
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Computational and Communication Science Engineering Masters Theses and Dissertations [CoCSE]

2022-06

Detection and prevention of username

enumeration attack on SSH protocol:

machine learning approach

Agghey, Abel

NM-AIST

https://doi.org/10.58694/20.500.12479/1628

Provided with love from The Nelson Mandela African Institution of Science and Technology

DETECTION AND PREVENTION OF USERNAME ENUMERATION

ATTACK ON SSH PROTOCOL: MACHINE LEARNING APPROACH

Abel Zauru Agghey

A Dissertation Submitted in Partial Fulfillment of the Requirement for the Degree of

Master’s in Information System and Network Security of the Nelson Mandela African

Institution of Science and Technology

Arusha, Tanzania

June, 2022

i

ABSTRACT

Over the last two decades (2000–2020), the Internet has rapidly evolved, resulting in

symmetrical and asymmetrical Internet consumption patterns and billions of users worldwide.

With the immense rise of the Internet, attacks and malicious behaviors pose a huge threat to

our computing environment. Brute-force attack is among the most prominent and commonly

used attacks, achieved out using password-attack tools, a wordlist dictionary, and a usernames

list – obtained through a so – called an enumeration attack. In this study, we investigate

username enumeration attack detection on SSH protocol by using machine-learning classifiers.

We apply four asymmetrical classifiers on our generated dataset collected from a closed-

environment network to build machine-learning-based models for attack detection. The use of

several machine-learners offers a wider investigation spectrum of the classifiers’ ability in

attack detection. Additionally, we investigate how beneficial it is to include or exclude network

ports information as features-set in the process of learning. We evaluated and compared the

performances of machine-learning models for both cases. The models used are k-nearest

neighbor (KNN), naïve Bayes (NB), random forest (RF) and decision tree (DT) with and

without ports information. Our results show that machine-learning approaches to detect SSH

username enumeration attacks were quite successful, with KNN having an accuracy of 99.93%,

NB 95.70%, RF 99.92%, and DT 99.88%. Furthermore, the results improved when using ports

information. The best selected model was then deployed into intrusion detection and prevention

system (IDS/IPS) to automatically detect and prevent username enumeration attack. Study also

recommends the use of Deep Learning in future studies.

ii

DECLARATION

I, Abel Zauru Agghey, do declare hereby to the Senate of the Nelson Mandela African

Institution of Science and Technology that, this project report is my own original work and that

it has neither been submitted nor is it being concurrently submitted for a degree award in any

other institution.

Abel Zauru Agghey

 11/07/2022
Name and Signature of Candidate Date

The above declaration is confirmed by:

Dr. Jema David Ndibwile

 11/07/2022
Name and Signature of Supervisor 1 Date

Dr. Mussa Ally Dida

 11/07/2022
Name and Signature of Supervisor 2 Date

iii

COPYRIGHT

This dissertation is copyright material protected under the Berne Convention, the Copyright

Act of 1999 and other international and national enactments, in that behalf, on intellectual

property. It must not be reproduced by any means, in full or in part, except for short extracts in

fair dealing; for researcher, private study, critical scholarly review or discourse with an

acknowledgment, without the written permission of the office of Deputy Vice-Chancellor for

Academic, Research and Innovation on behalf of both the author and Nelson Mandela African

Institution of Science and Technology.

iv

CERTIFICATION

The undersigned certify that they have read and hereby recommend for acceptance by the

Senate of the Nelson Mandela African Institution of Science and Technology the dissertation

entitled: “Detection and Prevention of Username Enumeration Attack on SSH Protocol:

Machine Learning Approach”, in Partial Fulfilment of the Requirements for the Degree of

Master’s in Information and Communication Science and Engineering of the Nelson Mandela

African Institution of Science and Technology.

Dr. Jema David Ndibwile

 11/07/2022
Name and Signature of Supervisor 1 Date

Dr. Mussa Ally Dida

 11/07/2022
Name and Signature of Supervisor 2 Date

v

ACKNOWLEDGEMENTS

Completing this study successfully was made possible by several parties through their

dedicated efforts, support and guidance.

First and foremost, I thank God for granting me knowledge, ability, and opportunity of not only

undertaking this research study but also persevering and completing it satisfactorily.

I also gratefully acknowledge my main supervisor: Dr. Jema David Ndibwile and co-supervisor

Dr. Mussa Ally Dida, and my mentor Mr. Sanket Mohan Pandhare who not only introduced

me to the topic but also provided their support throughout this study. Their engagement,

remarks, and comments have been invaluable.

My deep appreciation goes out to all the lecturers for their help and support. I also take this

opportunity to thank my fellow classmates for the classwork we did together and for their

valuable inputs in this dissertation.

Lastly, I appreciate all the help and guidance I received from my parents, siblings, and friends.

