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A B S T R A C T   

Cryptosporidiosis is a zoonotic disease caused by Cryptosporidium. The disease poses a public and 
veterinary health problem worldwide. A deterministic model and its corresponding continuous 
time Markov chain (CTMC) stochastic model are developed and analyzed to investigate crypto-
sporidiosis transmission dynamics in humans and cattle. The basic reproduction number R0 for 
the deterministic model and stochastic threshold for the CTMC stochastic model are computed by 
the next generation matrix method and multitype branching process, respectively. The normal-
ized forward sensitivity index method is used to determine the sensitivity index for each 
parameter in R0. Per capita birth rate of cattle, the rate of cattle to acquire cryptosporidiosis 
infection from the environment and the rate at which infected cattle shed Cryptosporidium oocysts 
in the environment play an important role in the persistence of the disease whereas Cryptospo-
ridium oocysts natural death rate, cattle recovery rate and cattle natural death rate are most 
negative sensitive parameters in the dynamics of cryptosporidiosis. Numerical results for CTMC 
stochastic model show that the likelihood of cryptosporidiosis extinction is high when it arises 
from an infected human. However, there is a major outbreak if cryptosporidiosis emerges either 
from infected cattle or from Cryptosporidium oocysts in the environment or when it emerges from 
all three infectious compartments. Therefore to control the disease, control measures should focus 
on maintaining personal and cattle farm hygiene and decontaminating the environment to 
destroy Cryptosporidium oocysts.   

1. Introduction 

Cryptosporidiosis is a zoonotic disease that is caused by Cryptosporidium. The disease infects a wide range of hosts including humans 
and cattle (Pal et al., 2021; Pumipuntu and Piratae, 2018; Thomson et al., 2019), thus it is a serious disease of concern in public and 
veterinary health (Pumipuntu and Piratae, 2018). In the globe, the disease prevalence varies from 0.1 to 73.3% and 6.25 to 39.65% in 
humans and cattle respectively (Tarekegn et al., 2021), and it is ranked sixth among prevalent foodborne parasite infections (Pal et al., 
2021). Although the disease is self-limiting in immunocompetent humans (Moawad et al., 2021; Rossle and Latif, 2013), it has a high 
mortality rate in children, the elderly and immunocompromised patients (Rossle and Latif, 2013). Cryptosporidiosis is the second 
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major cause of diarrhea and mortality in children after rotavirus (Striepen, 2013; Zakir et al., 2021) and it is the main cause of 
morbidity and death in neonatal calves worldwide (Ouakli et al., 2018). 

The disease is mainly transmitted through fecal–oral route (Thomson et al., 2019) where humans contract infection through either 
contact with infected host or ingesting Cryptosporidium oocysts from contaminated environment such as contaminated food or water 
(Pumipuntu and Piratae, 2018; Ramirez et al., 2004). Humans can also acquire the infection through inhalation of Cryptosporidium 
oocysts (Aldeyarbi et al., 2016; Zakir et al., 2021) while cattle acquire the disease through either contact with infected cattle or 
consuming Cryptosporidium oocysts from contaminated environment (Ramirez et al., 2004; Walter et al., 2021). Adult cattle are 
asymptomatic carriers of the disease (Castro-Hermida et al., 2007; Ibrahim et al., 2016; Nguyen et al., 2007; Scott et al., 1995). In 
humans, cryptosporidiosis usually causes watery diarrhoea, vomiting, dehydration (Centers for Disease Control and Prevention, 2020), 
stomach pain, nausea, fever and weight loss in humans (Centers for Disease Control and Prevention, 2020; Desai et al., 2012) and in 
cattle the disease causes diarrhoea, abdominal pain, weight loss, vomiting and nausea (Gong et al., 2017). Infected cattle are the main 
contributors of Cryptosporidium oocysts into the environment (Hatam-Nahavandi et al., 2019; Mtambo et al., 2000) because an infected 
calf can shed around 1.1 × 108 oocysts in a gram of its dung (Hatam-Nahavandi et al., 2019). 

Cryptosporidiosis poses a major challenge to humans and cattle health because Cryptosporidium oocysts in the environment are 
resistant to various chemical disinfectants (Rossle and Latif, 2013; Zakir et al., 2021). The world’s major outbreak of cryptosporidiosis 
occurred in 1993 in Milwaukee, Wisconsin in the United States of America, which affected over 400,000 humans and an economic cost 
of more than $96.2 million (Zahedi and Ryan, 2020). In the cattle economy, the disease is a critical problem, especially in calves 
(Hatam-Nahavandi et al., 2019), which causes financial losses due to calf deaths and expenses for diagnosis, supportive services and 
treatment (Innes et al., 2020). A research by Shaw et al. (2020) depicts that a calf with severe cryptosporidiosis measures 34 kg less on 
average than an asymptomatic calf. Apart from reducing weights in calves, cryptosporidiosis infection also reduces milk production 
(Tarekegn et al., 2021; Zakir et al., 2021). Currently, there are no vaccine and effective treatment for cryptosporidiosis (Ikiroma and 
Pollock, 2021; Innes et al., 2020; Zakir et al., 2021). Therefore, the best preventative measures for humans and cattle are to maintain 
good personal and cattle farm cleanliness and avoid environmental contamination with Cryptosporidium oocysts (Zakir et al., 2021). 

Mathematical models are pivotal tools used to investigate and analyze transmission dynamics of infectious diseases for developing 
effective control strategies. Few deterministic models which include Okosun et al. (2016a), Ogunlade et al. (2016) and Okosun et al. 
(2017) have been developed and analyzed to study cryptosporidiosis transmission dynamics. Ogunlade et al. (2016) considered 
optimal control analysis of cryptosporidiosis in humans while Okosun et al. (2017) and Okosun et al. (2016a) focused on dynamics of 
co-infection of cryptosporidiosis with either HIV-AIDS or Trypanosomiasis respectively. None of the studies have considered cattle 
population in the transmission dynamics of cryptosporidiosis. Furthermore, no any research has used a Continuous Time Markov Chain 
(CTMC) stochastic model to investigate dynamics of cryptosporidiosis in humans and cattle. Therefore, this study aims to develop and 
analyze deterministic and CTMC stochastic models and use a multitype branching process theory to determine the likelihood of disease 
outbreak or extinction (Allen and Lahodny, 2012; Allen and van den Driessche, 2013). 

This paper is organized as follows: formulation of deterministic model and its analysis are presented in Section 2. In Section 3, we 
formulate and analyze the CTMC stochastic model. Numerical simulations for the models are carried out in Section 4, and the 
conclusion is presented in Section 5. 

2. Deterministic model 

2.1. Model formulation 

In formulating the model for cryptosporidiosis dynamics, we modify the work by Ogunlade et al. (2016) by incorporating cattle 
population. Human and cattle populations NH and NC respectively, are divided into susceptible (Si), infected (Ii) and recovered (Ri)

classes. The subscript i takes H for humans and C for cattle. 
The susceptible humans SH increase at a constant per capita birth rate ΛH and acquire the disease through contact with an infected 

human IH or infected cattle IC or through ingesting or inhaling Cryptosporidium oocysts EV at a rate 

λH = ψHIH +ψCIC +ψEEV , (1)  

where ψH,ψC and ψE are the rates of a human to contract infection from infected human, infected cattle and contaminated environment 
respectively. The infected humans IH suffer disease induced mortality at a rate dH and may recover naturally from the disease at a rate 
rH. The recovered humans RH lose immunity at a rate ϕH and return to susceptible class. Natural mortality occurs in all compartments 
of humans at a rate μH. 

