The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository

https://dspace.mm-aist.ac.tz

Life sciences and Bio-engineering

Research Articles [LISBE]

2012-05-05

The effect of plant extracts as seed treatments to control bacterial leaf spot of tomato in Tanzania

Mbega, Ernest

Springer Nature

https://doi.org/10.1007/s10327-012-0380-z Provided with love from The Nelson Mandela African Institution of Science and Technology DISEASE CONTROL

The effect of plant extracts as seed treatments to control bacterial leaf spot of tomato in Tanzania

Ernest R. Mbega · Carmen N. Mortensen · Robert B. Mabagala · Ednar G. Wulff

Received: 3 December 2011/Accepted: 6 March 2012/Published online: 5 May 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Bacterial leaf spot (BLS) caused by seed-borne xanthomonads is a serious disease of tomato (Solanum lycopersicum L.), causing significant losses in both yield and quality. To identify more effective control measures, we evaluated crude extracts from 84 plant species in in vitro and in planta assays for antibacterial activity against BLS of tomato. In the in vitro assays, 20.2 % of the tested plant extracts totally inhibited growth of bacteria when seed washings from treated seeds were plated on nutrient agar medium. In the in planta assays, 17.8 % of the tested plant extracts reduced BLS incidence by 100 % in tomato seedlings. The most effective seed treatments were obtained with extracts from Aloe vera, Betula pendula, Coffea arabica, Glycyrrhiza uralensis, Juniperus communis, Ocimum basilicum, Quercus robur, Rheum palmatum, Rosmarinus officinalis, Ruta graveolens, Sinapis alba, Yucca schidigera and Salvia officinalis. Seed treatment of tomato with these extracts completely inhibited Xanthomonas perforans in both in vitro and in planta assays. Extracts from A. vera, C. arabica and Y. schidigera were tested three times using tomato seeds of cultivars Tanya, Cal-J and Moneymaker in Tanzania. Treatment of tomato seeds with these extracts had a positive effect on the number of normal seeds and had no effect on seedling

E. R. Mbega (⊠) · C. N. Mortensen · E. G. Wulff Department of Agriculture and Ecology, Faculty of Life Sciences, Danish Seed Health Centre for Developing Countries, University of Copenhagen, Copenhagen, Denmark e-mail: mbegaernest@yahoo.co.uk

E. R. Mbega · R. B. Mabagala Department of Crop Science and Production, African Seed Health Centre, Sokoine University of Agriculture, P.O. Box 3005, Morogoro, Tanzania vigor, height and weight. These results indicate that plant extracts from *A. vera*, *C. arabica* and *Y. schidigera* are potential candidates for seed treatment against seed-borne xanthomonads of tomato in Tanzania.

Keywords Plant extracts · Antibacterial activity · *Xanthomonas perforans* · Tomato · Seed treatment

Introduction

Bacterial leaf spot (BLS) incited by *Xanthomonas euve*sicatoria, X. vesicatoria, X. perforans and X. gardneri (Anonymous 2006; Jones et al. 2004) is a serious disease of tomato (Solanum lycopersicum L.) that occurs worldwide in regions with warm and humid climates (Jones et al. 2000; Stall et al. 1994; Tamir-Ariel et al. 2007). The BLS xanthomonads also affect pepper (Capsicum spp.), reducing both fruit yield and quality. Recently, X. campestris pv. raphani (Punina et al. 2009) and X. arboricola (Myung et al. 2010; E. R. Mbega et al., unpublished data) were also reported as pathogens of tomato. The BLS xanthomonads can survive in seeds, plant debris and volunteer plants (Kaaya et al. 2003). Seed infection by BLS pathogens of about 40.7 % has been reported in Tanzania, causing yield losses up to 45 % (Black et al. 2001; Kaaya et al. 2003).

Management of BLS is limited to foliar applications of copper-based compounds. However, presence of strains of BLS pathogens with a high degree of tolerance to copper (Carrillo-Fasio et al. 2001; Gitaitis et al. 1992; Gore and O'Garro 1999; Lee and Cho 1996; Martin et al. 2004; Scheck et al. 1996; Shenge et al. 2007) and the considerable number of *Xanthomonas* species and races causing BLS symptoms in tomato and pepper (Jones et al. 2004) have made the control of the disease difficult.

Plants synthesize a number of compounds with antibiotic and antimicrobial properties (Amadioha 2003; Kumar and Parmar 1996; Opara and Wokocha 2008; Prakash and Rao 1997). Such compounds can therefore, be exploited as an alternative approach to manage or control BLS. Some of the known advantages of using pesticides of plant origin to control plant diseases include low mammalian toxicity, minimum health hazards and environmental pollution, and low risks of development of resistance by pathogens (Amadioha 2003; Kumar and Parmar 1996; Prakash and Rao 1997). Biopesticides may also be less expensive, easily available (because of their natural occurrence) and depending on the concentration, they may have no effects on seed viability, plant growth and food quality (Opara and Wokocha 2008).

In the present study, we applied crude extracts from a large number of plant species to tomato seeds to evaluate their potential to control BLS. The effect of the most promising extracts on seed germination and tomato seed-ling growth was also investigated.

Materials and methods

Seed samples

Tomato (*S. lycopersicum* L.) seeds of cultivars Cal-J, Tanya and Moneymaker, collected from tomato growers in Tanzania, were tested for infection as described by International Seed Federation (2007). Seed samples that were free of infection by *Xanthomonas* spp. were used in the experiments. One thousand seeds per cultivar were surface-disinfested in 70 % ethanol for 1 min, then in 1 % sodium hypochlorite for 3 min and rinsed three times in sterile distilled water. The seeds were then transferred to Petri dishes containing sterile filter papers and allowed to air-dry overnight in a laminar flow chamber and stored at 4 °C until used.