Thank you very much.

vi

TABLE OF CONTENTS

ABSTRACT ... i	

DECLARATION .. ii	

COPYRIGHT ... iii	

CERTIFICATION .. iv	

ACKNOWLEDGEMENTS .. v	

TABLE OF CONTENTS ... vi	

LIST OF APPENDICES ... xii	

LIST OF ABBREVIATION AND SYSMBOLS ... xiii	

CHAPTER ONE ... 1	

INTRODUCTION ... 1	

1.1	 Background of the Problem ... 1	

1.2	 Statement of the Problem .. 4	

1.3	 Rationale of the Study ... 5	

1.4	 Research Objectives .. 5	

1.4.1	 General Objective .. 5	

1.4.2	 The Specific Objectives ... 5	

1.5	 Research Questions ... 6	

1.6	 Significance of the Study .. 6	

1.7	 Delineation of the Study .. 7	

CHAPTER TWO ... 8	

LITERATURE REVIEW .. 8	

2.1	 Brute-force Attack: The Overview .. 8	

2.2	 Brute-force Attack: The Current Status ... 9	

2.3	 Complication of Brute-force Attack Detection ... 9	

vii

2.4	 Supervised Learning on Brute-force Attack Detection ... 10	

2.5	 Research Gap ... 12	

CHAPTER THREE ... 13	

MATERIAL AND METHODS .. 13	

3.1	 Introduction ... 13	

3.2	 Study Area ... 13	

3.3	 Dataset Generation .. 13	

3.3.1	 Experimental Setup .. 13	

3.3.2	 Attack Scenario .. 14	

3.3.3	 Data Collection and Labelling ... 16	

3.4	 Research Framework ... 17	

3.5	 Data Preprocessing .. 18	

3.5.1	 Missing Data Treatment .. 19	

3.5.2	 Categorical Encoding .. 19	

3.5.3	 Data Projection .. 19	

3.5.4	 Data Reduction .. 20	

3.6	 Machine Learning Model Development .. 20	

3.6.1	 Decision Tree (DT) .. 21	

3.6.2	 Random Forest ... 22	

3.6.3	 Naïve Bayes ... 24	

3.6.4	 K-Nearest Neighbor ... 25	

3.7	 Implementation .. 26	

3.8	 Training Phase ... 26	

3.8.1	 Training Phase – Ports Exclusive .. 26	

3.8.2	 Training Phase – Port Inclusive ... 32	

3.9	 Evaluation .. 33	

viii

3.9.1	 Precision .. 33	

3.9.2	 Recall ... 34	

3.9.3	 Accuracy .. 34	

3.9.4	 Receiver Operating Characteristics (ROC) Curve ... 35	

3.10	 Model Deployment Phase ... 36	

CHAPTER FOUR ... 37	

RESULTS AND DISCUSSION ... 37	

4.1	 Introduction ... 37	

4.2	 Dataset ... 37	

4.3	 Performance Metrics Results ... 37	

4.3.1	 Precision .. 37	

4.3.2	 Accuracy .. 38	

4.3.3	 Receiver Operating Characteristic Curve .. 38	

4.4	 Effectiveness Comparison when Including and Excluding Ports Information 40	

4.5	 Custom IDS/IPS .. 42	

CHAPTER FIVE ... 44	

5.1	 Conclusion ... 44	

5.2	 Recommendations ... 44	

REFERENCE .. 45	

APPENDICES ... 55	

RESEARCH OUTPUTS ... 79	

ix

LIST OF TABLES

Table 1:	 Summary of devices used in experimental setup .. 14	

Table 2: Description of the features selected .. 20	

Table 3:	 Dataset splitting ... 26	

Table 4:	 Hyperparameters used when training the decision tree classifier 28	

Table 5:	 Hyperparameters used when training Random Forest classifier 30	

Table 6:	 Hyperparameters used when training Naive Bayes classifier 31	

Table 7: 	 Hyperparameters used when training K-Nearest Neighbor classifier 32	

Table 8: 	 Hyperparameters used for models training - Ports inclusive 33	

Table 9: Dataset distribution ... 37	

Table 10: Precision values obtained by different classifiers when including and excluding

ports information ... 38	

Table 11: Accuracy values obtained by different classifiers when including and excluding

ports information .. 38	

Table 12: 	 ROC values obtained by different classifiers when including and excluding ports

information ... 39	

Table 13: 	 Summary of performance metrics for all models - Ports exclusive 40	

Table 14: Summary of performance metrics for all model - Ports inclusive 40	

x

LIST OF FIGURES

Figure 1:	 Top hacking varieties in breaches (https://Verizon/2020) 9	

Figure 2:	 Network topology of the experimental setup .. 14	

Figure 3:	 The ifconfig command to identify the IP Address of penetration platform 15	

Figure 4:	 The netdiscover command to identify the IP Address of the victim machine 15	

Figure 5:	 Output of netdiscover command ... 16	

Figure 6:	 The nmap command to scan open ports and services ... 16	

Figure 7:	 The output of nmap command .. 16	

Figure 8:	 Username enumeration command ... 16	

Figure 9:	 Output of username enumeration .. 16	

Figure 10: Raw dataset collected before data preprocessing ... 17	

Figure 11:	 Research framework .. 18	

Figure 12:	 The structure of the Decision Tree (https://javapoint/2021) 21	

Figure 13:	 The structure of Random Forest (https://ai-pool/2021) 23	

Figure 14: The structure of Naive Bayes network (https://mdpi/2021)