The susceptible cattle SC are recruited at a constant per capita birth rate ΛC and contract the disease through contact with infected 
cattle or ingestion of Cryptosporidium oocysts from the environment at a rate 

λC = ρCIC + ρEEV . (2)  

Parameters ρC and ρE are the rates for cattle to contract infection following contact with infected cattle and intake of Cryptosporidium 
oocysts from a contaminated environment respectively. The infected cattle IC suffer disease induced mortality at a rate dC and may 
recover naturally from the disease at a rate rC. The recovered cattle RC lose immunity to become susceptible at a rate ϕC. The sus-
ceptible and infected cattle are slaughtered at rates m1 and m2 respectively. All cattle compartments suffer natural death at a rate μC. 
The infected humans and cattle shed Cryptosporidium oocysts EV into the environment at rates βH and βC respectively. The 
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Table 1 
State variables and their descriptions.  

Variable Description 

SH Susceptible humans 
IH Infected humans 
RH Recovered humans 
SC Susceptible cattle 
IC Infected cattle 
RC Recovered cattle 
EV Cryptosporidium oocysts population in the environment  

Table 2 
Model parameters and their descriptions.  

Parameter Description 

ΛH Per capita birth rate for humans 
ψH Rate of a human to acquire infection from infected human 
ψC Rate of a human to acquire infection from infected cattle 
ψE Rate of a human to acquire infection from contaminated environment 
μH Humans natural mortality rate 
dH Cryptosporidiosis induced mortality in humans 
rH Recovery rate of humans 
ϕH Human rate of lose immunity and return to susceptible class 
ΛC Per capita birth rate for cattle 
ρC Rate of a cattle to acquire infection from infected cattle 
ρE Rate of a cattle to acquire infection from contaminated environment 
μC Cattle natural death rate 
dC Cryptosporidiosis induced death in cattle 
m1 Slaughter rate of susceptible cattle 
m2 Slaughter rate of infected cattle 
rC Recovery rate of cattle 
ϕC Cattle rate of lose immunity and return to susceptible class 
βH Rate of shedding Cryptosporidium oocysts by infected human in the environment 
βC Rate of shedding Cryptosporidium oocysts by infected cattle in the environment 
μE Cryptosporidium oocysts natural death rate  

Fig. 1. Compartmental diagram for the transmission of cryptosporidiosis. Solid arrows depict the transfer of host from one compartment to another, 
whereas dashed lines indicate the interactions that cause infections. 
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Cryptosporidium oocysts EV decrease as a result of the natural death rate μE. 
We assume that: there is interaction between humans and cattle and all are susceptible to disease. The overall number of Cryp-

tosporidium oocysts in the environment is not significantly affected by the number that is consumed to cause infection in humans and 
cattle. The incubation period of the disease is not considered (Ogunlade et al., 2016; Okosun et al., 2016, 2017). The infected human 
may recover from the disease naturally without treatment (Ogunlade et al., 2016; Ryan et al., 2016; Sponseller et al., 2014; Sulżyc- 
Bielicka et al., 2018; Tomczak et al., 2022). Adult cattle are carriers of the disease (Castro-Hermida et al., 2007; Ibrahim et al., 2016; 
Nguyen et al., 2007; Scott et al., 1995) and infected calves may recover from the disease naturally (Lombardelli et al., 2019; Robertson 
et al., 2014; Shahiduzzaman and Daugschies, 2012; Siddique et al., 2021). The recovered humans and cattle acquire temporary im-
munity to the disease. 

Tables 1 and 2 describe the state variables and model parameters respectively while Fig. 1 shows the interactions between humans, 
cattle and Cryptosporidium oocysts in the environment. 

Thus the transmission dynamics of cryptosporidiosis in humans and cattle is given by the following system: 

dSH

dt
= ΛHNH + ϕHRH − (λH + μH)SH ,

dIH

dt
= λHSH − (μH + dH + rH)IH ,

dRH

dt
= rHIH − (μH + ϕH)RH ,

dSC

dt
= ΛCNC + ϕCRC − (m1 + λC + μC)SC,

dIC

dt
= λCSC − (m2 + dC + μC + rC)IC,

dRC

dt
= rCIC − (μC + ϕC)RC,

dEV

dt
= βHIH + βCIC − μEEV ,

NH(t) = SH(t) + IH(t) + RH(t),

NC(t) = SC(t) + IC(t) + RC(t),

(3)  

with initial conditions: 
SH(0) > 0; IH(0)⩾0; RH(0)⩾0; SC(0) > 0; IC(0)⩾0; RC(0) and EV(0)⩾0. 

2.2. Positivity of solutions and invariant region 

If the solutions to the model system (3) are non-negative and bounded, then the system is meaningful. 

2.2.1. Positivity of solutions 
Let us consider the susceptible human equation in the model system (3) which is written as 

dSH

dt
= ΛHNH + ϕHRH − (∊λh + μh)SH , then

dSH

dt
⩾ − (λH + μH)SH (for NH > 0 and RH⩾0),

dSH

SH
⩾ − (λH + μH)dt,

SH(t) ⩾ SH(0)e
−
∫ t

0
(λH+μH )dτ⩾0, ∀t⩾0.

(4)  

Likewise, it can be shown that 

IH(t)⩾0; RH(t)⩾0; SC(t)⩾0; IC(t)⩾0; RC(t)⩾0; EV(t)⩾0;∀t⩾0.

Thus, ∀t⩾0, all solutions of the model system (3) are non-negative. 

2.2.2. Invariant region 
To test the well-posedness of the model system epidemiologically and mathematically, we investigate the feasibility of its solutions. 

The model system (3) can be written in the form: 

dZ
dt

= M(Z)Z +K  
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where Z = (SH, IH,RH, SC, IC,RC,EV)
T , 

M(Z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (λH + μH) 0 ϕH 0 0 0 0
λH − (μH + dH + rH) 0 0 0 0 0
0 rH − (μH + ϕH) 0 0 0 0
0 0 0 − m11 0 ϕC 0
0 0 0 λC − m22 0 0
0 0 0 0 rC − (μC + ϕC) 0
0 βH 0 0 βC 0 − μE

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with m11 = (m1 + λC + μC),m22 = (m2 + dC + μC + rC), and K = (ΛHNH,0, 0,ΛCNC,0, 0,0)T . 
It is clear that M(Z) is a Metzler matrix because it has all non-negative off-diagonal elements ∀Z ∈ R7

+. Since K⩾0, the model system 
(3) is positively invariant in R7

+ which implies that the solutions of the model system (3) start and remain in R7
+. Moreover, K is 

Lipschitz continuous. Hence the feasible region Ω for the model system (3) is Ω = {(SH, IH,RH,SC, IC,RC,EV)⩾0} ∈ R7
+. Therefore, the 

model system (3) is well-posed epidemiologically and mathematically in the region Ω. It is thus enough to examine the dynamics of the 
model system (3) in Ω. 

2.3. Steady states and basic reproduction number R0 

2.3.1. The disease free equilibrium (T0)

If there is no cryptosporidiosis in humans and cattle, the disease free equilibrium (DFE) is given by 

T0(S0
H , I

0
H ,R0

H , S0
C, I

0
C,R0

C,E0
V) =

(
ΛHN0

H

μH
, 0, 0,

ΛCN0
C

m1 + μC
, 0, 0, 0

)

. (5)  

We use the DFE to compute the basic reproduction number R0 in the next section. 