Seed inoculation with bacterial suspensions

Surface-disinfested seeds of tomato cultivar Tanya were inoculated with *X. perforans* strain NCPPB 4321 based on its ability to cause severe BLS symptoms on various tomato cultivars, including those grown in Tanzania. Inoculum was prepared from 24-h-old bacterial cultures grown on nutrient agar (NA) medium (meat extract 3 g, Bacto peptone 5 g, Bacto agar 20 g, distilled water 1000 mL) at 28 °C. Bacterial cultures were flooded with 10 mL of sterile distilled water and gently scraped with a flamed Drigalski spatula. The inoculum suspension was then homogenized using a vortex mixer and suspended in sterile distilled water to obtain a ca. 10^8 CFU/mL (OD₆₀₀ = 0.01) (NanoDrop, Thermo Fisher Scientific, Beverly, MA, USA). One thousand seeds of tomato were vacuum-infiltrated for 30 min with 10 mL of the bacterial suspension, and seeds were air-dried in the laminar air flow chamber at 4 °C until used.

Seed treatment with plant extracts

Plant for extractions were obtained from companies in Denmark and farmers in Tanzania as shown in Table 1. Two grams of plant material were suspended in 20 mL sterile distilled water in a 50 mL conical flask to obtain a 10 % (w/v) concentration. The conical flasks with the suspensions were briefly heated on a hot electric plate until boiling and cooled for 5 min. The suspensions were filtered through sterile cheesecloth, and the extracts were autoclaved at 115 °C for 15 min and kept at 4 °C until used. Twenty tomato seeds pre-inoculated with X. perforans were treated with 1 mL of the 10 % plant extract in an Eppendorf tube and placed on an agitation table at 100 rpm overnight at 25 °C. Untreated, seeds treated with copper sulphate (200 µg/mL CuSO₄·5H₂O) or sterile distilled were included as controls. After overnight incubation, the treated seeds were blot-dried and allowed to air-dry for 1 h in the laminar air flow cabinet.

Evaluation of antibacterial activity of plant extracts in vitro

Washing samples (100 µL) from treated seeds were collected using sterile pipettes and serially diluted to 10^{-2} with sterile distilled water in Eppendorf tubes. An aliquot of 100 µL from each dilution was spread onto 0.6 cm thick NA medium in Petri dishes (diameter $8.5 \text{ cm} \times \text{depth}$ 1.3 cm) using a sterile glass rod. The plates were incubated at 28 °C. A pure culture of X. perforans NCPPB 4321 was included as a control. Yellow colonies with morphology and color similar to those of X. perforans were counted after 96 h. The identity of suspected colonies from each plate was confirmed by pathogenicity tests. The abaxial surfaces of four 14-day-old plants of tomato cultivar Tanya were sprayed to runoff with an inoculum suspension of 10^8 CFU/mL (OD₆₀₀ = 0.01) prepared from 24-h-old bacterial cultures grown on NA at 28 °C. The inoculated seedlings were covered with polyethylene bags and kept in the growth chamber for 14 days. Seedlings sprayed with sterile saline water (containing 0.85 % of NaCl) were used as a negative control, and seedlings sprayed with suspensions prepared from the X. perforans culture served as positive controls. The plants were examined for symptoms 14 days after inoculation and scored as negative when no obvious symptoms were observed. Leaves with watersoaked lesions that developed into dark brown spots were scored as positive for BLS disease.

Table 1 Origin of plant extracts and control of bacterial leaf spot (BLS) of tomato caused by Xanthomonas perforans after seed treatment with extracts or control treatments