 .. 25	

Figure 15: 	 Illustration of how Randomized Search CV is performed to get the best values for

each parameter used in the Decision Tree classifier .. 28	

Figure 16: 	 Illustration of how Randomized Search CV is performed to get the best values for

each parameter used in the Random Forest classifier .. 30	

Figure 17: 	 Illustration of how Randomized Search CV is performed to get the best values for

each parameter used in the Naive Bayes classifier .. 31	

Figure 18: 	 Illustration of how Randomized Search CV is performed to get the best values for

each parameter used in the K-Nearest Neighbor classifier 32	

Figure 19: 	 ROC AUC - Ports Exclusive .. 39	

Figure 20:	 ROC AUC - Port Inclusive .. 39	

Figure 21: 	 Effectiveness comparison – Ports exclusive .. 41	

xi

Figure 22: 	 Effectiveness comparison – Ports inclusive ... 42	

xii

LIST OF APPENDICES

Appendix 1: 	 Data preprocessing .. 55	

Appendix 2: 	 Optimization algorithm to select optimum hyperparameters Ports exclusive .

 ... 59	

Appendix 3: 	 Modeling - Ports exclusive .. 64	

Appendix 4:	 Evaluation - Ports exclusive .. 65	

Appendix 5: 	 Optimization Algorithm to select optimum hyperparameters Ports inclusive

 ... 70	

Appendix 6: 	 Modeling - Ports inclusive .. 74	

Appendix 7: 	 Evaluation - Ports inclusive ... 75	

xiii

LIST OF ABBREVIATION AND SYSMBOLS

COVID-19 Corona Virus Disease of 2019

CVE Common Vulnerabilities and Exposures

DNS Domain Name System

DT Decision Tree

FN False Negative

FTP File Transfer Protocol

GHz Gigahertz

HPC High Performance Computers

HTTP Hyper Text Transfer Protocol

IDS Intrusion Detection System

IoT Internet of Things

IPS Intrusion Prevention System

IPv4 Internet Protocol Version Four

KNN K-Nearest Neighbor

LSTM Long Short-Term Memory

ML Machine Learning

OpenSSH Open Secure Socket Shell

PCAP Packet Capture

RAM Random Access Memory

RF Random Forest

ROC Receiver Operating Characteristic

SSH Secure Socket Shell

TCP Transmission Control Protocol

TN True Negative

TP True Positive

VPN Virtual Private Network

1

CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

The Internet is widely recognized for its rapid growth and tremendously usage in current years

(Alshehri & Meziane, 2017). Over four billion individuals have Internet access and utilize it

on a regular basis. The figure equates to 63.2% of the global population having access to the

Internet. According to statistics, Internet usage surged by 1266% during the course of two

decades (2000–2020) (Infante-Moro et al., 2016; internetworldstats., 2021). The explosiveness

and widespread nature of the Internet have made almost everyone to rely on computer networks

for their day-to-day activities (Hoque et al., 2014). With an immense rise in dependency on the

Internet and computer networks services, cyberattacks and malicious behaviors have become

unexceptional in our computing environment (Jang-Jaccard & Nepal, 2014; Najafabadi et al.,

2014).

Cyberattacks cost millions of dollars each year, and the number of victims globally is

significantly growing. At least 14 cyberattack victims emerge every second, which equals more

than one million attacks every day (Jang-Jaccard & Nepal, 2014). For more than two decades,

there has been a growth in the number of instances reported, as well as the complexity of the

attacks. As a result, any person connected to the internet, whether internally or externally, is

constantly at risk of malicious activity and cyber-attacks (Hansman & Hunt, 2005; Najafabadi

et al., 2014).

The emergence of attacks and malicious behaviors pose significant danger to computer

security. They attempt to deviate from the deployed network security mechanism by exploiting

the vulnerabilities found in the target networks. They disrupt normal network operations, such

as causing network equipment to malfunction, attempting to overload a network, denying

network services to authorized users, drastically reducing network throughput, scanning

maliciously, and other similar activities (Hoque et al., 2014; Najafabadi et al., 2014).

Computer system attacks are achievable at several levels, ranging from data link layer to

application layers. Attacks can also be classified as passive or active attacks (Pawar &

Anuradha, 2015; Sheikh, 2020). An active attack occurs when attackers change system

resources and cause effect to their operations. A passive attack occurs when attackers gather or

make use of information from the systems but do not cause effect to the system resources (Liu

2

& Morgan, 2018; Srivastava, 2021). Password-based attacks, like dictionary-based attacks and

brute-force attacks, are among the various types of computer attacks (Nagamalai et al., 2011;

Pawar & Anuradha, 2015).