2.3.2. The basic reproduction number R0 
The basic reproduction number R0 is the average number of secondary infections caused by an infected individual when introduced 

into an entirely susceptible population. The disease vanishes in the population when R0 < 1 and persists when R0 > 1 (Diekmann 
et al., 1990). The basic reproduction number R0 which governs the dynamics of cryptosporidiosis is computed by the next-generation 
matrix approach as derived by Van den Driessche and Watmough (2002). Let Fj and Vj be the new infections and the transition terms in 
infected class j respectively. From the model system (3), we have 

Fj =

⎛

⎝
(ψHIH + ψCIC + ψEEV)SH
(ρCIC + ρEEV)SC
0

⎞

⎠,Vj =

⎛

⎝
(μH + dH + rH)IH
(μC + dC + rC + m2)IC
μEEV − βHIH − βCIC

⎞

⎠. (6)  

The basic reproduction number R0 is given by 

R0 = ρ(FV − 1), (7)  

where 

F =
∂Fj

∂yi
(T0) and V =

∂Vj

∂yi
(T0). (8)  

Using Eqs. (8), the matrices F and V are given by 

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψHΛHN0
H

μH

ψCΛHN0
H

μH

ψEΛHN0
H

μH

0
ρCΛCN0

C

m1 + μC

ρEΛCN0
C

m1 + μC

0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and  

V =

⎛

⎝
(μH + dH + rH) 0 0
0 (m2 + dC + μC + rC) 0
− βH − βC μE

⎞

⎠.
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From Eq. (7), the basic reproduction number R0 is 

R0 =
1
2

(

RCE + RHE +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(RCE + RHE)
2
+ 4RCHE

√ )

, (9)  

where 

RCE =

(

ρC +
βC

μE
ρE

)
1

(m2 + dC + μC + rC)

ΛCN0
C

(m1 + μC)
,

RHE =

(

ψH +
βH

μE
ψE

)
1

(μH + dH + rH)

ΛHN0
H

μH
,

RCHE =
(βH(ρEψC − ρCψE) − ψH(μEρC + βCρE))ΛCN0

CΛHN0
H

(μH + dH + rH)(m2 + dC + μC + rC)(m1 + μC)μH

1
μE

.

(10)  

RCE,RHE and RCHE represent partial reproduction numbers due to the interaction of cattle and environment, humans and environment, 
and cattle, humans and environment, respectively. 

The terms in (10) can be expounded as follows; βC/μE and βH/μE are the densities of Cryptosporidium oocysts shed by infected cattle 

Table 3 
Sensitivity indices of R0 with respect to the parameters.  

Parameter Sensitivity Index Parameter Sensitivity Index 

ΛC +0.899119 μE − 0.967306 
ρE +0.873622 rC − 0.882359 
βC +0.873255 μC − 0.528725 
ΛH +0.100881 m1 − 0.382539 
βH +0.094051 μH − 0.100935 
ψE +0.093684 rH − 0.100785 
ρC +0.025497 dC − 0.002804 
ψH +0.006829 m2 − 0.001812 
ψC +0.000367 dH − 0.000041  

H
H C

E

H

d
H

r
H

C

m
1

C

E

C

m
2

d
C

r
C

H

C

E

Parameters

-1

-0.5

0

0.5

1

Se
ns

itiv
ity

 In
di

ce
s

Fig. 2. Sensitivity analysis of R0 with respect to model parameters.  
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and infected humans, respectively. The terms 1/(μH +dH +rH) and 1/(m2 +dC +μC +rC) are the average contagious period for human 
and cattle, respectively; ΛHN0

H/μH and ΛCN0
C/(m1 +μC) are initial populations for susceptible humans and cattle, respectively while 1/

μE is the life expectancy for Cryptosporidium oocysts. Parameters which are sensitive to cryptosporidiosis are determined by sensitivity 
analysis in the following section. 

2.4. Sensitivity analysis 

The normalized forward sensitivity index in Chitnis et al. (2008) is adopted to determine sensitive parameters. Let ηi be a parameter 
in R0. Its sensitivity index is defined by 

ΓR0
ηi

=
∂R0

∂ηi
×

ηi

R0
. (11)  

The sensitivity indices of parameters in the R0 are summarized in Table 3. The positive sign denotes that the increase (or decrease) of 
the parameter value while other parameters are held fixed, increases (or decreases) the R0. On the other hand, the negative sign implies 
that the increase (or decrease) of the parameter value, decreases (or increases) the R0. 

The most positive sensitive parameter is per capita birth rate for cattle ΛC while the most negative sensitive parameter is Cryp-
tosporidium oocysts natural death rate μE. To eradicate the disease, control and preventive measures should focus on eliminating 
Cryptosporidium oocysts from the environment and practice personal and farm hygiene. Fig. 2 indicates the sensitivity indices for 
parameters in the R0. 

2.5. The endemic equilibrium (T*)

When cryptosporidiosis persists in humans and cattle, the model system (3) has endemic equilibrium T* = (S*
H,I

*
H,R

*
H,S

*
C,I

*
C,R

*
C,E

*
V). 

To obtain the endemic equilibrium, we solve for the state variables when the derivatives of model system (3) are zero. In terms of λ*
C, 

the endemic equilibrium is 

S*
C =

mΛCN*
C + rCϕCI*

C

m
(
λ*

C + z
) , I*

C =
mΛCN*

Cλ*
C

bmz + (bm − rCϕC)λ
*
C

, R*
C =

rCI*
C

m
,

E*
V =

mbβHI*
H(z + λ*

C) + (mβCΛCN*
C − rCϕCβHI*

H)λ
*
C

μE
(
bmz + (bm − rCϕC)λ

*
C

) ,

I*
H =

μEλ*
H

(
bmz + (bm − rCϕC)λ

*
C

)
− mΛCN*

C(βCψE + ψCμE)λ
*
C

(ψEβH + μEψH)
(
bmz + (bm − rCϕC)λ

*
C

) ,

R*
H =

rH
(
μEλ*

H

(
bmz + (bm − rCϕC)λ

*
C

)
− mΛCN*

C(βCψE + ψCμE)λ
*
C

)

A1
,

S*
H =

A1ΛHN*
H + rHϕH

(
μEλ*

H

(
bmz + (bm − rCϕC)λ

*
C

)
− mΛCN*

C(βCψe + ψCμE)λ
*
C

)

(λ*
H + μH)A1

,

λ*
H =

( (
bmz + (bm − rCϕC)λ

*
C)(ψEβH + μEψH) + mΛCN*

C(βH(ρEψC − ρCψE) − A2
)
λ*

C

βHρE
(
bmz + (bm − rCϕC)λ

*
C

)

where 
a = (μH +dH +rH), b = (m2 +dC +μC +rC),m = (μC +ϕC), y = (μH +ϕH), z = (m1 +μC),A1 = y(ψEβH + μEψH)

(
bmz + (bm − rCϕC)λ*

C
)

and 
A2 = ψH(μEρC + βCρE). 

On substituting S*
H, I

*
H and λ*

H in infected human equation in the model system (3) at steady state, we obtain a fourth degree 
polynomial whose solutions are λ*

C = 0 (which corresponds to the disease free equilibrium) and 

λ*3
C +Δ1λ*2

C +Δ2λ*
C +Δ3 = 0 (12)  

where 
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Δ1 = A3 − A4, Δ2 = A5 + A6 + A7 + A8,

Δ3 =
bm2yzβHρE(A9 − A10)

μE(rHϕH − ay)(rCϕC − bm)
2
(βHψE + μEψH)

,

A3 =
yβHΛHN*

HρE

μE(rHϕH − ay)
+

mΛCN*
C(μEρC + βCρE)

(rcϕC − bm)

(
1
μE

+
ψH

(βHψE + μEψH)

)

,

A4 =
ayβHμHρE

(rHϕH − ay)(βHψE + μEψH)
+

m
(rcϕC − bm)

(

2bz +
βHΛCN*

CρEψC

(βHψE + μEψH)

)

,

A5 = m2

((
(bz − ρCΛCN*

C)

(rCϕC − bm)

)2

+
βCΛ2

CN*2
C ρ2

E(βCψH − βHψC)

μE(rCϕC − bm)
2
(βHψE + μEψH)

)

,

A6 =
m2ρEΛCN*

C(bz − ρCΛCN*
C)(μE(βHψC − 2βCψH) + βCβHψE)

μE(rCϕC − bm)
2
(βHψE + μEψH)

,

A7 =
myβHρE

(
μE(2bz − ρCΛCN*

C)(aμH − ψHΛHN*
H) − aβCμHρEΛCN*

C

)

μE(rHϕH − ay)(rCϕC − bm)(βHψE + μEψH)
,

A8 =
myβHρEΛHN*

H

(
ρEψHβCΛCN*

C − βH((2bz − ρCΛCN*
C)ψE + ρEψCΛCN*

C)
)

μE(rHϕH − ay)(rCϕC − bm)(βHψE + μEψH)
,

A9 = (βC + μE)aμHρCΛCN*
C + ((βHψE + μEψH)bz + βHρEψCΛCN*

C)ΛHN*
H ,

A10 = abzμEμH + ((βHψE + μEψH)ρC + βCρEψH)ΛCN*
CΛHN*

H .

