 isomers has been evaluated; the butterfly-shaped isomer 
dominates over hexagonal in saturated vapour in a broad temperature range. The 
dissociation reactions through different channels have been considered and en-
thalpies of formation ΔfH°(0) of clusters determined:−858 ± 20 kJ mol−1 (Cs3Br3), 
−698 ± 20 kJ mol−1 (Cs3I3), −1270 ± 30 kJ mol−1 (Cs4Br4) and −1045 ± 30 kJ mol−1 
(Cs4I4). The Gibbs free energies ∆rG°(T) calculated for the dissociation reactions of 
trimer and tetramer molecules have indicated that these molecules are resistive in 
narrow temperature range only and decompose spontaneously with temperature 
increase with elimination of dimer molecules.
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1. Introduction
The study of alkali halide clusters, ionic and molecular, has been the subject of research over past 
five decades. This involves both experimental (Butman, Kudin, Smirnov, & Munir, 2000; Chupka, 
1959; Dunaev, Kudin, Butman, & Motalov, 2013; Gusarov, 1986; Pogrebnoi, Kudin, & Kuznetsov, 2000; 
Sidorova, Gusarov, & Gorokhov, 1979; Snelson, 1967) and theoretical (Cohen & Gordon, 1975; Rupp & 
Ahlrichs, 1977; Weis, Ochsenfeld, Ahlrichs, & Kappes, 1992; Welch, Lazareth, Dienes, & Hatcher, 
1976) studies. Most experimental studies have dealt with the identification of cluster species exist-
ing in saturated vapour and measurement of equilibrium constants of ion molecular reactions. On 
the other hand theoretical studies concern mainly prediction of equilibrium configurations, geo-
metrical parameters, binding energies and vibrational frequencies. These clusters are of interest 
because they have unique electronic, optical and magnetic properties which make them to be useful 
in different applications. For example, caesium chloride thin films were used in fabrication of elec-
tronic devices through ion implantation techniques (Lee, Han, Choi, & Moon, 2010; Liao, Liu, Wang, & 
Yi, 2011; Liu, Ashmkhan, Dong, Wang, & Yi, 2013; Liu, Ferguson, Yavuz, & Cui, 2012; Zhang, Liu, Wang, 
Zhang, & Yi, 2014; Zhang et al., 2012). Cluster ions have been proved to be useful in ionic thrusters 
(Benson & Patterson, 2009) and magneto-hydrodynamic generators (Kay, 2011). Besides, caesium 
and iodine exist among the fission products that may be released in nuclear power plants (Badawi, 
Xerri, Canneaux, Cantrel, & Louis, 2012; Lennart & Kjell, 1994; Povinec et al., 2013; Roki, Ohnet, Fillet, 
Chatillon, & Nuta, 2013, 2014); these by-products are highly radioactive materials. Thus, evaluations 
of thermodynamic properties of gaseous species are essential for safety features of a nuclear pres-
surized reactor. The thermodynamic functions of gaseous species are usually derived by statistical 
thermodynamics from the geometrical parameters and vibrational frequencies.

Recently, we have theoretically investigated the properties of molecular and ionic clusters of cae-
sium fluoride (Mwanga, Pogrebnaya, & Pogrebnoi, 2015a), caesium chloride (Hishamunda, Girabawe, 
Pogrebnaya, & Pogrebnoi, 2012; Pogrebnaya, Hishamunda, Girabawe, & Pogrebnoi, 2012) and caesi-
um bromide and iodide (Mwanga, Pogrebnaya, & Pogrebnoi, 2015b). In these works, the equilibrium 
geometrical structure, vibrational spectra and thermodynamic properties of the clusters were deter-
mined. The dimers and trimers of caesium bromine and iodine have been studied theoretically and 
experimentally by Groen and Kovács (2010). Molecular clusters of lithium iodide have been found to 
exist in vapour over solid lithium iodide (Bencze, Lesar, & Popovic, 1998). However, tetramers of cae-
sium bromide and iodine have not yet studied. We also anticipate that isomeric forms would exist for 
trimers of caesium bromine and iodine as it was revealed for caesium fluoride and chloride (Mwanga 
et al., 2015a; Mwanga, Pogrebnaya, & Pogrebnoi, 2016). In this work, we present quantum chemical 
investigation of the properties of trimer Cs3X3 and tetramer Cs4X4 (X = Br, I) molecules.