The brute-force attack often referred to as a high-level attack, is among the most popular

insurmountable challenges in today's computer system attacks. In brute-force, attackers attempt

to log in by trying different passwords on the victim’s machine to reveal the login passwords

(Alata et al., 2006; Anandita et al., 2015; Hewlett-Packard:Top Cyber Security Risks Threat

report, 2010; Hossain et al., 2020; Najafabadi et al., 2014; Vykopal, 2011). They generate

password combinations using automated tools. Several smart brute-force attack tools are

available, including Hydra, the most well-known brute-force attack tool, which comes pre-

installed in Kali Linux operating system (Hossain et al., 2020; Najafabadi et al., 2014). Other

tools highlighted by Kyaw et al. (2016) are John the Ripper, Cain and Abel. Brute-force attacks

can be used against a wide range of services or protocols, with SSH and FTP being among the

primary target for the attack.

In order to achieve a dictionary-based or brute-force attack, an attacker needs to have two

important items; a valid and existing list of usernames of the targeted system and a wordlist

dictionary (A text file containing a collection of words for use in the attacks). Therefore, one

of the key first steps when attempting to gain access or launch an attack on a victim system or

application is to enumerate usernames. An attacker first gathers the essential information about

a user (Dave, 2013). Once intended usernames have been enumerated, targeted password-based

attacks can be launched against found usernames.

Username enumeration is a sort of a passive attack (reconnaissance) that retrieves a list of

existing and valid usernames from a system requiring user authentication (Li & Qiu, 2012;

Virtue Security, 2021). This means an attacker could leverage to enumerate valid users on a

targeted system (Rapid7, 2017). Since an attacker can quickly generate a list of legitimate

usernames from the username enumeration attack, the time and effort necessary to brute-force

a login is considerably reduced (Portswigger, 2018). However, it does not allow the attacker to

log in immediately. Rather, it gives half of the necessary information which the attacker could

use to run a password-based attacks such as brute-force to further exploit the obtained

information. Once a list of validated usernames is created from the username enumeration

attack, the attacker can perform another round of brute-force attacks. However, this time

against the found usernames until access to the targeted system is eventually gained.

3

The username enumeration attacks can be initiated in any system that requires user

authentication, including SSH server. Bhagwat and Kadwalkar (2020) described that Secure

Socket Shell, SSH, is a typical software-based technique that deals with network security. It

lets users over a network remotely connect and send data to the systems through a publicly

exposed interface (Khandait et al., 2021). Whenever users send data to the network, SSH

automatically encrypts it. The SSH decrypts the data when it reaches its intended recipient

(Čeleda et al., 2019). The secured connection between the sender and receiver results in

transparent encryption, making SSH a vital protocol in remote systems management (De

Fuentes et al., 2018). With emergencies like the COVID-19 crisis where millions of employees

work from home, using their own devices and accessing corporate assets through their home

Wi-Fi, SSH protocol plays even a major role in remote system management (Gupta et al.,

2020). The SSH enables secure logins to remote computer systems. Network administrators

and web admins use it to securely access remote servers, switches, routers, virtualization

platforms, and operating systems. In addition, most administrators routinely utilize an SSH

client to secure file transfers, automate data transfers using SSH scripts, set up VPNs, test

applications, reboot systems, modify file permissions, and manage user access (Fiterǎu-

Broştean et al., 2017). The SFTP video streaming, generating a single authorized session for

many connections, remote backups, linking distant files to a local directory, and utilizing an

encryption key for several accounts instead of individual passwords are just a few tasks.

However, the above use cases highlight the importance of SSH protocol and its secure and

effective remote systems management. It is not a complete security solution because of the

different drawbacks SSH encounters (Ylonen, 2019).

Specific versions of OpenSSH experience suffering from a timing-based attack: If a valid

username with a long password is given, the time taken to respond is noticeably longer than

for an invalid username with a long password (Kannisto & Harju, 2017). The attacker can

enumerate the service's registered usernames by exploiting how the server responds to forged

queries. The server would respond with an authentication failure if the username does not exist,

but the outcome would be different if the user exists. Other areas where username enumeration

occurs are a website login page, and its ‘forgot password’ functionality.

The demand for traffic anomaly detection in cybersecurity is increasing because of the

enormous and rapid expansion of sophisticated computer attacks, including password-based

attacks (Najafabadi et al., 2014). Several approaches for detecting and mitigating password-

based attacks, such as brute-force, have been suggested, developed, and deployed on a various

4

systems and services, including SSH, FTP, and HTTP. However, in the era of cybersecurity,

username enumeration attacks continue to be a problem. The majority of the recommended

solutions focus on detecting and preventing password-based attacks, ignoring the fact that

username enumeration is the first attack to identify and resist.

Inspired by the advancement and promising results of machine-learning techniques in traffic

anomaly detection and mitigation (Elmrabit et al., 2020; Mahesh, 2018; Nawir et al., 2019),

this study aims to develop a machine-learning model for detecting and preventing of username

enumeration attack on SSH protocol by applying and analyzing machine-learning classifiers.