Eq. (12) represents the existence of at most three possible endemic equilibrium points (Kahuru et al., 2017). Thus, there is a chance of 
the model system (3) to exhibit backward bifurcation when R0 = 1. 

2.6. Bifurcation analysis 

To explore the possibility of the model system (3) to exhibit backward bifurcation, let the state variables be SH = x1, IH = x2,RH =

x3, SC = x4, IC = x5,RC = x6 and EV = x7, so that NH = x1 +x2 +x3 and NC = x4 + x5 + x6, and a, b,m, y, z are given in Section 2.5. In 
vector form, the state variables are denoted by X = (x1, x2, x3, x4, x5, x6, x7)

T and the model system (3) can be rewritten in the form dX/
dt = F(X) with F = (f1, f2, f3, f4, f5, f6, f7)T . Thus 

dx1

dt
= f1 = ΛH(x1 + x2 + x3) + ϕHx3 − (ψHx2 + ψCx5 + ψEx7 + μH)x1,

dx2

dt
= f2 = (ψHx2 + ψCx5 + ψEx7)x1 − ax2,

dx3

dt
= f3 = rHx2 − yx3,

dx4

dt
= f4 = ΛC(x4 + x5 + x6) + ϕCx6 − (z + ρCx5 + ρEx7)x4,

dx5

dt
= f5 = (ρCx5 + ρEx7)x4 − bx5,

dx6

dt
= f6 = rCx5 − mx6,

dx7

dt
= f7 = βHx2 + βCx5 − μEx7.

(13)  

The Jacobian matrix of system (13) at the DFE is 

J =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ΛH − μH ΛH − b1 ϕ1 0 − b2 0 − b3
0 − (a − b1) 0 0 b2 0 b3
0 rH − y 0 0 0 0
0 0 0 ΛC − z ΛC − d1 ϕ2 − d2
0 0 0 0 − (b − d1) 0 d2
0 0 0 0 rC − m 0
0 βH 0 0 βC 0 − μE

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (14)  

where b1 = ψHΛHN0
H/μH,b2 = ψCΛHN0

H/μH,b3 = ψEΛHN0
H/μH,d1 = ρCΛCN0

C/z, d2 = ρEΛCN0
C/z,ϕ1 = ΛH +ϕH and ϕ2 = ΛC + ϕC. 

To investigate whether the system (13) exhibits a backward bifurcation at R0 = 1, we restate and employ the Theorem 4.1 by 
Castillo-Chavez and Song (2004) as follows: 

F. Luhanda et al.                                                                                                                                                                                                       



Parasite Epidemiology and Control 21 (2023) e00293

9

Theorem 1. Consider the following general system of ordinary differential equations with a parameter-
ρE : dx

dt = f(x, ρE), f : Rn × R → Rnandf ∈ C2(Rn × R), where 0 is an equilibrium point of the system; that is,f(0, ρE) ≡ 0∀ρE and 

1:A = Dxf(0,0) =
(

∂fi
∂xj
(0, 0)

)
is the linearization matrix of the system around the equilibrium 0 with matrix A evaluated at 0; 

2:Zero is a simple eigenvalue of A and all other eigenvalues of A have negative real parts; 
3:Matrix A has a right eigenvector w and a left eigenvector v corresponding to the zero eigenvalue. 

Let fk be the kth component of f and 

c1 =
∑n

k,i,j=1
vkwiwj

∂2fk

∂xi∂xj
(0, 0), (15)  

c2 =
∑n

k,i=1
vkwi

∂2fk

∂xi∂ρE
(0, 0). (16)  

The signs of c1 and c2 totally determine the local dynamics of the system (13) around the equilibrium point 0 as follows: 

(i).c1 > 0 and c2 > 0. When ρE < 0 with |ρE| ≪ 1,0 is locally asymptotically stable, and there exists a positive unstable equilibrium; 
when 0 < ρE ≪ 1,0 is unstable and there exists a negative and locally asymptotically stable equilibrium; 
(ii).c1 < 0 and c2 < 0. When ρE < 0 with |ρE| ≪ 1, 0 is unstable; when 0 < ρE ≪ 1, 0 is locally asymptotically stable, and there exists 
a positive unstable equilibrium; 
(iii).c1 > 0 and c2 < 0. When ρE < 0 with |ρE| ≪ 1,0 is unstable, and there exists a locally asymptotically stable negative equi-
librium; when 0 < ρE ≪ 1,0 is stable, and a positive unstable equilibrium appears; 
(iv).c1 < 0 and c2 > 0. When ρE changes from negative to positive, 0 changes its stability from stable to unstable. Correspondingly a 
negative unstable equilibrium becomes positive and locally asymptotically stable. 

Particularly, if c1 > 0 and c2 > 0, then a backward bifurcation occurs at ρE = 0. 
Let ρE = ρ*

E be a bifurcation parameter at R0 = 1. Calculating for ρE = ρ*
E provided that R0 = 1, we have 

ρE = ρ*
E =

(bz − ρCΛCN0
C)(aμEμH − (βHψE + μEψH)ΛHN0

H)

aμHβCΛCN0
C + (βHψC − βCψH)ΛCN0

CΛHN0
H

. (17)  

The right eigenvectors w = (w1,w2,…,w7)
T of the Jacobian matrix J are given by 

w1 =
b2w5 + b3w7 − ((ΛH − b1)w2 + ϕ1w3)

ΛH − μH
,w2 =

(b − d1)μE − d2βC

(b − d1)βH
w7,

w3 =
rH

y
w2,w4 =

d2(m(b1 − ΛC) − rcϕ2)

m(b − d1)(ΛC − z)
w7,w5 =

d2

b − d1
w7,w6 =

d2rc

m(b − d1)
w7,

w7 > 0 isfree.

The Jacobian matrix J also has left eigenvectors v = (v1, v2,…, v7)
T, given by 

v1 = v3 = v4 = v6 = 0, v2 =
βH

a − b1
v7, v5 =

b2βH + βC(a − b1)

(a − b1)(b − d1)
v7, v7 > 0 isfree.

2.6.1. Computations of c1 and c2 from Eqs. (15) and (16) 
Since v1 = v3 = v4 = v6 = 0, that is, k = 1,3,4,6, then we only consider k = 2, 5,7 (Nyerere et al., 2014; Sabini et al., 2020). 

Computing the nonzero second order partial derivatives, we have: 

∂2f2

∂x1∂x2
= ψH ,

∂2f2

∂x1∂x5
= ψC,

∂2f2

∂x1∂x7
= ψE,

∂2f5

∂x4∂x5
= ρC and

∂2f5

∂x4∂x7
= ρ*

E.