2. Computational details
Quantum chemical calculations are performed using General Atomic and Molecular Electronic 
Structure System (GAMESS) (Schmidt et al., 1993) software package, Firefly version 8.1.0 (Granovsky, 
2012). Electron density functional theory (DFT) with the Becke–Lee–Yang–Parr functional (B3LYP5) 
(Becke, 1993; Lee, Yang, & Parr, 1988) and second and fourth order Møller–Plesset perturbation the-
ory (MP2 and MP4) have been used. The relativistic effective core potential ECP GEN 46 3 with basis 
set Def2-QZVP 6s5p4d1f for caesium (Leininger et al., 1996) is used. For bromine and iodine atoms, 
relativistic ECP GEN 28 4, 7 electrons in the core (Br) and ECP GEN 46 4, 7 electrons in the core (I) with 
SDB-aug-cc-pVTZ basis sets 4s4p3d2f (Martin & Sundermann, 2001) have been applied. These basis 
sets were accessed from EMSL (Schuchardt et al., 2007). The geometry of the species was optimized 
by B3LYP5 and MP2 methods. We expect that including the diffused functions into valence basis sets 
of halogen atoms, Br and I, will improve an accuracy of the calculated thermochemical properties of 
the species as it is based on results by Martin and Sundermann (2001) and our experience as well 
(Mwanga et al., 2015a). A vibrational analysis was performed at the same level of calculations to 
examine whether the obtained structure corresponds to a real energy minimum by the absence of 
the imaginary frequencies. The visualization of geometrical structure and vibrational spectra the 
software have been used: MacMolPlt (Bode & Gordon, 1998) and Chemcraft (“Chemcraft. Version 1.7 
(build 132). G. A. Zhurko, D. A. Zhurko. HTML” (Zhurko & Zhurko, 2014).
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The enthalpies of the chemical reactions ∆rH°(0) were calculated on the basis of energies ΔrE, and 
the zero-point vibration energy (ZPVE) correction Δrε as given in following equations:

where h is the Planck constant, c is the speed of light in the free space, 
∑

�iprod and 
∑

�ireact are the 
sums of the vibrational frequencies of the products and reactants, respectively. This approach is 
similar to that applied by Curtiss, Redfern, and Frurip (2000).

The dissociation energies ∆rE of the species were calculated by B3LYP5 and MP2 methods, MP4 
was employed using the optimized coordinates determined by MP2 method. The correction for basis 
set superposition error (BSSE) (Boys & Bernardi, 1970) has been employed for MP2 and MP4 as well 
using procedure proposed by Solomonik and co-workers (Solomonik, Smirnov, & Mileev, 2005). In the 
DFT calculations, BSSE correction was not considered. According to Liu, Zhao, Li, and Chen (2013) as 
well as our previous work (Mwanga et al., 2015a), the DFT methods are not mush sensitive to the 
BSSE correction and the latter does not improve the DFT results on energies and enthalpies of dis-
sociation reactions.

3. Results and discussion

3.1. Trimer Cs3Br3 and Cs3I3 molecules
For trimer Cs3X3 molecules, two equilibrium structures were confirmed to have minima at the poten-
tial energy surface (PES): hexagonal planar (D3 h) and butterfly-shaped (Cs) (Figure 1(a and b)). The 
geometrical parameters and vibrational spectra of these structures are compiled in Tables 1 and 2. 
As expected, there is a progressive increase in internuclear separation from bromide to iodide. 
Regarding the energy, butterfly-shaped isomer possesses lower energy by ~14 kJ mol‒1 (Cs3Br3) and 
~15 kJ mol‒1 (Cs3I3) than hexagonal (MP2). Thus, butterfly-shaped structure is more energetically 
stable than hexagonal. Similar isomeric forms were confirmed to exist for Cs3F3 and Cs3Cl3 in our 
previous works (Mwanga et al., 2015a, 2016), respectively. We have evaluated the energy barrier in 
the path from the Cs (“butterfly”) to D3 h (hexahonal) configuration. In the molecule within Cs sym-
metry, the separation between two opposite atoms, Cs2–X2 (Figure 1(b)), was a variable parameter 
(transition reaction coordinate). This parameter was varied with a step of 0.5 Å from the distance in 
the Cs structure up to that in the hexagonal one. All other atom coordinates were optimized at each 
step. It was revealed that the barrier for the transition was ~6 kJ mol‒1 both for Cs3Br3 and Cs3I3 (DFT/
B3LYP5). Heat energy of the molecules at ~350 K is ~3 kJ mol‒1, which is twice less compared to the 
barrier. The barrier also is much higher regarding vibrational energy quantum, that is ~1 kJ mol‒1.