1.2 Statement of the Problem

In the existing literature, several detection and prevention approaches for password-based

attacks, including dictionary-based or brute-force attacks on different services or protocols

such as SSH, FTP, HTTP, have been proposed, developed and implemented. Some of these

methods incorporated machine-learning techniques, and others incorporated traffic

authentication techniques. However, most proposed methods focus on detecting and preventing

password-based attacks generated by various intelligent tools such as Hydra and Medusa. The

previous approaches failed however to put into consideration the following:

(i) At first sight, detection and prevention of the username enumeration attack

(reconnaissance). Before any password-related attacks are deployed, an attacker must

already have a valid and existing list of usernames of the targeted system and wordlist

dictionaries.

(ii) The valid and existing list of usernames is usually acquired by deploying the username

enumeration, which is the first phase before actually deploying password-related

attacks such as brute-force.

In the current practices of detecting and preventing password-related attacks, studies indicated

the attacks are based on a precompiled list of usernames of the targeted system (Najafabadi et

al., 2014; Owens & Matthews, 2008). However, in reality, precompiling thousands of users is

almost impossible in a production environment. This is because most of these proposed

approaches were lab-based studies where a precompiled list of usernames is possible due to its

environmental nature, quite contrary to production environments where username enumeration

is to be deployed first. Therefore, the detection and prevention of the username enumeration

5

attack is highly needed to deny an opportunity for an attacker to retrieve a valid and existing

list of usernames of the targeted system.

1.3 Rationale of the Study

The demand for traffic anomaly detection in cybersecurity is increasing because of the

enormous and rapid expansion of sophisticated computer attacks, including password-based

attacks (Najafabadi et al., 2014). Several approaches for detecting and mitigating password-

based attacks, such as brute-force, have been suggested, developed, and deployed on a various

systems and services, including SSH, FTP, and HTTP. However, in the era of cybersecurity,

username enumeration attacks continue to be a problem. The majority of the recommended

solutions focus on detecting and preventing password-based attacks, ignoring the fact that

username enumeration is the first attack to identify and resist. Inspired by the advancement and

promising results of machine-learning techniques in traffic anomaly detection and mitigation

(Elmrabit et al., 2020; Mahesh, 2018; Nawir et al., 2019), this study aims to develop a machine-

learning model for detecting and preventing of username enumeration attack on SSH protocol

by applying and analyzing machine-learning classifiers

1.4 Research Objectives

1.4.1 General Objective

The general objective of the research is to develop a machine-learning model that detects and

prevents username enumeration attacks on SSH protocol.

1.4.2 The Specific Objectives

(i) To review the existing approaches for anomaly detection and identify the requirements

for the proposed model.

(ii) To develop a machine-learning based model for detecting and preventing username

enumeration attack.

(iii) To evaluate the performance and validate the developed model.

6

1.5 Research Questions

This research intends to answer the following questions:

(i) What are the requirements for developing a model for detecting and mitigating

username enumeration attack?

(ii) How can a username enumeration detection and prevention model be developed?

(iii) How well does the developed model perform?

1.6 Significance of the Study

Cybersecurity is an important field that plays a vital role in protecting the systems and networks

against unauthorized access, modification, and destruction (Hossain et al., 2020). Several

attacks have been discussed in the cybersecurity era from their types, detections, and mitigation

techniques. Among other attacks discussed in cybersecurity is brute-force attack with its

detection and prevention approaches. However, brute-force attacks suffer from one major

drawback; detection and prevention of username enumeration from first sight. Therefore, the

proposed approach is meant to be implemented as a computer algorithm that will be the basis

of future development of username enumeration detection and prevention systems that will

improve the classification accuracy between anomaly and normal traffic. The approach is not

meant to completely eliminate cyberattacks. However, it will be a means which will offer

assistance when accurately classifying traffic and create a base for further research in the

cybersecurity era. This research has provided the groundwork for future research in username

enumeration attack detection and prevention, theoretically and practically. It demonstrated

how the attack had been overlooked in developing brute-force attack detection methods.

Furthermore, the study demonstrated how machine-learning integration with intrusion

detection and prevention systems may contribute to the management and possibly eliminate

computer attacks.

The study has also published its dataset and made it available to the research community

through open access to further facilitate research in username enumeration attacks (Agghey,

2021).

7

1.7 Delineation of the Study

This study only involves the use of Common Vulnerabilities and Exposures (CVE) with the

identification CVE-2018-15473 from the public exploit database (exploits-db, 2018). The CVE

is entirely written in python. Furthermore, the exploitation only works in OpenSSH server from

version 2.3 to version 7.7. It is important to note that this study has certain limitations. The

experiments conducted in this study only works for version 2.3 up to version 7.7 of the

OpenSSH server configured in the Linux Operating System. Despite the models’ better

performances, the dataset size obtained is insufficient for machine-learning tasks. Restricted

computer resources may also impair the models’ performances.