From (15), it follows that 

c1 = v2

∑n

i,j=1
wiwj

∂2f2

∂xi∂xj
+ v5

∑n

i,j=1
wiwj

∂2f5

∂xi∂xj
+ v7

∑n

i,j=1
wiwj

∂2f7

∂xi∂xj
, (18)  

which leads to 

c1 =
m(ΛC − z)(b − d1)(a1 − a2)a3 + yβH(ΛH − μH)a4a5

myβH(ΛC − z)(ΛH − μH)(a − b1)(b − d1)
3 v7w2

7, (19) 
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where a1 = y(b − d1)(b3βH + ϕ1μE) + d2(y(b2βH + βCΛC) + ϕ1rHβC), a2 = (b − d1)(yΛH + ϕ1rH)μE + b1d2βC, a3 = (b − d1)(μEψH +

βHψE) + d2(βHψC − βCψH),a4 = d2(m(b1 − ΛC) − rCϕ2), and a5 = (b2βH + βC(a − b1))(d2ρC + ρ*
E(b − d1)). 

c1 > 0 iff 

(ΛC − z)(ΛH − μH)(a − b1)(b − d1)
3
> 0 and m(ΛC − z)(b − d1)(a1 − a2)a3 + yβH(ΛH − μH)a4a5 > 0. (20)  

On the other hand, the value of c2 is given by 

c2 = v5w7
∂2f5

∂x7∂ρ*
E
=

(b2βH + βc(a − b1))ΛCN0
C

(a − b1)(b − d1)z
v7w7. (21)  

c2 > 0 iff the following conditions hold 

a − b1 > 0 and b − d1 > 0. (22)  

Based on the computation of c1 and c2, we can set the following result. 

Theorem 2. If the inequalities (20) and (22) hold, the model system (3) undergoes backward bifurcation at R0 = 1. 

2.7. The global stability of the disease free equilibrium (T0)

Theorem 3. The cryptosporidiosis disease free equilibrium,T0, of the model system (3), is globally asymptotically stable whenℝ0 < 1. 

Proof. The approach in Chavez et al. (2002) is employed to examine the global stability of the disease free equilibrium. Let Xm,Xn and 
XDFE denote vectors for non-transmitting compartments, transmitting compartments and disease free equilibrium point, respectively, 
then the model system (3) can be given in the form: 

dXm

dt
= A0(Xm − XDFE) + A1Xn,

dXn

dt
= A2Xn,

(23)  

where A0,A1 and A2 are the matrices to be computed. The cryptosporidiosis disease free equilibrium T0 is globally asymptotically 
stable if eigenvalues of A0 are real and negative and A2 is a Metzler matrix (Nyerere et al., 2020; Stephano et al., 2022). A matrix A =

(amn) is said to be a Metzler matrix if its off-diagonal elements are non-negative, that is, amn⩾0,∀m ∕= n. In equation (23), we have 

A0 =

⎛

⎜
⎜
⎜
⎝

− μH ϕH 0 0
0 − y 0 0
0 0 − z ϕC

0 0 0 − m

⎞

⎟
⎟
⎟
⎠
, A1 =

⎛

⎜
⎜
⎜
⎝

− ψH − ψC − ψE

rH 0 0
0 − ρC − ρE

0 rC 0

⎞

⎟
⎟
⎟
⎠

and

A2 =

⎛

⎜
⎜
⎜
⎝

− (a − b1) ψCS0
H ψES0

H

0 − (b − d1) ρES0
C

βH βC − μE

⎞

⎟
⎟
⎟
⎠
.

Matrix A0 has real and negative eigenvalues whereas A2 is a Metzler matrix if (22) holds. Therefore the cryptosporidiosis disease free 
equilibrium T0 is globally asymptotically stable. □ 

2.8. The global stability of the endemic equilibrium (T*) 

. 

Theorem 4. The endemic equilibrium(T*)is globally asymptotically stable if R 0 > 1. 

Proof. We use the method in Osman et al. (2020) for proving the global stability of endemic equilibrium (T*). Consider the Lyapunov 
function defined by 

W =SH − S*
H − S*

H ln
SH

S*
H
+ IH − I*

H − I*
H ln

IH

I*
H
+RH − R*

H − R*
H ln

RH

R*
H
+ SC − S*

C − S*
Cln

SC

S*
C
+ IC − I*

C − I*
Cln

IC

I*
C
+RC − R*

C − R*
Cln

RC

R*
C
+EV

− E*
V − E*

V ln
EV

E*
V
.

(24)  

The time derivative of W gives 
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dW
dt

=

(

1 −
S*

H

SH

)
dSH

dt
+

(

1 −
I*

H

IH

)
dIH

dt
+

(

1 −
R*

H

RH

)
dRH

dt
+

(

1 −
S*

C

SC

)
dSC

dt
+

(

1 −
I*

C

IC

)
dIC

dt
+

(

1 −
R*

C

RC

)
dRC

dt
+

(

1 −
E*

V

EV

)
dEV

dt
.

(25)  

Substituting the equations of model system (3) into (25) and simplify, we obtain 

dW
dt

= X − Y, (26)  

where 

X = ΛHNH + ϕHRH + (ψHIH + ψCIC + ψEEV + μH)S
*
H + (ψHIH + ψCIC + ψEEV)SH

+(μH + dH + rH)I*
H + rHIH + (μH + ϕH)R*

H + ΛCNC + ϕCRC + (m1 + μC)S
*
C

+(ρCIC + ρEEV)S*
C + (ρCIC + ρEEV)SC + (m2 + dC + μC + rC)I*

C + rCIC

+(μC + ϕC)R
*
C + βHIH + βCIC + μEE*

V ,

Y = (ψHIH + ψCIC + ψEEV + μH)SH +
ΛHNHS*

H

SH
+

ϕHRHS*
H

SH
+ (μH + dH + rH)IH

+

(

ψH +
ψCIC

IH
+

ψEEC

IH

)

I*
HSH + (μH + ϕH)RH +

rHIHR*
H

RH
+ (m1 + μC)SC

+(ρEEV + ρCIC)SC +
ΛCNCS*

C

SC
+

ϕCRCS*
C

SC
+ (m2 + dC + μC + rC)IC + ρCI*

CSC

+
ρEEV I*

CSC

IC
+ (μC + ϕC)RC +

rCICR*
C

RC
+ μEEV +

βHE*
V IH

EV
+

βCE*
V IC

EV
.

From Eq. (26), dW
dt < 0 if X < Y and dW

dt = 0 if Ω = Ω*. Therefore, the endemic equilibrium T* is the largest invariant set in Ω. Thus, as 
t → ∞, the LaSalle invariant principle (LaSalle, 1976) concludes that, the solution of model system (3) approaches T* when R0 > 1. 
Hence, T* is globally asymptotically stable if X < Y. □ 

3. Stochastic model 

Stochastic models offer details on the probability of the disease outbreak or extinction (Maliyoni et al., 2019). Stochastic models 
regard the state variables as discrete and time as continuous (Maliyoni et al., 2019) whereas deterministic models consider the state 
variables and time as continuous. Therefore stochastic models are more realistic as they explain the discrete movement of individuals 
between classes. In deterministic models, the basic reproduction number R0 determines whether there will be a disease outbreak or 

Table 4 
State transitions and rates for the CTMC cryptosporidiosis model.  