Common name	Scientific name	Family	Part tested	Origin	CFU/mL	BLS-RI (%) ^a
Aloe	Aloe vera L.	Aloaceae	Stem	NN, DK	0.0×10^0	100
Silver birch	Betula pendula Roth.	Betulaceae	Leaf	NDC, DK	0.0×10^{0}	100
Coffee	Coffea arabica L.	Rubiaceae	Seed ^b	Tanzania	0.0×10^{0}	100
Licorice	Glycyrrhiza uralensis L.	Fabaceae	Stem/leaf	NDC, DK	0.0×10^{0}	100
Juniper	Juniperus communis L.	Cupressaceae	Stem	NDC, DK	0.0×10^{0}	100
Basil	Ocimum basilicum L.	Lamiaceae	Leaf	NDC, DK	0.0×10^{0}	100
Oak	Quercus robur L.	Fagaceae	Bark	NN, DK	0.0×10^{0}	100
Rhubarb	Rheum palmatum L.	Polygonaceae	Stem	NN, DK	0.0×10^{0}	100
Rosemary	Rosmarinus officinalis L.	Lamiaceae	Stem	NN, DK	0.0×10^{0}	100
Rue	Ruta graveolens L.	Rutaceae	Stem	NDC, DK	0.0×10^{0}	100
White mustard	Sinapis alba L.	Brassicaceae	Root	NDC, DK	0.0×10^{0}	100
Mojave yucca	Yucca schidigera L.	Agavaceae	Stem	NDC, DK	0.0×10^{0}	100
Sage	Salvia officinalis L.	Lamiaceae	Stem	NDC, DK	0.0×10^{0}	100
Nor-grape 80	Vitis vinifera L.	Vitaceae	Stem/leaf	NDC, DK	0.0×10^{0}	94
Punica	Punica granatum L.	Punicaceae	Stem	NDC, DK	0.0×10^{0}	86.7
Olive	Olea europaea L.	Oleaceae	Leaf	NDC, DK	0.0×10^{0}	81.2
Clove	Caryophyllus aromaticus L.	Myrtaceae	Twig	NDC, DK	0.0×10^{0}	75
White willow	Salix alba L.	Salicaceae	Bark	NN, DK	2.0×10^{0}	100
Grape vine	Vitis vinifera L.	Vitaceae	Leaf	NN, DK	1.0×10^{0}	79.8
Quinoa	Chenopodium quinoa Wild.	Chenopodiaceae	Stem	NN, DK	1.8×10^{3}	75
Soapwort	Saponaria officinalis L.	Caryophyllaceae	Stem/leaf	NN, DK	2.2×10^{1}	100
Ginkgo	Ginkgo biloba L.	Ginkgoaceae	Leaf	NDC, DK	3.3×10^{4}	94
Daisy	Bellis perennis L.	Asteraceae	Flower	NDC, DK	4.0×10^{4}	90.1
Inula	Inula helenium L.	Asteraceae	Stem	NDC, DK	1.0×10^{1}	86.7
Rosemary	Rosmarinus officinalis L.	Lamiaceae	Leaf	NN, DK	2.5×10^{3}	81.6
Tea	Camellia sinensis L.	Theaceae	Leaf	NDC, DK	1.0×10^{1}	81.2
Bilberry	Vaccinium myrtillus L.	Vacciniaceae	Leaf	NN, DK	1.0×10^{1} 1.0×10^{1}	81.2
Celery	Apium graveolens L.	Apiaceae	Root	NDC, DK	1.0×10^{1}	80
Ginseng	Panax ginseng C.A. Meyer.	Araliaceae	Stem/leaf	NDC, DK	1.0×10^{1} 1.0×10^{1}	80
Burnet-saxifrage	Pimpinella saxifraga ssp. nigra (Mill)	Apiaceae	Stem	NN, DK	1.0×10^{6} 1.0×10^{6}	80
Thyme	Thymus vulgaris L.	Lamiaceae	Leaf/stem	NDC, DK	3.9×10^3	80
Маурор	Passiflora incarnata L.	Passifloraceae	Flower	NDC, DK NN, DK	6.0×10^4	79.8
Red pepper	Capsicum frutescens L.	Solanaceae	Fruit	NN, DK	1.8×10^5	73.4
Chamomile	Matricaria chamomilla L.	Asteraceae	Flower	NN, DK	2.0×10^{10}	73.3
Neem	Azadirachta indica L.	Meliaceae	Seed	Tanzania	2.0×10^{2} 7.0×10^{2}	68.7
Quinine		Rubiaceae	Bark	NDC, DK	9.0×10^{10}	66.7
-	Cinchona pubescens Vahl.				9.0×10^{3} 9.8×10^{3}	66.6
High mallow	Malva sylvestris L.	Malvaceae	Leaf	NN, DK	9.8×10 6.0×10^1	60.0 60
Cowslip Sisal	Primula veris L.	Primulaceae	Stem	NN, DK	8.0×10^{-10} >1.0 × 10 ⁷	60 59.9
	Agave sisalana Perrine.	Agavaceae	Root	Tanzania		
Agapanthus	Agapanthus sp.	Alliaceae	Leaf	NDC, DK	1.9×10^5	53.2
Sisal	Agave sisalana Perrine. (I_{a}) Perrine.	Agavaceae	Leaf	Tanzania	2.8×10^5	53.2
Couch grass	Agropyron repens (L.) Beauv.	Poaceae	Stem	NDC, DK	1.1×10^3	53.1
Elm	Ulmus campestris L.	Ulmaceae	Bark	NN, DK	5.5×10^2	49.5
Sisal	Agave sisalana Perrine.	Agavaceae	Stem	Tanzania	1.9×10^5	46.8
Horsetail	Equisetum arvense L.	Equisateaceae	Leaf	ND, DK	1.6×10^{5}	40
Black poplar	Populus nigra L.	Salicaceae	Twig	NN, DK	6.0×10^{0}	40
Elderberry	Sambucus nigra L.	Caprifoliaceae	Leaf	ND, DK	6.0×10^{0}	40
Turmeric	Curcuma longa L.	Zingiberaceae	Stem	ND, DK	$>1.0 \times 10^{7}$	40

Table 1 continued

Common name	Scientific name	Family	Part tested	Origin	CFU/mL	BLS-RI (%) ^a
Adam's needle	Yucca filamentosa L.	Agavaceae	Stem	NN, DK	2.4×10^4	37.5
Onion	Allium cepa L.	Liliaceae	Bud	ND, DK	2.0×10^6	33.5
Eucalyptus	Eucalyptus globulus L.	Myrtaceae	Leaf	Tanzania	3.7×10^{3}	33.5
Avocado	Persea americana L.	Lauraceae	Fruit peels	Tanzania	$>1.0 \times 10^{7}$	33.5
Buckthorn	Frangula alnus Mill.	Rhamnaceae	Bark	ND, DK	2.0×10^1	29.9
Plantain	Plantago major L.	Plantaginaceae	Leaf	ND, DK	6.0×10^{5}	29.9
Southernwood	Artemisia abrotanum L.	Asteraceae	Leaves	ND, DK	5.8×10^{6}	26.8
Lemongrass	Cymbopogon citratus L.	Poaceae	Leaves	ND, DK	9.8×10^{5}	26.8
Eucalyptus	Eucalyptus globulus L.	Myrtaceae	Seeds	Tanzania	$>1.0 \times 10^{7}$	26.8
White clover	Trifolium repens L.	Fabaceae	Flower	NN, DK	2.6×10^{5}	26.8
Couch grass	Agropyron repens L.	Poaceae	Leaf	ND, DK	1.9×10^{5}	26.7
Silver birch	Betula pendula Roth.	Betulaceae	Bark	ND, DK	5.0×10^{3}	26.7
Scots pine	Pinus sylvestris L.	Pinaceae	Leaf	ND, DK	6.0×10^{3}	26.7
Red clover	Trifolium pratense L.	Fabaceae	Flower	NN, DK	6.8×10^{3}	26.7
Ginger	Zingiber officinale Rosc.	Zingiberaceae	Bud	NN, DK	7.0×10^{2}	26.7
Yucca	Yucca sp.	Agavaceae	Stem/leaf	NN, DK	2.6×10^{3}	25
Adam's needle	Yucca filamentosa L.	Agavaceae	Leaf	NN, DK	2.4×10^{5}	25
Oak	Quercus robur L.	Fagaceae	Leaf	NN, DK	7.0×10^1	18.7
Soapbark	Quillaja saponaria Molina.	Quillajaceae	Bark	NN, DK	2.6×10^{3}	18.7
Chicory	Cichorium intybus L.	Asteraceae	Stem	ND, DK	1.0×10^{5}	13.5
Water mint	Mentha aquatica L.	Lamiaceae	Leaf	ND, DK	4.0×10^{5}	13.5
Irish moss	Chondrus crispus L.	Gigartinaceae	Leaf	ND, DK	3.5×10^{5}	13.3
Tansy	Tanacetum vulgare L.	Asteraceae	Stem/leaf	ND, DK	1.3×10^4	6.2
Neem	Azadirachta indica L.	Meliaceae	Leaf	Tanzania	5.0×10^{5}	0
Bladderwrack	Fucus vesiculosus L.	Fucaceae	Flower	NN, DK	6.9×10^4	0
Coral plant	Jatropha sp.	Euphorbiaceae	Seed	Tanzania	2.2×10^{5}	0
Coral plant	Jatropha sp.	Euphorbiaceae	Leaf	Tanzania	1.2×10^{5}	0
Lantana	Lantana camara L.	Verbenaceae	Leaf	Tanzania	5.0×10^4	0
Spiny restharrow	Ononis spinosa L.	Fabaceae	Leaf	ND, DK	6.0×10^{5}	0
Silverweed	Pontentilla anserine L.	Rosaceae	Leaf	ND, DK	9.6×10^{3}	0
Quassia	<i>Quassia</i> sp.	Simaroubaceae	Bark	NN, DK	1.3×10^{5}	0
Nettle	Urtica sp.	Urticaceae	Leaf	ND, DK	1.4×10^{5}	0
Mistletoe	Viscum album L.	Loranthaceae	Leaf/stem	ND, DK	4.6×10^{5}	0
Cardamon	Ellettaria cardamomum L.	Zingiberaceae		ND, DK	$>1.0 \times 10^{7}$	-10
Alfalfa	Medicago sativa ssp. sativa L.	Fabaceae	Seed	ND, DK	$>1.0 \times 10^{7}$	-10
Fenugreek	Trigonella foenum-graecum L.	Fabaceae	Seed	ND, DK	1.3×10^{6}	-20
Controls						
Sterile distilled water	_	_	_	-	$>1.0 \times 10^{7}$	0
Copper sulphate	_	_	_	-	0.0×10^{0}	100
Untreated seed	_	_	_	_	0	0