8

CHAPTER TWO

LITERATURE REVIEW

2.1 Brute-force Attack: The Overview

The brute-force attack is one of the numerous security threats that network service

administrators must manage (Saito et al., 2016). As Stiawan et al. (2019) defined, brute-force

attack is password-related experimentation that uses a mixture of possible ASCII characters

either in separation or combinations. According to Joshi et al. (2015), Kaynar (2016), Stiawan

(2017), Stiawan et al. (2017) and kaspersky (2021), brute-force attack is an old attack technique

but still prevalent and effectively used by attackers.

This sort of attack can be deployed into several services or protocols. However, SSH and FTP

protocols have been the major victims of brute-force attacks. Studies steered by Javed and

Paxson (2013) on distributed brute-force SSH attack. Najafabadi et al. (2014) on SSH brute-

force attack, Stiawan et al. (2019) on FTP brute-force in IoT network and by Hossain et al.

(2020) on FTP and SSH brute-force are good examples to how prone these protocols are to

this attack. The web application is another area where brute-force attack can prevail, as

discussed by Hofstede et al. (2017).

Attackers in a brute-force attack attempt to log in to the aforementioned protocols to reveal the

user’s login credentials (Anandita et al., 2015; Vykopal, 2011). A normal brute-force attack

tests for the correct user and password combination, usually without knowing if the system

user exists. It uses trial-and-error for checking correct user login credentials (kaspersky, 2021).

It can also be repeatedly done by using a precompiled list of user’s accounts and passwords

until successfully achieved (Lee et al., 2016; Vizváry & Vykopal, 2013). Subject to the

complexity of the password, brute-force can take a few minutes or a couple of years. Brute-

force attack can simply be achieved with the least attacking experience and intervention with

the help of password attack tools such as hydra (Hossain et al., 2020).

 Brute-force attacks may lead to life-threatening impacts, including stealing private sensitive

information and data such as bank accounts or social security details (Najafabadi et al., 2015).

Shortly, in brute-force attacks, once attackers gain access to targeted systems, the damage

potential is nothing short of catastrophic (techcesscyber, 2018).

9

2.2 Brute-force Attack: The Current Status

A brute-force attack is still a major threat to our computing environment to date. Several studies

and reports have been demonstrated this. For example, in its 2020 data breach investigation

report, Verizon indicated that more than eighty percent of all breaches occurred in hacking in

one way or another involved the use of brute-force attacks (Nathan & Scobell, 2020). The

studies conducted by Stiawan (2017), Kaynar (2016) and Joshi et al. (2015) highlighted that of

all the total cyberattacks available; brute-force attack occupies twenty-five percent and “it is

the most common form of attack to compromise servers facing the Internet” (Kavitha, 2011).

Figure 1: Top hacking varieties in breaches (https://Verizon/2020)

2.3 Complication of Brute-force Attack Detection

The username enumeration attack to get a list of existing usernames, works hand in hand with

password-related attacks like brute-force attacks. Studies on brute-force attacks on different

protocols have been carried out over the past couple of years. In various studies, the dominance

of brute-force attacks has indeed been observed. For example, one of the studies that observed

the prevalence of brute-force attacks is by Owens and Matthews (2008). They studied

passwords and methods used in brute-force SSH attacks. Vykopal et al. (2009) studied and

10

employed network-based dictionary attack detection methods on SSH protocol. Vykopal

(2011) again presented a study on taxonomy and prevalence of brute-force attack. The three

studies had promising results, however, none of them ever addressed the issue of username

enumeration attack.

Satoh et al. (2012) analyzed SSH dictionary attack detection based on netflow. Their study

suggested a novel attack detection method. Javed and Paxson (2013) examined stealthy

distributed brute-force attack on SSH protocol. Vizváry and Vykopal (2013) observed flow-

based detection of RDP brute-force attacks. The three approaches proved to be successful with

promising results. The focus was on the detection of password-based attacks, but there was no

effort on detecting username enumeration attacks.

Najafabadi et al. (2014) investigated brute-force attacks at the network level on SSH protocol.

Joshi et al. (2015) analyzed a cryptographic technique for protecting text messages from brute-

force and cryptanalytic attacks. Najafabadi et al. (2015) detected SSH brute-force attacks using

aggregated flow data, and Lee et al. (2016) examined SSH brute-force in a multi-user

environment. All of these studies provided outstanding results in a research community.

However, the issue of username enumeration attack was never discussed.

Furthermore, Saito et al. (2016) detected and prevented brute-force attacks using disciplined

IPs from IDs logs. Patil et al. (2017) examined and implemented a multilevel system to mitigate

brute-force attacks for cloud security. Hofstede et al. (2017) investigated flow-based web

application brute-force attacks and comprise detection method. Similarly, both studies attained

outstanding results, but none focused on detecting the username enumeration attacks.

 Stiawan et al. (2019) examined brute-force attack patterns in IoT networks on FTP and SSH

protocols. Hossain et al. (2020) also investigated brute-force attacks detection in computer

networks. However, studies mentioned above on different protocols and services focused on

detecting password-related attacks and there was no effort to detect username enumeration

attacks.