Event Transition, ▵Z(t) Transition rate, p 

Recruitment of SH (1,0,0,0,0,0,0) ΛHNH 

Immunity lose of RH (1,0, − 1,0,0,0,0) ϕHRH 

Human infection from IH ( − 1,1,0,0,0,0,0) ψHIHSH 

Human infection from IC ( − 1,1,0,0,0,0,0) ψCICSH 

Human infection from EV ( − 1,1,0,0,0,0,0) ψHEVSH 

Natural mortality of SH ( − 1,0,0,0,0,0,0) μHSH 

Recovery of IH (0, − 1,1,0,0,0,0) rHIH 

Natural mortality of IH (0, − 1,0,0,0,0,0) μHIH 

Disease induced mortality of IH (0, − 1,0,0,0,0,0) dHIH 

Natural mortality of RH (0,0, − 1,0,0,0,0) μHRH 

Recruitment of SC (0,0,0,1,0,0,0) ΛCNC 

Immunity lose of RC (0,0,0,1,0, − 1,0) ϕCRC 

Slaughter of SC (0,0,0, − 1,0,0,0) m1SC 

Cattle infection from IC (0,0,0, − 1,1,0,0) ρCICSC 

Cattle infection from EV (0,0,0, − 1,1,0,0) ρEEVSC 

Natural death of SC (0,0,0, − 1,0,0,0) μCSC 

Slaughter of IC (0,0,0,0, − 1,0,0) m2IC 

Recovery of IC (0,0,0,0, − 1,1,0) rCIC 

Natural death of IC (0,0,0,0, − 1,0,0) μCIC 

Disease induced death of IC (0,0,0,0, − 1,0,0) dCIC 

Natural death of RC (0,0,0,0,0, − 1,0) μCRC 

Shedding of EV by IS (0,0,0,0,0,0,1) βHIH 

Shedding of EV by IC (0,0,0,0,0,0,1) βCIC 

Natural death of EV (0,0,0,0,0,0, − 1) μEEV  
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fade out in the population. Thus in deterministic models, the disease perishes if R0 < 1 provided that DFE and endemic equilibrium do 
not co-exist and persists if R0 > 1 (Chitnis et al., 2008; Lahodny et al., 2015). The stochastic threshold for the CTMC stochastic model 
and the basic reproduction number R0 perform the same purpose. However, their distinct aspect is that depending on the number of 
infectious individuals at the commencement of the disease occurrence, the stochastic threshold demonstrates that there is a probability 
for the disease to perish even if the stochastic threshold is > 1, while the basic reproduction number R0 indicates that the disease 
persists when R0 > 1 (Maliyoni, 2020). We formulate the CTMC stochastic model and employ the multitype branching process to 
compute the likelihood for cryptosporidiosis outbreak or extinction in the following section. 

3.1. CTMC stochastic model development 

We use the assumptions, parameters and notations from the deterministic model to develop the CTMC stochastic model. Let time 
t ∈ [0,∞) be continuous and SH, IH,RH, SC, IC,RC and EV be discrete random variables for susceptible humans, infected humans, 
recovered humans, susceptible cattle, infected cattle, recovered cattle and Cryptosporidium oocysts in the environment respectively. 

If Z = [SH, IH,RH, SC, IC,RC,EV ]
T is the associated random vector for all discrete random variables, then we summarize the events 

and transition rates in Table 4. An increase by 1, no change and a decrease by 1 in state variables from time t to (t+▵t) are represented 
by +1,0 and − 1, respectively. It is assumed that the CTMC stochastic model is homogeneous in time and satisfies the Markov property 
(Maliyoni et al., 2019). According to the Markov property, the time from one event to another is exponentially distributed with 
parameter (Allen, 2010; Lahodny and Allen, 2013; Lahodny et al., 2015; Maliyoni et al., 2017) 

Ψ(Z)=(ΛH +μH)NH +ϕHRH +λHSH +(dH +rH)IH +(ΛC+μC)NC+ϕCRC+(m1+λC)SC+(m2+dC+rC)IC+βHIH +βCIC+μEEV , (27)  

where NH = SH +IH +RH,NC = SC +IC +RC and parameters λH and λC are described in (1) and (2) respectively. 

3.2. The multitype branching process 

The dynamics of the nonlinear CTMC model near the DFE are usually approximated using the multitype branching processes theory 
(Maliyoni, 2020). The theory helps to compute the likelihood of disease extinction or outbreak. The branching process may either 
increase exponentially or terminate to zero, provided that there are few infectious at the commencement of the disease occurrence 
(Allen, 2017). In the multitype branching process, only infectious compartments are considered, and susceptible classes are assumed to 
be at the DFE, that is S0

H = ΛHN0
H/μH and S0

C = ΛCN0
C/(m1 +μC) (Maliyoni, 2020). Offspring probability generating functions (pgfs) for 

the birth (new infection) and death of infective individuals can be defined since births and mortalities are independent, and the 
multitype branching process is linear at the DFE and homogeneous in time. These offspring pgfs are used in computing probabilities for 
cryptosporidiosis extinction or outbreak (Lahodny et al., 2015; Maliyoni et al., 2019). 

Assume that infective hosts of type i, Ii, can produce infective individuals of type j, Ij, and the number of offspring generated by an 
individual of type i does not depend on the offspring generated by either type i or j ∕= i (Allen and van den Driessche, 2013; Lahodny 
and Allen, 2013; Maliyoni et al., 2017). Moreover, the initial susceptible populations are assumed to be large enough such that SH(0)
≈ NH(0) = ΛHN0

H/μH and SC(0) ≈ NC(0) = ΛCN0
C/(m1 + μC); and offspring pgf from type i individuals are the same, independent and 

identically distributed (iid) (Allen and Lahodny, 2012). Define {Bji}
n
j=1 to be the offspring random variables for type i for i = 1,…, n 

such that Bji is the number of type j offspring generated by type i infective individuals. The probability of a type i infective individual 
giving birth to yj individuals of type j is 

Pi(y1,…, yn) = Prob{B1i = y1,…,Bni = yn}. (28)  

Thus, the offspring pgf gi : [0,1]n → [0, 1] for type i individual given that Ii(0) = 1 and Ij(0) = 1, j ∕= i, is provided as (Allen, 2010; 
Maliyoni, 2020) 

gi(u1,…, un) =
∑∞

yn=0

∑∞

yn− 1=0
…
∑∞

y1=0
Pi(y1,…, yn)uy1

1 …uyn
n . (29)  

The Eq. (29) helps us to compute an n × n nonnegative and irreducible expectation matrix M = [wji] so that wji is the expected number 
of type j infective offspring produced by a type i infective individual. We compute the elements wji by (Lahodny et al., 2015; Maliyoni, 
2020) 

wji =
∂gi

∂uj
|u=1 < ∞. (30)  

The size of the spectral radius of expectation matrix M, ρ(M) determines the disease’s invasion or extinction probability. If ρ(M)⩽1, 
then the disease extinction likelihood is one, that is: 

P0 = lim
t→∞

Prob{I(t) = 0} = 1, (31)  

and there is a positive likelihood for the disease to persevere in human and cattle populations if ρ(M) > 1, that is: 
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P0 = lim
t→∞

Prob{I(t) = 0} = pi1
1 pi2

2 …pin
n < 1, (32)  

where pi ∈ (0, 1) is the unique fixed point of the n offspring pgf, gi(p1, p2,…, pn) = pi and i = 1, 2,…, n (Lahodny and Allen, 2013; 
Lahodny et al., 2015; Maliyoni et al., 2017). The probability of disease extinction for type i infective individuals is equal to the value of 
pi while the probability of an outbreak is approximately equal to (Maliyoni et al., 2017) 

1 − P0 = 1 − pi1
1 pi2

2 …pin
n . (33)  

3.2.1. Stochastic threshold for the CTMC model 
The probability generating functions (pgfs) are formulated by applying the multitype branching process to all infectious com-

partments in the CTMC stochastic model. Let us use Eq. (29) to describe the offspring pgfs for the infective compartments. Initial 
susceptible human and cattle populations are assumed be to large enough such that at the DFE we have S0

H = ΛHN0
H/μH and S0

C =

ΛCN0
C/(m1 + μC). Therefore, the offspring pgf for IH provided that IH(0) = 1, IC(0) = 0, and EV(0) = 0 is: 

g1(u1, u2, u3) =
ψHS0

Hu2
1 + μH + dH + rH + βHu1u3

ψHS0
H + μH + dH + rH + βH

. (34)  

The term ψHS0
H/(ψHS0

H +μH +dH +rH +βH) is the probability that a susceptible human acquires infection from infectious human and the 
infectious human does not perish, thus resulting in two infectious humans. The term βH/(ψHS0

H +μH +dH +rH +βH) denotes the 
probability that the infected human defecates a Cryptosporidium oocyst into the environment, but the infected human does not perish, 
leading to one infected human and one Cryptosporidium oocyst in the environment whereas (μH +dH +rH)/(ψHS0

H +μH +dH +rH +βH) is 
the probability that the infected human can perish or recover before infecting other susceptible individuals thus resulting in zero 
infected human. 