- not applicable, NN, DK Nor-Natur, Denmark, ND, DK Natur Drogeriet, Denmark

^a Bacterial leaf spot reduction index (BLS-RI) was calculated as $(C - T)/C \times 100$ %, where C is the incidence of BLS in tomato seedlings treated with sterile distilled water (negative control) and T is the incidence of BLS of tomato seedlings treated with plant extract

^b Processed coffee (Africafe[®]) from Afri Tea and Coffee Blenders (1993) Ltd., Dar es Salaam, Tanzania

Evaluation of antibacterial activity of plant extracts in planta

To evaluate the effect of the plant extracts on the control of X. perforans in seedling assays, 16 tomato seeds treated with plant extracts as previously described were sown in pots (8 cm diameter) containing a 1:3 ratio of sterile sand and peat soil (Pindstrup substrate No. 2, Pindstrup Mosebrug A/S, Ryomgaard, Denmark) and kept in growth chamber at 28 °C under high relative humidity (>85 %). Twenty-one days after sowing, BLS incidence was assessed by calculating the percentage of seedlings with leaf spot symptoms in the total number of emerged seedlings. The efficacy of plant extract treatments in the control of BLS in tomato seedlings was calculated as the BLS reduction index (BLS-RI) = $(C - T)/C \times 100$ %, where C is the incidence of BLS in tomato seedlings raised from seeds treated with sterile distilled water (negative control) and T is the incidence of BLS in tomato seedlings from infected seeds treated with a given plant extract. In addition to the BLS incidence and reduction index, the height, mass and width of seedlings were also evaluated for the bestperforming plant extracts. The height of the seedlings was determined by measuring the aerial part of the seedlings from the soil surface to the node of the terminal developing leaf. Fresh mass of the aerial plant part was determined using tomato seedlings cut at the base of the stem by a pair of scissors, and the seedling mass was weighed. To determine the width of the seedlings, we placed a digital caliper at a right angle to the seedlings and recorded the reading at the widest point of the stem. The measurements were repeated in three independent experiments. Plant extracts with the best ability to reduce BLS in tomato during the initial screening tests were determined by comparing the data obtained with Student-Newman-Kuels (SNK) test using SAS version 9.1 software (SAS Institute, Cary, NC, USA). The choice of plant extracts used for screenhouse evaluations in Tanzania was based on four criteria: (1) effectiveness in reducing BLS, (2) most normal seedlings in germination tests, (3) highest vigor index in seedling assays and (4) no phytotoxicity.

Effect of plant extracts on seed germination and seedling growth

The effect of selected plant extracts on seed germination, seedling vigor and mass was evaluated in *Xanthomonas*-free tomato seeds treated with plant extracts as previously described. Seed germination tests were conducted using 400 tomato seeds per treatment. The standard International Seed Testing Association top of paper method (ISTA 2005) was used. The seeds were plated uniformly (50 seeds per replicate) onto three layers of moist blotter paper in a

plastic container kept at 27 ± 2 °C and RH >85 % for 14 days. Normal and abnormal seedlings and dead seeds were counted for the germination tests. The same seedlings were used to determine vigor and dry mass. The vigor test involved measurements of root and shoot lengths of seedlings and the percentage seed (normal seedlings) germination. The seedling vigor index (Vi) was calculated as Vi = (mean root length + mean shoot length) × (percentage germination) (Abdul-Baki and Anderson 1973). To determine the dry mass, we wrapped seedlings from each treatment in the germination tests in aluminium foil and dried them in an oven at 103 °C for 24 h. The dried seedlings were then allowed to cool to room temperature and weighed.

Evaluation of plant extracts for production of healthy tomato transplants in the screenhouse

Tomato seeds of cultivars Tanya, Cal-J and Moneymaker, collected from tomato growers in Tanzania and free of BLScausing xanthomonads, were inoculated with X. perforans and treated with plant extracts as previously described. One hundred seeds per cultivar per treatment were sown in polyethylene plastic trays (56.5 \times 26.5 \times 6 cm) containing a mixture of forest soil, rice husks and farmyard manure (3:1:1). The trays were kept in the screenhouse at 25-33 °C and RH >85 %. Seven days after sowing, 40 seedlings per treatment of each cultivar (10 seedlings per replicate in four replications) were randomly selected and transferred to polyethylene sleeves $(6.5 \times 9.0 \text{ cm})$ containing the same growth substrate as previously described. The sleeves with the seedlings were placed on the screenhouse benches at the same temperature and RH. BLS incidence and severity in the tomato seedlings were assessed 21 days after sowing. Disease severity was determined based on the Horsfall and Barrett (1945) scale with minor modifications (Shenge 2006), where 1 = no disease, 2 = >0-3 % of leaves with BLS symptoms, 3 = >3-12 % of leaves with BLS symptoms, 4 = >12-25 % of leaves with BLS symptoms, 5 = >25-50 % of leaves with BLS symptoms and 6 = >50 % of leaves with BLS symptoms. In addition to disease incidence and severity, the height and mass of seedlings were also evaluated as already described. The experiment was repeated three times from March to September 2010.