2.4 Supervised Learning on Brute-force Attack Detection

Machine-learning is a branch of artificial intelligence that allows machines to learn without

having to be plainly programmed (Charbuty & Abdulazeez, 2021; Hamid et al., 2016). Instead,

machine-learning automates operations by skillfully taking each stage in a maintained way.

Machine-learning contains several learning techniques categorized as supervised and

11

unsupervised learning. This categorization is subjected to the existence or nonexistence of a

labelled dataset. Supervised learning uses labelled samples to train the model, allowing it to

anticipate comparable unlabeled samples. There are no training samples in unsupervised

learning. Hence it relies on the arithmetical method of density approximation. Unsupervised

learning is based on gathering or grouping data of the same types to uncover the underlying

design of the data (Pahwa & Agarwal, 2019; Sharma & Kumar, 2017).

Machine-learning ability to recognize and give clues on real-life issues is greatly valued and

thus lead to their appeal and perverseness. These accomplishments have steered the adoption

of machine-learning in numerous fields (Apruzzese et al., 2018; Jordan & Mitchell, 2015).

Cybersecurity is among other field affected by this trend where intrusion detection systems

(IDS) are advanced with machine-learning modules (Buczak & Guven, 2016). With their real-

time response and adaptive learning process, machine learning algorithms are becoming

particularly efficient in intrusion detection systems (Ahsan et al., 2021). The advancement in

machine learning techniques has presented promising and impressive results in detecting,

identifying, classifying, predicting and mitigating a diverse range of cyberattacks. They

exemplify unsurpassed choice over conventional rule-based algorithms (LeCun et al., 2015).

Attacks and anomaly detection use supervised learning, where a known dataset is used to make

classification or predictions. This training dataset contains input features and target values. The

supervised learning algorithm then builds a model to make a prediction of the target values

(Ndibwile et al., 2015).

In literature, the most notable examples include the work done by Vykopal et al. (2009),

whereby a decision tree classifier in supervised learning was adopted to demonstrate and

describe the novel network-based approach on detection of dictionary-based attack along with

the capability to realize all successful attacks. According to their study, SSH break-in attempts

at a flow level were examined, revealing a dictionary attack pattern. The evaluation was

accomplished in a large high-speed university network with promising results.

Another work was analyzed by Satoh et al. (2012) on detecting SSH dictionary-based attack

detection using machine learning and subsequently suggested two novelty detection elements.

In this approach, the combination of these two elements contains four functions. The first three

functions recognize transition points of a sub-protocol through flow features and machine

learning algorithms. The last function discovers an individual attack through differences in the

12

inter-arrival time of an auth-packet and then differentiates between a successful and an

unsuccessful attack through the existence of a connection protocol.

Moreover, the study done by Najafabadi et al. (2014) implemented several classifiers to

develop models for detecting brute-force attack on SSH protocol at the network level. The

study indicated that four different supervised learning classifiers were used to enable

comparative study on the efficiency of learned models in distinguishing the brute-force traffic

from the normal one. In their work, the dataset was generated from a live production network

for over a 24 hours period. The study highlighted that the learned models were effective in

detecting brute-force attack with a high rate of detection and low false alarms.

Hynek et al. (2020) proposed a study on detecting redefined brute-force attacks using a

machine-learning approach. Their study used extended IP flow features obtained from

backbone network traffic and machine-learning algorithms to differentiate successful and

unsuccessful login. The dataset generated from a real environment using a wide assessment of

captured traffic steered developing a machine learning model that successfully reduced the

number of false positives with similar sensitivity levels.

Furthermore, the study done by Hossain et al. (2020) proposed the adoption of supervised

learning and deep learning on detecting brute-force attack on two protocols, SSH and FTP, at

the network level. In their work, Long Short-Term Memory (LSTM) and five different

classifiers; J48, naïve Bayes (NB), decision table (DT), random forest (RF) and k-nearest

neighbor were used for extra protection. The study elaborated that a well-known dataset from

CICIDS2017 (Sharafaldin et al., 2018) was used. The developed models learnt the traffic

features and identified the ones with FTP and SSH brute-force attacks and those without.

2.5 Research Gap

All the aforementioned studies have focused and achieved excellent results on detecting and

mitigating password-related attacks such as brute-force that are generated by various password

attack tools. However, none of them has adequately included and addressed the issue of

detection and mitigation of username enumeration attack. Considering that for any password-

related attack to be launched, an attacker must have gathered all information, including the list

of usernames of the targeted system obtained from the usernames enumeration attack.

Therefore, the detection and prevention of the username enumeration attack is highly needed

in order to deny an opportunity for an attacker to retrieve a valid and existing list of usernames

of the targeted system.

13

CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

This Chapter discusses the materials and methods used in this study in details. It discusses the

study area, experimental setup, attack scenario, data generation and labelling, research

framework, data preprocessing and models development.

3.2 Study Area

The study is a laboratory-based, conducted at Nelson Mandela African Institution of Science

and Technology’s laboratory in Arusha. We chose Mandela’s lab because it has all the

necessary equipment, including high-performance computers (HPC), important for this study.