The vibrational frequencies determined by B3LYP5 and MP2 methods are given in Tables 1 and 2. 
In most cases, a good agreement is observed between the corresponding frequencies found by two 
methods. Based on our previous experience (Mwanga et al., 2015a, 2015b, 2016) we consider that 
MP2 results to be more applicable for further consideration and calculation of the thermodynamic 

(1)Δ
r
H◦

(0) = ΔrE + Δr�

(2)Δr� =
1

2
hc

(

∑

�iprod −
∑

�ireact

)

Figure 1. Geometrical 
structures of the trimers Cs3X3 
and tetramer Cs4X4 (X = Br, I) 
molecules: (a) Cs3X3, planar 
hexagonal D3 h; (b) Cs3X3, 
butterfly-shaped Cs; (c) Cs4X4, 
distorted cube Td.
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functions of the species. The decrease in the corresponding values of ωi is observed from bromide to 
iodide. Several low frequencies of ~30 cm−1 and less are found in spectra of both isomers of Cs3X3: 
there are ω3, ω4, ω7, ω8 for hexagonal isomer and ω5, ω6, ω7, ω11, ω12 for Cs isomer. The assignments of 
vibrational frequencies for Cs3X3 are presented in Figures 2 and 3. As for hexagonal planar Cs3X3, both 
species have few modes active in IR spectra, Cs–X stretching being the highest intensity. The bands 
of medium intensity are wagging X–Cs–X modes with low frequencies, 26 cm−1 (Cs3Br3) and 23 cm−1 
(Cs3I3). The bands of weak intensity are related to rocking Cs–X–Cs vibrations with low vibration fre-
quency of 12 cm−1. Our computed vibrational spectra for Cs3X3 (D3 h) can be compared with experi-
mental data in Groen and Kovács (2010) where FT-IR spectra of (CsBr)n and (CsI)n (n = 1–3) had been 
measured using matrix isolation technique. For the trimers, the vibrational modes 110.2 cm−1 in Kr 
and 103.1 cm−1 in Xe matrix for Cs3Br3 and 86.6 cm−1 in Xe for Cs3I3 had been recorded. Therefore our 
values, 118 cm−1 (Cs3Br3) and 91 cm−1 (Cs3I3), agree well with the experimental frequencies. Worth to 
note also that our results for the trimer molecules are in a good agreement with theoretical data 
(Groen & Kovács, 2010).

For butterfly-shaped isomers, the majority of vibrational modes are active in IR spectra although 
most of them have weak intensity. The bands of highest intensity correspond to Cs–X stretching vi-
brations; the most intensive bands are observed at 118 cm−1 (Cs-Br) and 93 cm−1 (Cs-I). Other valence 
vibrations at 67 cm−1 (Cs3Br3) and 63 cm−1 (Cs3I3) possess low intensities. The bending vibrational 
modes are characterized by weak intensities.

To consider the electron density distribution, we have calculated the Mullikan atomic charges q by 
both methods, DFT and MP2 (Tables 1 and 2). One can see the high ionicity of the species as the 
charges on atoms are about 0.8–0.9 au. For both isomers of Cs3Br3 and Cs3I3, the MP2 method dem-
onstrates higher ionicity as the charge magnitudes are bigger by 0.03–0.07 au than the correspond-
ing values of q obtained by DFT. It is worth to mention here the dipole moments μe as they relate to 
the electron density distribution (Table 2). The values of μe also demonstrate that the DFT method 
underrates the ionic character of bonds as μe(DFT) < μe(MP2). It is evident that this correlation holds 
due to charges relationship, q(DFT) < q(MP2). On comparing two isomers, in the hexagonal one of 

Table 1. Properties of neutral molecules Cs3X3 (hexagonal, D3 h), X = Br, I

Notes: Here and hereafter Re(Cs–X) is the equilibrium internuclear distance, Å; αe(X–Cs–X) and βe(Cs–X–Cs) are valence 
angles, degs; E is the total electron energy, au; ωi are vibrational frequencies, cm−1; the values given in parentheses near 
the frequencies are IR intensities, D2 amu−1 Å−2.