Data analysis

In the in vitro assays, the average of the total number of colony forming units of *X. perforans* on NA was calculated based on three replications. Data for BLS incidence, severity, seed germination, seedling vigor, plant dry and fresh mass and plant height were analyzed using Proc

GLM, and mean separation tests were calculated with the Student–Newman–Kuels (SNK) using SAS version 9.1 software (SAS Institute).

Results

Results for preliminary screening of the effectiveness of plant extracts on *X. perforans* indicated that 17 of 84 tested plant extracts (20.2 %) were able to totally reduce the pathogen in in vitro assays (Table 1). The extracts were from *Aloe vera*, *Betula pendula*, processed *Coffea arabica*, *Glycyrrhiza uralensis*, *Juniperus communis*, *Ocimum basilicum*, *Quercus robur*, *Rheum palmatum*, *Rosmarinus officinalis*, *Ruta graveolens*, *Sinapsis alba*, *Yucca schidigera*, *Salvia officinalis*, *Vitis vinifera*, *Punica granatum*, *Olea europea* and *Caryophillus aromaticus*. The effect of these plant extracts on *X. perforans* was similar to that obtained when seeds were treated with copper sulphate (Table 1).

In the in planta assays, 15 of 84 plant extracts (17.8 %) completely inhibited symptoms of BLS in tomato seedlings. Such plant extracts were from A. vera, B. pendula, C. arabica, G. uralensis, J. communis, O. basilicum, Q. robur, R. palmatum, R. officinalis, R. graveolens, S. alba, Y. schidigera and S. officinallis (Table 1). Only 13 of 84 extracts (corresponding to 15.5 %) of the assayed plant extracts controlled BLS in both in vitro and in planta assays. These extracts were from A. vera, B. pendula, C. arabica, G. uralensis, J. communis, O. basilicum, C. arabica, G. uralensis, J. communis, O. basilicum, *Q. robur, R. palmatum, R. officinalis, R. graveolens, S. alba, Y. schidigera* and *S. officinalis* and were selected for further experiments.

The results obtained from evaluation of the best-performing plant extracts are shown in Table 2. The 13 selected plant extracts all significantly reduced (P < 0.001) the incidence of BLS in tomato seedlings without significantly affecting the growth of tomato seedlings. Seed treatment with plant extracts from *A. vera*, *C. arabica*, *G. uralensis* and *Y. schidigera* totally reduced (P < 0.001) the incidence of BLS in tomato (Table 2). The efficacy of these plant extracts to inhibit the growth of *X. perforans* was similar to the effects obtained when seeds were treated with copper sulphate (bactericide) control and untreated (disease free) seed control.

The results also showed that, treatment of tomato seeds with the best-performing plant extracts did not negatively affect the growth of tomato seedlings compared to the treatment with copper sulphate and untreated, disease-free seeds. In contrast, seed treatment with sterile distilled water (negative control) resulted in seedlings with significantly lower (P < 0.001) fresh mass (0.31 g) and width (1.45 mm) compared to the other seed treatments (Table 2).

The effects of tomato seed treatment with 10 % aqueous plant extracts from *A. vera*, *C. arabica*, *G. uralensis* and *Y. schidigera* on seed germination, seedling vigor and dry mass is summarised in Table 3. Treatment of tomato seeds with extracts from *A. vera*, *C. arabica* and *Y. schidigera* significantly increased (P < 0.05) the number of normal

Table 2 Effect of seed treatment with selected plant	Treatment	Incidence (%) ^a	Height (cm)	Mass (g)	Width (mm)		
extracts on incidence of bacterial leaf spot caused by <i>Xanthomonas perforans</i> and on growth of tomato seedlings of	Control						
	Sterile distilled water	83.30a	13.50b	0.31d	1.45d		
	Copper sulphate	0.00e	16.13a	0.85abc	1.81abc		
cultivar Tanya	Untreated seed	0.00e	15.98a	0.75bc	1.78c		
	Plant extract						
	Aloe vera	0.00e	17.28a	0.96abc	2.05ab		
	Betula pendula	18.80b	16.90a	0.83abc	2.00abc		
	Coffea arabica	0.00e	17.13a	0.98ab	2.04ab		
	Glycyrrhiza uralensis	0.00e	17.23a	0.96abc	2.06ab		
	Juniperus communis	6.30d	16.11a	0.72c	1.97abc		
	Ocimum basilicum	18.80b	16.84a	0.78abc	1.93abc		
	Quercus robur	18.80b	16.69a	0.82abc	1.97abc		
	Rheum palmatum	18.80b	16.50a	0.82abc	2.04ab		
*** Significant at $P = 0.01$	Rosmarinus officinalis	18.80b	16.06a	0.78abc	1.98abc		
^a BLS incidence = percentage	Ruta graveolens	18.80b	16.16a	0.49ab	1.82abc		
of seedlings with bacterial leaf spot symptoms. Mean followed by same letters in a column are not significantly different based on the SNK test at $P = 0.05$. Each value is a mean of 48 seedlings	Salvia officinalis	12.50c	16.56a	0.82abc	2.04ab		
	Sinapis alba	12.50c	16.13a	0.74c	1.90abc		
	Yucca schidigera	0.00e	17.24a	1.00a	2.13a		
	Mean	12.31	16.47	0.81	1.95		
	F test	***	***	***	***		