The offspring pgf for IC provided that IH(0) = 0, IC(0) = 1, and EV(0) = 0 is: 

g2(u1, u2, u3) =
ρCS0

Cu2
2 + m2 + μC + dC + rC + ψCS0

Hu1u2 + βCu2u3

ρCS0
C + m2 + μC + dC + rC + ψCS0

H + βC
. (35)  

The term ρCS0
C/(ρCS0

C +m2 +μC +dC +rC +ψCS0
H +βC) represents the probability that a susceptible cattle contracts infection from an 

infected cattle and the infected cattle does not perish thus resulting in two infected cattle. The term 
ψCS0

H/(ρCS0
C +m2 +μC +dC +rC +ψCS0

H +βC) represents the probability that an infectious cattle infect a susceptible human and the in-
fectious cattle does not perish thus leading to one infectious human and one infectious cattle. The term 
βC/(ρCS0

C +m2 +μC +dC +rC +ψCS0
H +βC) denotes the probability that the infectious cattle sheds a Cryptosporidium oocyst into the 

environment and the infectious cattle does not perish thus resulting into one infectious cattle and one Cryptosporidium oocyst in the 
environment while the term (m2 +μC +dC +rC)/(ρCS0

C +m2 +μC +dC +rC +ψCS0
H +βC) represents the probability that infectious cattle 

can perish or recover before infecting other susceptible individuals resulting in zero infectious cattle. 
The offspring pgf for EV provided that IH(0) = 0, IC(0) = 0, and EV(0) = 1 is: 

g3(u1, u2, u3) =
ψES0

Hu1u3 + ρES0
Cu2u3 + μE

ψES0
H + ρES0

C + μE
. (36)  

The term ψES0
H/(ψES0

H +ρES0
C +μE) denotes the probability that a Cryptosporidium oocyst infects a susceptible human and Cryptospo-

ridium oocyst does not perish thus resulting in one infectious human and one Cryptosporidium oocyst. The term ρES0
C/(ψES0

H +ρES0
C +μE)

represents the probability that a susceptible cattle contracts infection from Cryptosporidium oocyst and Cryptosporidium oocyst does not 
perish thus leading to an infected cattle and a Cryptosporidium oocyst. The term μE/(ψES0

H +ρES0
C +μE) is the probability that Crypto-

sporidium oocyst can die before infecting other susceptible individuals leading to zero Cryptosporidium oocyst. 
Using Eq. (30), the 3 × 3 expectation matrix M is computed at u = (u1, u2, u3) = (1,1, 1) to have 

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂g1

∂u1

∂g2

∂u1

∂g3

∂u1

∂g1

∂u2

∂g2

∂u2

∂g3

∂u2

∂g1

∂u3

∂g2

∂u3

∂g3

∂u3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

u=1

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

N1

D1

ψCS0
H

D2

ψES0
H

D3

0
N2

D2

ρES0
C

D3

βH

D1

βC

D2

N3

D3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (37)  

where 

D1 = ψHS0
H + μH + dH + rH + βH ,

D2 = ρCS0
C + m2 + μC + dC + rC + ψCS0

H + βC,D3 = ψES0
H + ρES0

C + μE,

N1 = 2ψHS0
H + βH ,N2 = 2ρCS0

C + ψCS0
H + βC, and N3 = ψES0

H + ρES0
C.

(38) 
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The spectral radius ρ(M) is the stochastic threshold for cryptosporidiosis extinction or persistence in humans and cattle populations. 
The stochastic threshold ρ(M) and the basic reproduction number R0 for a stochastic model and deterministic model, respectively, are 
closely related (Maliyoni et al., 2017). If ρ(M)⩽1 or R0⩽1 then the disease vanishes in human and cattle populations. For the 
deterministic models, the disease persists in the population if R0 > 1. Nevertheless, in stochastic models, the disease can vanish or 
persist even if ρ(M) > 1 based on the present initial size of infectious in a susceptible population (Allen and van den Driessche, 2013; 
Lahodny and Allen, 2013; Maliyoni, 2020). Hence, if ρ(M) > 1, there exist a fixed point (p1, p2, p3) ∈ (0, 1)3 of the offspring pgfs (34)– 
(36) that expresses the disease’s extinction probability. 

Generally, it is not possible to obtain analytical expressions for the extinction probabilities p1, p2 and p3. However, in some 
particular cases, the analytical expressions are obtainable (Lahodny et al., 2015). If there are no direct transmissions from human to 
human, cattle to human and cattle to cattle, we obtain the extinction probabilities p1, p2 and p3 as follows. 

p1 =
a

a + βH(1 − p3)
, p2 =

b
b + βC(1 − p3)

,

p3 =
zψEΛHN0

Hp1p3 + μHρEΛCN0
Cp2p3 + zμEμH

z(ψEΛHN0
H + μEμH) + μHρEΛCN0

C
.

(39)  

Solving for p3, we obtain 

p*
3 = 1, p**

3 =
Q2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Q2
2 − 4Q3

√

2Q1
, p***

3 =
Q2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Q2
2 − 4Q3

√

2Q1
, (40)  

where Q1 = βCβH(z(μEμH + ψEΛHN0
H) + ρEμHΛCN0

C), 
Q2 = z((aβC +(b+2βC)βH)μEμH +(b+βC)βHψEΛHN0

H)+(a+βH)μHρEβCΛCN0
C and Q3 = zQ1μEμH(a + βH)(b + βC). Thus, the fixed 

points are (p1, p2, p3) = (1,1, 1), (p1, p2, p**
3 ) and (p1,p2,p***

3 ). Therefore, for type i infectious, the probability of disease outbreak is: 

1 − P0 = 1 − pi1
1 pi2

2 pi3
3 , (41)  

where in for n = 1, 2 and 3, are the initial values of infected humans, infected cattle and Cryptosporidium oocyst introduced into a 
susceptible population, respectively. 

In Section 4.4, the extinction probabilities p1, p2 and p3 are numerically computed and demonstrate that the approximates for the 
disease extinction are in good agreement with simulations of the CTMC model. 

Table 5 
Model parameter values (unit: day− 1).  

Parameter Initial Value Source Estimates 

ΛH 1/18250 
Lambura et al. (2020) 

0.00005556 

ϕH 0.0502 Assumed 0.04998026 
ψH 0.0002 Assumed 0.00017128 
ψC 0.000015 Assumed 0.00001464 
ψE 0.00023 Assumed 0.00026640 
μH 0.00004 

Zhao et al. (2021) 
0.00003826 

dH 0.00003 Assumed 0.00002855 
rH 0.07 

Okosun et al., (2016) 
0.07042289 

ΛC 0.3/365 
Nyerere et al. (2019) 

0.00087930 

ϕC 0.0395 Assumed 0.04079650 
m1 0.235/365 

Mwasunda et al. (2022) 
0.00057135 

ρC 0.00015 Assumed 0.00010208 
ρE 0.00025 Assumed 0.00024942 
μC 0.25/365 

Nyerere et al. (2019) 
0.00077155 

m2 0.00013 Assumed 0.00011509 
dC 0.0002 Assumed 0.00017815 
rC 0.055 Assumed 0.05605533 
βH 0.032 Assumed 0.03549549 
βC 0.45 Assumed 0.52399835 
μE 0.033 

Okosun et al., (2016) 
0.04139149  
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4. Numerical simulations 

Due to limited research in this area, we use the model system (3) to generate data and estimate parameters. The dynamics of the 
deterministic model and its corresponding CTMC stochastic model are numerically simulated to study cryptosporidiosis in humans and 
cattle by employing the estimates in Table 5. The multitype branching processes theory is then applied to approximate the likelihood of 
disease extinction or a major outbreak. 