Property Cs3Br3 (D3 h) Cs3I3 (D3 h)
B3LYP5 MP2 B3LYP5 MP2 

Re(Cs−X) 3.377 3.348 3.626 3.589

αe(X−Cs−X) 119.3 117.9 123.2 121.8

βe(Cs−X−Cs) 120.7 122.1 116.8 118.2

−E 100.84946 100.43294 94.95303 94.49097

ω1 (A1′) 103 (0) 114 (0) 86 (0) 91 (0)

ω2 (A1′) 68 (0) 86 (0) 58 (0) 59 (0)

ω3 (A1′) 33 (0) 43 (0) 28 (0) 28 (0)

ω4 (A2′’) 26 (0.61) 26 (0.63) 22 (0.44) 23 (0.46)

ω5 (E′) 110 (1.22) 118 (1.1) 88 (0.97) 91 (0.95)

ω6 (E′) 85 (0.28) 91 (0.06) 71 (0.01) 73 (0.00)

ω7 (E′) 19 (0.24) 12 (0.22) 12 (0.09) 12 (0.08)

ω8 (E′’) 12 (0) 12 (0) 11 (0) 11 (0)

q(Cs) 0.834 0.881 0.800 0.860

q(X) −0.834 −0.881 −0.800 −0.860
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Cs3X3 the absolute values of charges on X and Cs atoms are equal which follows from the high sym-
metry of the structure. In the isomers of Cs configuration, the electron density distribution is not 
uniform: according to MP2 results, the side caesium atoms, Cs1, have slightly smaller charges (by 
0.01 au) than the middle Cs2 atom, while the side halogen atoms X1 have bigger charge magnitudes 
(by ~0.02 au) compared to the middle one X2, that holds for both Cs3Br3 and Cs3I3 clusters. Ionicity 
slightly decreases, by 0.01–0.02 au, from the hexagonal to “butterfly” configuration and from bro-
mide to iodide.

The relative concentration pII/pI of the isomers in the saturated vapour was evaluated using the 
following formula:

 

where ∆rH°(0) is the enthalpy of the isomerization reaction Cs3X3 (D3 h) → Cs3X3 (Cs); T is absolute tem-
perature; pI is the partial pressure of the D3 h isomer, and pII is that of Cs one; ∆rΦ

o(T) is the reduced 
Gibbs energy of the reaction, ∆rΦ

o(T) = Φo(T)prod − Φo(T)react. The value of Φ°(T) comprises the enthalpy 

(3)ΔrH
◦

(0) = TΔrΦ
◦

(T) − RT ln

(

pII
pI

)

Table 2. Properties of neutral molecules Cs3X3 (“butterfly-shaped”, Cs), X = Br, I

Note: χe(Cs1−X2−Cs2−X1) is the dihedral angle, degs; ΔrEiso = E(Cs3X3, Cs) − E(Cs3X3, D3h) is isomerization energy, kJ mol−1; 
μe is the dipole moment, D.

Property Cs3Br3 (Cs) Cs3I3 (Cs)
B3LYP5 MP2 B3LYP5 MP2 

Re1(Cs1−X1) 3.303 3.264 3.553 3.517

Re2(Cs1−X2) 3.429 3.374 3.680 3.615

Re3(Cs2−X1) 3.487 3.431 3.734 3.674

Re4(Cs2−X2) 3.737 3.606 3.986 3.842

αe(X1−Cs1−X2) 94.0 92.0 96.5 94.3

βe(Cs1−X1−Cs2) 93.2 93.7 90.2 90.8

χe(Cs1−X2−Cs2−X1) 169.0 169.8 172.0 173.1

–E 100.85067 100.43813 94.95448 94.49674

ΔrEiso –3.19 –13.63 –3.82 –15.15

ω1 (A′) 109 (1.05) 118 (1.01) 85 (1.00) 93 (0.72)