Treatment	Seed germination ^a			Vigor index (%) ^b	Dry mass (g)
	NS (%)	ABS (%)	DS (%)		
Control					
Sterile distilled water	90.50b	3.00a	6.50a	702.51b	0.16a
Copper sulphate	92.80ab	2.30a	5.00ab	707.60b	0.14a
Untreated seed	92.00ab	3.50a	4.50ab	718.06b	0.16a
Plant extract					
A. vera	94.80a	1.80a	3.50ab	749.39ab	0.14a
C. arabica	95.50a	2.50a	2.00b	784.77a	0.14a
G. uralensis	92.80ab	2.80a	4.50ab	714.33b	0.16a
Y. schidigera	94.30a	2.00a	3.80ab	741.91ab	0.14a
Mean	93.20	2.50	4.30	731.22	0.14
F test	**	ns	**	**	ns

Table 3 The effect of treatment with selected plant extracts from Aloe vera, Coffea arabica, Glycyrrhiza uralensis and Yucca schidigera on tomato seed germination, seedling vigor and dry weight of tomato plants

ns not significant

** Significant at P = 0.05

^a Seed germination states: *NS* normal seedlings, *ABS* abnormal seedlings, *DS* dead seed. Each value is the percentage from 400 seeds test ^b Seedling vigor index (Vi) was calculated as Vi = (mean root length + mean shoot length) × (percentage germination) (Abdul-Baki and Anderson 1973); means followed by the same letters in a column are not significantly different based on the SNK test at P = 0.05

seedlings compared to seeds treated with sterile distilled water (negative control). The number of normal seedlings obtained from seeds treated with these extracts was not significantly different from those obtained from copper sulphate (positive control) and untreated tomato seeds (Table 3). The number of normal seedlings obtained with seeds treated with plant extracts of G. uralensis was not significantly different (P < 0.05) from seed treatments using plant extracts from A. vera, C. arabica and Y. schidigera, (positive and negative controls, respectively). The number of abnormal seedlings was not significantly different (P < 0.05) between different seed treatments (Table 3). When the number of dead tomato seeds was compared between seed treatments, there was no significant difference (P < 0.05) between most treatments, except for tomato seeds treated with C. arabica (Table 3), which significantly increased (P < 0.05) tomato seedling vigor. The treatment of tomato seeds with extracts from A. vera and Y. schidigera were not significantly different (P < 0.05) from seeds treated with C. arabica, positive and negative controls (Table 3).

Seed treatment of tomato with plant extracts from *A. vera*, *C. arabica* and *Y. schidigera* significantly reduced the incidence and severity of BLS (P < 0.001) in all three experiments. Such effects were similar to those obtained for seedlings grown from tomato seeds treated with copper sulphate and untreated seeds (disease-free) control (Table 4). In all three experiments, the incidence and severity of BLS disease were significantly higher (P < 0.001) in tomato transplants of cultivars Tanya, Cal-J and Moneymaker treated

with sterile distilled water (negative control) compared to the other treatments (Table 4).

Discussion

Tomato seeds were treated with aqueous extracts from 84 different plant materials to assess control of seed-borne infection of BLS of tomato caused by *X. perforans*. In the in vitro assays, 20.2 % of the tested plant extracts totally inhibited growth of *X. perforans* when seed washings from treated seeds were plated on NA. In the in planta experiments, notably 17.8 % of the tested plant extracts reduced BLS incidence by 100 % in tomato seedlings (Table 1). The most effective seed treatments, giving 100 % control in vitro and in planta, were obtained when tomato seeds were treated with plant extracts from *A. vera*, *B. pendula*, *C. arabica*, *G. uralensis*, *J. communis*, *O. basilicum*, *Q. robur*, *R. palmatum*, *R. officinalis*, *R. graveolens*, *S. alba*, *Y. schidigera* and *S. officinalis* (Table 1).

From the in planta evaluation of the 13 best performing plant extracts (Table 2), extracts from *A. vera*, *C. arabica*, *G. uralensis* and *Y. schidigera* were the most effective and promising for control of BLS of tomato when applied as seed treatment (Table 2). Such results indicate that these plant extracts have bactericidal properties and can be used for tomato seed treatment to control xanthomonads associated with BLS. Many reports are available on the antibacterial properties of these plants. The antibacterial activity of *A. vera* against *Shigella flexneri* and *Streptococcus*

 Table 4
 The effect of selected plant extracts from Aloe vera, Coffea arabica and Yucca schidigera applied as seed treatment on incidence and severity of bacterial leaf spot (BLS) caused by Xanthomonas perforans on three tomato cultivars under screenhouse conditions in Morogoro, Tanzania

Cultivar	Treatment	Experiment 1		Experiment 2		Experiment 3	
		Incidence (%) ^a	Severity index ^b	Incidence (%)	Severity index	Incidence (%)	Severity index
Tanya	Control						
	Sterile distilled water	45.00a	2.15a	82.50a	2.56a	65.00	2.18a
	Copper sulphate	10.00b	1.10b	0.00b	1.00b	2.50b	1.02b
	Untreated seed	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Extract						
	A. vera	2.50b	1.02b	0.00b	1.00b	0.00b	1.00b
	C. arabica	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Y. schidigera	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Mean	9.58	1.21	13.75	1.26	11.25	1.20
	F test	***	***	***	***	***	***
Cal-J	Control						
	Sterile distilled water	70.00a	2.18a	80.00a	2.55a	60.00a	1.65a
	Copper sulphate	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Untreated seed	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Extract						
	A. vera	2.50b	1.02b	0.00b	1.00b	2.50b	1.02b
	C. arabica	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Y. schidigera	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Mean	12.08	1.20	13.33	1.26	10.42	1.13
	F test	***	***	***	***	***	***
Moneymaker	Control						
	Sterile distilled water	65.00a	2.28a	67.50a	2.40a	72.50a	2.00a
	Copper sulphate	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Untreated seed	0.00b	1.00b	0.00b	1.00b	0.00b	1.00b
	Plant extract						
	A. vera	0.00b	1.00b	0.00b	1.00b	2.50b	1.02b
	C. arabica	2.50b	1.02b	0.00b	1.00b	0.00b	1.00b
	Y. schidigera	0.00b	1.00b	2.50b	1.02b	0.00b	1.00b
	Mean	11.25	1.22	11.67	1.23	12.50	1.17
	F test	***	***	***	***	***	***