4.1. Parameters estimation 

The Least Squares Method estimates parameters by minimizing the squared differences between observed data and their expected 
values. To fit the model to data, we consider the following 

Y = f (T,ω)+ ∊, (42)  

E(Y) = f (T,ω), (43)  

where T and Y are independent and dependent variables respectively, f is a linear function, ω = (ω1,ω2,…,ω2) are the parameters, ∊ 
represents noise and E(Y) is the expected value of Y. Let ω̂ be the value of the estimator of ω that gives the best fit to the data by 
minimizing 

∑k
j=1(yj − f(tj,ω))

2 (Ndanguza et al., 2020). Data simulation is performed by using Matlab software. The model system (3) 
is solved numerically using the initial parameter values, as shown in Table 5, then the noise is added to the solution. The noise is 
normally distributed, that is, ∊ ∼ N (Yi, σ2), where Yi is the output of the model system (3) and σ2 is the constant variance which 
regulates the level of the noise. Once the data set is obtained, we estimate the parameters using the Least Squares Method (Capaldi 
et al., 2012). Thus, the parameter estimates are presented in Table 5. 

4.2. Deterministic model 

To get insights into the dynamics of cryptosporidiosis, humans, cattle and Cryptosporidium oocysts populations are simulated 
independently. In the presence of cryptosporidiosis, susceptible humans decline to the minimum due to infections. As the susceptible 
humans diminish, infected humans flourish to maximum and later they decline slightly due to disease mortality and recovery as shown 
in Fig. 3(a). Susceptible cattle also follow a similar pattern to susceptible humans. Following cryptosporidiosis infection, they decline 
to the minimum as the number of infected cattle grows before attaining equilibrium. The infected cattle decrease due to disease 
mortality and recovery. The dynamics of cryptosporidiosis in cattle population is illustrated in Fig. 3(b). As infected humans and cattle 
defecate into the environment, Cryptosporidium oocysts grow and remain constant as shown in Fig. 3(c). 

4.3. CTMC model simulations 

The solutions of deterministic and CTMC stochastic models are graphed together as illustrated in Figs. 4–7. The findings of the 
deterministic model and its corresponding CTMC stochastic model for cryptosporidiosis in humans and cattle are closely related. 

Fig. 3. Dynamics of humans, cattle and Cryptosporidium oocysts.  
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Fig. 4. Comparison of three sample paths of the CTMC stochastic model (solid) and the corresponding deterministic solution (dashed) for susceptible humans and cattle.  
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Fig. 5. Comparison of three sample paths of the CTMC stochastic model (solid) and the corresponding deterministic solution (dashed) for infected humans and cattle.  
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Fig. 6. Comparison of three sample paths of the CTMC stochastic model (solid) and the corresponding deterministic solution (dashed) for recovered humans and cattle.  
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4.4. Probability of the disease extinction or outbreak 

The multitype branching process fixed point is applied to compute the probability of cryptosporidiosis extinction, P0, and we 
compare it to the approximation probability of disease fade out, Pa, determined from a proportion of 10,000 sample paths of the 
cryptosporidiosis CTMC stochastic model. Table 6 indicates that Pa and P0 agree well, where IH(0) = iH0, IC(0) = iC0 and EV(0) = eV0 

are initial conditions. The fixed point in (0, 1)3 is given by (p1,p2,p3) = (0.6944,0.1109,0.1262). 
Fig. 8 provides graphical illustrations for approximated probabilities. It demonstrates that some sample paths go to zero, showing 

that depending on the initial number of infectious at the onset of the disease, cryptosporidiosis in humans and cattle may fade out even 
though R0 = 47.9057 > 1 and ρ(M) = 1.5498 > 1. Using estimate parameter values from Table 5 and altering the initial population 
for the infective compartments, the approximated probability of the disease extinction Pa are computed by determining the proportion 
of sample paths that go to zero before the commencement of the disease. 

The initial size of the infected population determines the dynamics of cryptosporidiosis in humans and cattle, as shown in Table 6. 
Thus, even though the stochastic threshold ρ(M) > 1, cryptosporidiosis in humans and cattle may vanish or persist. Contrarily, the 
deterministic model demonstrates that the disease is often prevalent provided that R0 > 1, independent of the initial number of in-
fectious at the onset of cryptosporidiosis. The results in Table 6 reveal that Pa and P0 are equal when there is one infective in each 
infected compartment, two human infectives, two Cryptosporidium oocysts and when there are two infectives in each infected 
compartment. The probability of cryptosporidiosis extinction is higher if it arises from an infected human. However, the likelihood of 
disease extinction decreases as the number of infected humans increases. On the other hand, the probability of disease major outbreak 
occurs if the disease is introduced either by an infected cattle or Cryptosporidium oocyst or if cryptosporidiosis is emerged from either 
infected human and infected cattle or infected human and Cryptosporidium oocyst or infected cattle and Cryptosporidium oocyst or all 
infectious classes. The probability of disease outbreak is very high if cryptosporidiosis is emerged from all infected classes, and the 
situation worsens if the number of infectives increases as shown in Table 6. The infected cattle play an important role because they 
shed a massive amount of Cryptosporidium oocysts in the environment (Hatam-Nahavandi et al., 2019; Mtambo et al., 2000). Therefore, 

Fig. 7. Comparison of three sample paths of the CTMC stochastic model (solid) and the corresponding deterministic solution (dashed) for Cryp-
tosporidium oocysts. 

Table 6 
Probability of disease extinction P0 and numerical approximation Pa.  

iH0 iC0 eV0 Pa P0 

1 0 0 0.6943 0.6944 
0 1 0 0.1107 0.1109 
0 0 1 0.1261 0.1262 
1 1 0 0.0771 0.0770 
1 0 1 0.0875 0.0876 
0 1 1 0.0141 0.0140 
1 1 1 0.0097 0.0097 
2 0 0 0.4822 0.4822 
0 2 0 0.0122 0.0123 
0 0 2 0.0159 0.0159 
2 2 2 0.0001 0.0001  
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Fig. 8. Comparison of three sample paths of the CTMC stochastic model (solid) for infectious classes and the corresponding deterministic solution (dashed).  
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the control measures should focus on reducing the number of infected humans and cattle, and the number of Cryptosporidium oocysts in 
the environment. 

5. Conclusion 

Deterministic and CTMC stochastic models have been developed and analyzed to examine the dynamics of cryptosporidiosis in 
humans and cattle. The disease threshold R0 and its corresponding stochastic threshold ρ(M) that determine the condition for 
extinction or outbreak of cryptosporidiosis are computed by the next generation matrix method and multitype branching process, 
respectively. Cryptosporidiosis vanishes if R0 < 1 and ρ(M) < 1. Though cryptosporidiosis exists in humans and cattle if R0 > 1, there 
are chances of a disease major outbreak or extinction when ρ(M) > 1, depending on the initial number of infected individuals that was 
introduced into the susceptible population. 

The analysis of a deterministic model shows that disease free and endemic equilibria exist, and there is a possibility for the model 
system (3) to undergo backward bifurcation. The sensitivity analysis results show that cattle drive cryptosporidiosis dynamics as they 
play a great role in shedding Cryptosporidium oocysts in the environment. Simulation findings show that the probability of crypto-
sporidiosis extinction is higher if it arises from an infected human, and there is a high likelihood of disease outbreak if it arises from an 
infected cattle or from Cryptosporidium oocyst or from all three infectious compartments. Therefore, to control cryptosporidiosis, more 
efforts should be directed to maintaining personal and cattle farm hygiene and decontaminating the environment to kill Cryptospo-
ridium oocysts. 
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