ω2 (A′) 90 (0.34) 101 (0.36) 75 (0.12) 86 (0.08)

ω3 (A′) 62 (0.10) 67 (0.14) 53 (0.06) 59 (0.07)

ω4 (A′) 44 (0.12) 61 (0.12) 39 (0.11) 50 (0.08)

ω5 (A′) 35 (0.03) 37 (0.23) 27 (0.08) 30 (0.08)

ω6 (A′) 29 (0.29) 31 (0.26) 24 (0.24) 26 (0.30)

ω7 (A′) 5 (0.01) 10 (0.01) 6 (0.00) 7 (0.01)

ω8 (A″) 112 (0.60) 120 (0.75) 89 (0.77) 95 (0.79)

ω9 (A″) 104 (0.62) 110 (0.41) 88 (0.00) 93 (0.21)

ω10 (A″) 79 (0.02) 86 (0.01) 56 (0.02) 63 (0.03)

ω11 (A″) 34 (0.10) 36 (0.10) 27 (0.13) 28 (0.08)

ω12 (A″) 16 (0.00) 16 (0.00) 13 (0.00) 13 (0.00)

μe 9.92 10.45 10.68 11.31

q(Cs1) 0.814 0.868 0.776 0.851

q(X1) –0.834 –0.882 –0.778 –0.853

q(Cs2) 0.850 0.880 0.776 0.837

q(X2) –0.811 –0.852 –0.772 –0.833
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increment [H°(T) − H°(0)] and entropy S°(T) of each species: Φ°(T) = −[H°(T) − H°(0) − TS°(T)]/T. The 
values of Φ°(T) and other thermodynamic functions were calculated using OpenThermo software 
(Tokarev, 2007–2009) within the “rigid rotator-harmonic oscillator” approximation; the optimized 
coordinates and vibrational frequencies obtained by MP2 method were used as the input parame-
ters. The enthalpies of the isomerization reactions ∆rH°(0) were calculated on the basis of isomeriza-
tion energies ΔrEiso using Equations (1 and 2). The isomerization energies ΔrEiso, ZPVEs Δrε, enthalpies 
∆rH°(0) of isomerization reactions, change in the reduced Gibbs energies ∆rΦ°(T), and the relative 
abundance pII/pI of the isomers at T = 500 K are presented in Table 3. The value of pII/pI indicates 
which of the isomers prevails in saturated vapour. For both species, the butterfly-shaped Cs3X3 (Cs) 
dominates over hexagonal-shaped Cs3X3 (D3 h) isomer, as the ratio pII/pI is greater than one.

The temperature effect on the relative abundance pII/pI of the isomers is considered for tempera-
ture range between 300 and 700 K (Figure 4). As is seen, the relative concentration of the butterfly-
shaped isomer at 300 K is ~80 for Cs3Br3 and ~200 for Cs3I3, and decreases with temperature rise 
being still greater than one. Worth to note that the relative abundance of isomers is influenced by 
two factors, the isomerization energy and entropy S° of species: the lower is the ΔrEiso, and bigger S° 
of the isomer II, the higher is the ratio pII/pI. Thus, being favoured by both of these factors, the isomer 
with Cs symmetry is predicted to dominate in vapour in a broad temperature range.

The enthalpies of dissociation reactions ∆rH°(0) with the elimination of CsX molecules and enthal-
pies of formation ∆fH°(0) of Cs3X3 were calculated for the Cs isomer based on MP4C results. The values 
of ∆fH°(0) for CsX and Cs2X2 molecules were taken from (Gurvich et al., 2000). The theoretical values 
of ∆rH°(0) were calculated using Equations (1 and 2).

Figure 2. IR spectrum of planar 
hexagonal isomer Cs3X3 (D3 h): 
(a) Cs3Br3 and (b) Cs3I3

.

Figure 3. IR spectrum of 
butterfly-shaped isomer Cs3X3 
(Cs): (a) Cs3Br3 and (b) Cs3I3

.