*** Significant at P = 0.01b

^a Percentage of seedlings with bacterial leaf spot symptoms

^b Disease severity index based on Horsfall and Barrett (1945) scale of 1–6 with modifications: 1 = no disease and 6 = >50 % of leaves with BLS symptoms. Means followed by the same letters in a column are not significantly different based on SNK test at P = 0.05

pyogenes has been documented (Ferro et al. 2003). Extracts from *A. vera* also affect several Gram-positive and negative bacteria (Cock 2008). The antibacterial activity of extracts from *A. vera* was reported to be due to a direct effect on the bacterial cells caused by the presence of anthraquinones (Boateng 2000) and saponin (Reynolds and Dweck 1999; Urch 1999). Other indirect effects have been reported to be associated with the presence of polysaccharides, which stimulate plant defence responses that destroy bacteria (Lawless and Allan 2000; Pugh et al. 2001). Murthy and Manonmani (2009) reported that plant extracts from

processed coffee inhibited growth of food-borne pathogens such as *Escherichia coli*, *Yersinia* and *Listeria* species. The antibacterial activity of coffee is associated with substances produced by the roasting process such as millard products, carbohydrate caramelization and thermal composition products (Daglia et al. 1994). In addition, *Glycyrrhiza* species contain α -glycyrrhetinic acid and glycyrrhizin, which inhibit DNA replication and RNA and protein synthesis of microbes (Kim et al. 2002). Other *Glycyrrhiza* species, e.g. *G. glabra*, inhibit growth of some Gram-negative bacteria such as *Salmonella* spp., *Shigella* spp. and *E. coli* (Shirazi et al. 2007). Extracts from *Y. schidigera* also have antibacterial activity, which was attributed to the presence of saponin, a compound found to inhibit microbial growth through hemolytic activity (Hassan et al. 2010). In the present study, observations of cell suspensions of *X. perforans* treated with extracts from *Y. schidigera* at 10 % concentration using confocal microscopy revealed permeabilization of bacterial cells (data not shown).

In addition to reducing BLS in tomato seedlings, plant extracts from A. vera, C. arabica and Y. schidigera significantly improved germination (P < 0.05) of tomato seedlings (Table 3). At the same time, the vigor and dry mass of tomato seedlings were not affected by the treatment of seeds with plant extracts from A. vera, C. arabica, G. uralensis and Y. schidigera, indicating that these extracts were not phytotoxic to tomato seeds and seedling development. Other seed treatments with natural compounds of plant origin to control plant pathogens have been reported to have no negative effects on plant growth, seed viability or food quality (Opara and Wokocha 2008). Based on data from the present study, extracts from A. vera, C. arabica and Y. schidigera were the most promising plant extracts against BLS and can therefore be used to treat tomato seed. Additionally, they fulfilled the requirements for bioactive chemicals (Hewett and Griffiths 1986) and have the advantages of low mammalian toxicity, minimal health hazards and the least environmental pollution (Amadioha 2003; Singh 1994).

Under screenhouse conditions in Tanzania, using three tomato cultivars, transplants obtained from seed treated with extracts from *A. vera*, *C. arabica* and *Y. schidigera* had significantly lower BLS incidence and severity than tomato seedlings from seed treated with sterile distilled water (Table 4). The ability of these plant extracts to control BLS in the three tomato cultivars grown in Tanzania without negatively affecting seedling growth indicated the potential of using these plant extracts as seed treatment against BLS pathogens.

We also demonstrated that aqueous extracts of 13 plant species (15.5 % of the tested extracts) had antimicrobial properties and inhibited the growth of *X. perforans* in in vitro and in *planta* assays. Plant extracts from *A. vera*, *C. arabica* and *Y. schidigera* were of particular interest as a control strategy to BLS of tomato because they consistently inhibited *X. perforans* in different experiments without negative effects on tomato seeds and seedlings. The ability of these plant extracts to control BLS xanthomonads in tomato also provides an alternative control approach against copper-resistant strains reported to be present in Tanzania (Shenge et al. 2007). These plants extracts must also be tested against BLS under farmers' conditions before they can be recommended for production of BLS free tomato transplants. More research is also needed to identify bioactive fractions from these plant extracts as well as their mechanisms of action.

Acknowledgments The authors wish to thank the Danish International Development Assistance (DANIDA) through ENRECA LIFE project No. 731 for providing funds for this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

- Abdul-Baki AA, Anderson JD (1973) Vigor determination in soybean seed by multiple criteria. Crop Sci 13:630–633
- Amadioha AC (2003) Evaluation of some plant leaf extracts against Colletotrichum lindemuthianum in cowpea. Acta Phytopathol Enthomol Hung 38:259–265
- Anonymous (2006) List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 56:925–927
- Black R, Seal S, Abubakar Z, Nono-Womdim R, Swai I (2001) Bacterial spot (*Xanthomonas campestris* pv. vesicatoria) of tomato and sweet pepper in Tanzania. Plant Pathol 50:810 (abstract)
- Boateng JS (2000) Analysis of commercial samples of aloe. Ph.D. thesis, University of Strathclyde, Glasgow
- Carrillo-Fasio JA, Garcia-Estrada RS, Allende-Molar R, Marquez-Zequera I, Millan- Ocampo S, Gaxiola-Espinoza G et al (2001) Sensitivity of *Xanthomonas campestris* pv. *vesicatoria* (Doidge) dye strains to copper. Rev Mex Fitopatol 19:72–77
- Cock IE (2008) Antimicrobial activity of Aloe barbadensis Miller leaf gel components. Internet J Microbiol 4(2). http://www98.griffith. edu.au/dspace/bitstream/10072/21381/1/50582_1.pdf. Cited 12 April 2011
- Daglia M, Cuzzoni MT, Dacarro C (1994) Antibacterial activity of coffee. J Agric Food Chem 42:2270–2272
- Ferro VA, Bradbury F, Cameron P, Shakir E, Rahman SR, Stimson WH (2003) In vitro susceptibilities of *Shigella flexneri* and *Streptococcus pyogenes* to inner gel of *Aloe barbadensis* Miller. Antimicrob Agents Chemother 147:1137–1139
- Gitaitis R, McCarter S, Jones J (1992) Disease control in tomato transplants produced in Georgia and Florida. Plant Dis 76:651– 656
- Gore JP, O'Garro LW (1999) *Xanthomonas campestris* pv. *vesica-toria* from bell pepper and tomato in Barbados undergoes changes in race structure, virulence and sensitivity to chemical control agents. J Phytopathol 47:397–402
- Hassan SM, Byrd JA, Cartwright AL, Bailey CA (2010) Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, quillaja, yucca, and soybean. Appl Biochem Biotechnol 162:1008–1017
- Hewett PD, Griffiths DC (1986) Biology of seed treatment. In: Jeffs KA (ed) Seed treatments. BCPC Publications, Thornton Health, Surrey, pp 7–12
- Horsfall JG, Barrett RW (1945) An improved grading system for measuring plant disease. Phytopathology 35:655 (abstract)
- International Seed Federation (ISF) (2007) Method for the detection of *Xanthomonas campestris* pv. *vesicatoria* on tomato seed. ISF Secretariat, Chemin du Reposoir, Nyon
- International Seed Testing Association (ISTA) (2005) International rules for seed testing. Bassersdorf