Table 3. The energies ∆rEiso and enthalpies ∆rH°(0) of the isomerization reactions, change in the 
reduced Gibbs free energies ∆rΦ°(T), ZPVE corrections ∆rε and relative abundances pII/pI of the 
isomers (T = 500 K)
Isomerization 
reaction

∆rEiso, 
kJ mol−1

∆rε, 
kJ mol−1

∆rH°(0), 
kJ mol−1

∆rΦ°(T), 
J mol−1 K−1

pII/pI

Cs3Br3 (D3h) = Cs3Br3 (Cs) −13.63 0.35 −13.28 −8.118 9.2

Cs3I3 (D3h) = Cs3I3 (Cs) −15.15 0.41 −14.74 −5.032 18.9
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It is worth to note that the spin–orbit coupling effect may be important for heavy atoms, espe-
cially for species with two or more low lying electronic states (Fedorov, Koseki, Schmidt, & Gordon, 
2003). In our case the first excited electronic state is far above the ground state, according to the 
TDDFT calculations, the first excitation energies are ~4.5 eV (Cs3Br3) and ~4.1 eV (Cs3I3). Therefore, 
the spin–orbit coupling was not taken into account in calculation of thermodynamic properties.

The calculated dissociation energies ∆rE, ZPVE corrections ∆rε, enthalpies of the dissociation reac-
tions ∆rH°(0), and enthalpies of formation ∆fH°(0) of Cs3X3 molecules are presented in Table 4. The 
data determined previously for Cs3F3 (Mwanga et al., 2015a) and Cs3Cl3 (Mwanga et al., 2016) are 
included for comparison. Two types of dissociation reactions are considered: (i) into monomer and 
dimer and (ii) into three monomers. From fluoride to iodide the enthalpies of the dissociation reac-
tions decrease: 129→121→117→110 kJ mol−1 for the reactions (i), and 301→276→267→253 kJ mol−1 
for the reactions (ii). The second type of reactions requires approximately 2.3 times bigger energy 
than first one due to different number of bonds to be broken. The uncertainties of the ∆rH°(0) values 
may be estimated on the base of the comparison between theoretical and experimental data avail-
able for Cs2Br2, Cs2I2, Cs3I

+

2
, Cs

2
I
−

3
 (Mwanga et al., 2015b) and Cs

4
Cl

+

3
 (Mwanga et al., 2016) for which 

the maximum difference between the calculated MP4C method and experimental was equal to 
16 kJ mol−1. The enthalpies of formation ∆fH°(0) of the trimers found through both types of reactions 
are close to each other or coincide. The uncertainty is accepted to be ± 20 kJ mol−1, and the values of 
∆fH°(0) are as follows: −858 ± 20 kJ mol−1 (Cs3Br3) and −698 ± 20 kJ mol−1 (Cs3I3).

Figure 4. Temperature 
dependence of the relative 
concentration of the isomers 
for trimers Cs3X3 (X = Br, I) 
molecules.

Table 4. The energies, ∆rE, ZPVE corrections, ∆rε, and enthalpies ∆rH°(0) of the dissociation 
reactions, and enthalpies of formation ∆fH°(0) of Cs3X3 (Cs) (X = F, Cl, Br, I) molecules, all values 
are in kJ mol−1

Notes: The values of ΔrE and ∆rε were obtained by MP4C and MP2 methods, respectively. The results for reactions 1–4 
are based on our previous works (Mwanga et al., 2015a, 2016).

No. Dissociation reaction ∆rE −∆rε ∆rH°(0) −∆fH°(0)
1 Cs3F3 = CsF + Cs2F2 130.9 1.57 129 1,378