- Jones JB, Bouzar H, Stall RE, Almira EC, Roberts PD, Bowen BW, Sudberry J, Strickler PM, Chun J (2000) Systematic analysis of xanthomonads (*Xanthomonas* spp.) associated with pepper and tomato lesions. Int J Syst Evol Microbiol 50:1211–1219
- Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27:755– 762
- Kaaya NKF, Mortensen CN, Mabagala RB, Massomo SMS (2003) A guide on seed-borne bacterial diseases of tomato in Tanzania. Technical Bulletin, Danish Government Institute of Seed Pathology for Developing Countries (DGISP), Copenhagen, Denmark
- Kim HK, Park Y, Kim HN, Choi BH, Jeong HG, Lee DG, Hahm KS (2002) Antimicrobial mechanism of β-glycyrrhetinic acid isolated from licorice, *Glycyrrhiza glabra*. Biotechnol Lett 24:1899– 1902
- Kumar J, Parmar BS (1996) Physicochemical and chemical variation in neem oils and some bioactivity leads against Spodoptera litura F. J Agric Food Chem 44:2137–2143
- Lawless J, Allan J (2000) The chemical composition of *Aloe vera*. In: *Aloe vera* natural wonder cure. Thorsons Publishing, London, pp 161–171
- Lee SD, Cho YS (1996) Copper resistance and race distribution of *Xanthomonas campestris* pv. *vesicatoria* on pepper in Korea. Korean J Plant Pathol 12:150–155
- Martin HL, Hamilton VA, Kopittke RA (2004) Copper tolerance in Australian populations of *Xanthomonas campestris* pv. *vesicatoria* contributes to poor field control of bacterial spot of pepper. Plant Dis 88:921–924
- Murthy PS, Manonmani HK (2009) Physico-chemical, antioxidant and antimicrobial properties of Indian monsooned coffee. Eur Food Res Technol 229:645–650
- Myung IS, Jeong IH, Moon SY, Lee SW, Shim HS (2010) A new disease, arboricola leaf spot of bell pepper, caused by *Xanthomonas arboricola*. Plant Dis 94:271(abstract)
- Opara EU, Wokocha RC (2008) Efficacy of some plant extracts on the in vitro and in vivo control of *Xanthomonas campestris* pv. *vesicatoria*. Agric J 3:163–170
- Prakash A, Rao J (1997) Botanical pesticides in agriculture. Lewis Publishers, London

- Pugh N, Ross SA, ElSohly MA, Pasco DS (2001) Characterization of aloeride, a new high-molecular-weight polysaccharide from *Aloe vera* with potent immunostimulatory activity. J Agric Food Chem 49:1030–1034
- Punina NV, Ignatov AN, Pekhtereva ESH, Kornev KP, Matveeva EV, Polityko VA, Budenkov NI, Schaad NW (2009) Occurrence of *Xanthomonas campestris* pv. *raphani* on tomato plants in the Russian Federation. Acta Hortic 808:287–290
- Reynolds T, Dweck AC (1999) *Aloe vera* leaf gel: a review update. J Ethnopharmacol 68:3–37
- Scheck HJ, Pscheidt JW, Moore LW (1996) Copper and streptomycin resistance in strains of *Pseudomonas syringae* from Pacific Northwest nurseries. Plant Dis 80:1034–1039
- Shenge KC (2006) Bacterial speck and spot diseases of tomato in Tanzania: pathogen characterization, epidemiology and management options. PhD thesis, Sokoine University of Agriculture, Morogoro
- Shenge KC, Mabagala RB, Mortensen CN (2007) Identification and characterization of strains of *Xanthomonas campestris* pv. *vesicatoria* from Tanzania by biolog system and sensitivity to antibiotics. Afric J Biotech 6:015–022
- Shirazi MH, Ranjbar R, Eshraghi S, Sadeghi G, Jonaidi N, Bazzaz N, Izadi M, Sadeghifard N (2007) An evaluation of antibacterial activity of *Glycyrrhiza glabra* extract on the growth of *Salmonella*, *Shigella* and ETEC *E. coli*. J Biol Sci 7:827–829
- Singh DC (1994) Scope of medicinal and aromatic plants in pest management. In: Narwal SS, Tauro P (eds) International symposium, allelopathy in sustainable agriculture, forestry and environment, New Delhi, p 68
- Stall RE, Beaulieu C, Egel D, Hodge NC, Leite RP, Minsavage GV, Bouzar H, Jones JB, Alvarez AM, Benedict AA (1994) Two genetically diverse groups of strains are included in *Xanthomo*nas campestris pv. vesicatoria. Int J Syt Bacteriol 44:47–53
- Tamir-Ariel D, Navon N, Burdman S (2007) Identification of genes in Xanthomonas campestris pv. vesicatoria induced during its interaction with tomato. J Bacteriol 189:6359–6371
- Urch D (1999) Aloe vera nature's gift. Blackdown Publications, Bristol