2 Cs3F3 = 3CsF 304.7 4.22 301 1,386

3 Cs3Cl3 = CsCl + Cs2Cl2 121.4 1.16 121 996

4 Cs3Cl3 = 3CsCl 278.3 2.76 276 996

5 Cs3Br3 = CsBr + Cs2Br2 117.5 0.98 117 858

6 Cs3Br3 = 3CsBr 268.7 2.14 267 858

7 Cs3I3 = CsI + Cs2I2 111.0 0.93 110 698

8 Cs3I3 = 3CsI 254.6 1.95 253 698
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3.2. Tetramers Cs4Br4 and Cs4I4 molecules
For the tetramers Cs4X4 molecules, only one equilibrium structure with Td symmetry was confirmed 
to exist (Figure 1(c)). This structure is specified by two parameters Re(Cs–X) and αe(X‒Cs‒X). The geo-
metrical parameters and vibrational frequencies of Cs4X4 molecules are gathered in Table 5. Similar 
to trimers, the internuclear separation increases from bromide to iodide, while the corresponding 
vibrational frequencies decrease as a rule. Due to compactness of the tetramer structure, the defor-
mational frequencies are not so low compared to trimers, both hexagonal and “butterfly-shaped”.

The IR spectra of Cs4X4 (Td) are shown in Figure 5(a and b). One can see that only two modes are 
active: mode of high intensity at 85 cm‒1 (Cs4Br4) and 82 cm‒1 (Cs4I4) assigned to X‒X wagging vibra-
tions and the low intensive mode at 95 cm‒1 (Cs4Br4) and 71 cm‒1 (Cs4I4) which corresponds to Cs‒X‒
Cs twisting vibrations.

The electron density distribution is represented through the Mullikan atomic charges q found by 
both methods, DFT and MP2 (Table 5). The values of q being about 0.8–0.9 au show a high ionic char-
acter of bonds. The observations discussed above for the trimer molecules are valid here as well; the 
magnitudes of q are higher by MP2 than DFT, the ionicity decreases from bromide to iodide. Compared 
to the trimer molecules, the charges in tetramers are slightly higher by 0.02–0.03 au.

Table 5. Properties of neutral molecules Cs4X4 (distorted cubic, Td), X = Br, I
Property Cs4Br4 Cs4I4

B3LYP5 MP2 B3LYP5 MP2

Re(Cs–X) 3.512 3.433 3.768 3.678

αe (X–Cs–X) 90.4 89.6 92.9 91.9

βe(Cs–X–Cs) 89.6 90.4 87.1 88.0

–E 134.50200 133.96752 126.63848 126.04400

ω1 (A1) 89 (0) 83 (0) 53(0) 83 (0)

ω2 (A1) 46 (0) 31 (0) 36 (0) 36 (0)

ω3 (E) 70 (0) 85 (0) 52 (0) 66 (0)

ω4 (E) 35 (0) 35 (0) 24 (0) 37 (0)

ω5 (T1) 66 (0) 84 (0) 51 (0) 66 (0)

ω6 (T2) 89 (1.34) 95 (0.24) 66 (1.17) 82 (1.95)

ω7 (T2) 84 (2.66) 85 (3.75) 63 (1.59) 71 (0.71)

ω8 (T2) 36 (0.04) 19 (0.003) 26 (0.06) 26 (0.36)

q(Cs) 0.874 0.909 0.823 0.876

q(X) –0.874 –0.909 –0.823 –0.876

Figure 5. Calculated IR spectra 
of distorted cube Cs4X4 (Td): (a) 
Cs4Br4 and (b) Cs4I4.
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Three channels of the dissociation of Cs4X4 molecules with the elimination of monomer and dimer 
molecules were considered (Table 6), similarly to trimers, the data of our previous works were in-
cluded (Mwanga et al., 2015a, 2016). It can be observed the dissociation into two Cs2X2 molecules 
requires lowest energy than other two channels. For the dissociation into two dimers, the values of 
∆rH°(0) are less by 39 kJ mol−1 (Cs4F4), 35 kJ mol−1 (Cs4Cl4), 32 kJ mol−1 (Cs4Br4) and 33 kJ mol−1 (Cs4I4) 
compared to the dissociation into monomer plus trimer and by 342 kJ mol−1 (Cs4F4), 310 kJ mol−1 
(Cs4Cl4), 300 kJ mol−1 (Cs4Br4) and 286 kJ mol−1 (Cs4I4) compared to the dissociation into four CsX 
molecules. Uncertainties of the enthalpies of reaction and enthalpies of formations were estimated 
as ±20 kJ mol−1 and ±30 kJ mol−1, respectively. The enthalpies of formation found on the base of 
three reactions are close to each other, the averaged values of ∆fH°(0) were accepted: 
−1270 ± 30 kJ mol−1 (Cs4Br4) and −1043 ± 30 kJ mol−1 (Cs4I4).

3.3. Trimer and tetramer dissociation: thermodynamic approach
For the most probable channels of dissociation of the clusters, the Gibbs free energies were calcu-
lated and plotted vs. temperature (Figures 6 and 7). The plots for other two halides, Cs3X3 and Cs4X4 
(X = F and Cl) were included. As seen, the values of ∆rG° are positive for rather narrow temperature 
range; the change of sign occurs at ~330 K, 280 K, 240 K and 210 K for Cs3X3 and ~390 K, 370 K, 360 K 
and 250 K for Cs4X4 (X = F, Cl, Br and I), respectively. Therefore, according to the thermodynamic ap-
proach, only Cs3F3 and all tetramers excluding Cs4I4 may exist at the room and moderate tempera-
tures. With temperature rise, all trimers Cs3X3 dissociate spontaneously into CsX plus Cs2X2 while 
tetramers Cs4X4 decompose into two dimeric molecules.

Table 6. The energies, ∆rE, ZPVE corrections, ∆rε, and enthalpies ∆rH°(0) of the dissociation 
reactions, and enthalpies of formation ∆fH°(0) of Cs4X4 (Td) (X = F, Cl, Br, I) molecules, all values 
are in kJ mol−1

Notes: The values of ΔrE and ∆rε were obtained by MP4C and MP2 methods, respectively. The results for reactions 1–6 
are based on our previous works (Mwanga et al., 2015a, 2016).

No. Dissociation reaction ∆rE −∆rε ∆rH (0) −∆fH (0)
1 Cs4F4 = CsF + Cs3F3 210.0 4.00 206 1,949

2 Cs4F4 = 2Cs2F2 169.8 2.66 167 1,941

3 Cs4F4 = 4CsF 517.4 7.96 509 1,956

4 Cs4Cl4 = CsCl + Cs3Cl3 219 2.15 217 1,453

5 Cs4Cl4 = 2Cs2Cl2 183.5 1.71 182 1,464

6 Cs4Cl4 = 4CsCl 497.3 4.9 492 1,453

7 Cs4Br4 = CsBr + Cs3Br3 213.0 3.43 210 1,265

8 Cs4Br4 = 2Cs2Br2 179.2 1.41 178 1,274

9 Cs4Br4 = 4CsBr 481.7 3.73 478 1,267

10 Cs4I4 = CsI + Cs3I3 192.6 1.81 191 1,038

11 Cs4I4 = 2Cs2I2 160.0 1.73 158 1,054

12 Cs4I4 = 4CsI 447.3 3.59 444 1,038

Figure 6. Gibbs free energy 
change vs. temperature for the 
reaction Cs3X3 = CsX + Cs2X2 
(X = F, Cl, Br and I).
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4. Conclusion
The geometrical structure and vibrational spectra of the trimer and tetramer molecules, Cs3X3 and 
Cs4X4 (X = Br and I), were determined by DFT/B3LYP5 and MP2 methods; the results were in a good 
accordance, as a rule, between each other and also with experimental and theoretical data available 
in literature. Regarding the enthalpies of dissociation reactions, the MP2 method was more prefer-
able compared to DFT; the BSSE correction was to be taken into account. The existence of two iso-
meric forms, hexagonal and “butterfly-shaped”, for Cs3X3 was confirmed, and the latter isomer was 
found to prevail in equilibrium vapour. Thermodynamic properties of Cs3X3 and Cs4X4 were calculat-
ed. Different dissociation channels were considered; among them the routes with elimination of di-
meric molecules appeared to be most feasible. The analysis of Gibbs free energy ∆rG° revealed that 
these clusters are not stable at elevated temperatures; at temperatures greater than ~400 K both 
Cs3X3 and Cs4X4 dissociate spontaneously into CsX plus Cs2X2 and two dimer molecules, respectively. 
Tetramers are more stable than trimers, likely due to compact cubic structure.

Figure 7. Gibbs free energy 
change vs. temperature for the 
reaction Cs4X4 = 2Cs2X2 (X = F, 
Cl, Br and I).
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