All the experiments in the laboratory were carried out in a closed-environment network. A

closed-environment network is a private network with no external connectivity that is only

accessible to approved devices.

3.3 Dataset Generation

The generation of a dataset for this study was achieved through the use of public exploit and

normal traffic packets capture (pcap) retrieved from several public training repositories. The

dataset generation process involved several subphases in this work, including experimental

setup, attack scenario, data collection and labelling.

3.3.1 Experimental Setup

The attack simulation was carried out in a closed-environment network consisting of a victim

machine, penetration testing platform, data collection point and benign users. The victim

machine – SSH server was registered with thousands of users. The SSH server was a patched

version of OpenSSH server 7.7 (OpenSSH, 2021) that listens on standard TCP port 22 for

inbound and outbound traffic. We chose this version because the attack occurs between version

2.3 and 7.7 (exploits-db, 2018). The SSH server runs on Ubuntu Linux 20.04 (x64) with a 2.8

GHz Intel Core i7 CPU with a16GB RAM computer. A penetration testing platform - Kali

Linux 2020.4 (x64) with kernel version 5.9.0 targets this SSH server. This penetration platform

operates on a machine with 16 GB of RAM and a 3.4 GHz Intel Core i7 CPU. The data

collection point installed with network monitoring tools collected all the traffic flowing through

14

the network topology. The data collection server runs on Linux Mint 20.2 with 16 GB RAM

computer and a 2.8 GHz Intel Core i7 CPU. The benign users represented normal users

accessing the network. The IP addresses for the SSH server, penetration testing system and

data collection server are 192.168.56.115, 192.168.56.117 and 192.168.100.116, respectively,

and are in the private IPv4 range. Table 1 shows the summary of the devices used and Fig. 2

shows the network topology of the experimental setup.

Table 1: Summary of devices used in experimental setup
Device Operating System RAM CPU IP Address
Victim Machine Ubuntu 20.04 16 GB 2.8 GHz Intel

Core i7
192.168.56.115

Penetration Platform Kali Linux 2020.4 16 GB 3.4 GHz Intel
Core i7

192.168.56.117

Data Collection Point Linux Mint 16 GB 2.6 GHz Intel
Core i7

192.168.56.116

Benign Users Various Various Various 192.168.56.XX

Figure 2: Network topology of the experimental setup

3.3.2 Attack Scenario

The attack simulation was launched from Kali Linux, a penetration testing platform, to SSH

server, a victim machine. The common vulnerabilities and exposures (CVE) with the

identification number CVE-2018-15473 retrieved from the public exploits database (exploits-

15

db, 2018) was used to achieve this. The CVE is developed entirely in Python language. Before

launching an attack from the penetration testing platform to the victim machine, information

gathering and scanning steps were conducted. The information-gathering step was used to

identify the IP Address of the penetration testing platform and victim machine using the

ifconfig and netdiscover command, respectively. Figure 3 up to Fig. 5 show the information-

gathering step. The scanning step examined all the protocols and services available to the

victim machine using the Nmap command shown in Fig. 6 and Fig. 7. The attack was launched

after the information gathering and scanning phase using the CVE mentioned above. It was

accomplished by employing the attack command in Fig. 8.

 Figure 9 depicts the attack's output by listing all the usernames found on the SSH server,

including the root account. It displays a list of all existing usernames by indicating "valid user"

and "not a valid user" for those not found in the system. To get a mix of normal and attack

traffic, the tcpreplay tool (cite) was used to initiate a pcap file of normal traffic obtained from

the public training repository (Stratosphere IPS, 2019).

Figure 3: The ifconfig command to identify the IP Address of penetration platform

Figure 4: The netdiscover command to identify the IP Address of the victim machine

16

Figure 5: Output of netdiscover command

Figure 6: The nmap command to scan open ports and services

Figure 7: The output of nmap command

Figure 8: Username enumeration command

Figure 9: Output of username enumeration

3.3.3 Data Collection and Labelling

The dataset was straightly collected from our closed-environment network using network

monitoring tools Wireshark (Wireshark, 2021) and tcpdump (tcpdump, 2021) installed in the

data collection point. The study chose Wireshark and tcpdump since they are open source and

17

support more than 1100 protocols with detailed information. Additionally, huge community

support and the ability to filter packets during and after capturing make them the most preferred

networking monitoring tools. This study used both experimental and simulation research

methods to collect raw packet data. The experiments were conducted by simulating attacks in

for nine consecutive days. A total of 36273 raw packet data were collected, each containing 25

features with label exclusive. The packet data collected were then given their corresponding

labels, username enumeration attack, non-username enumeration attack with the help of the

domain experts. We chose the terms “username enumeration attack” and “non-username

enumeration” instead of the traditional "attack" and "normal" label notations since normal

traffic data could contain attacks other than username enumeration attack, which is the focus

of our research. Since the goal of this study is to detect username enumeration attacks, we

found that labeling dataset in that way is more suitable.

The username enumeration attack corresponds to the attack traffic while non-username

enumeration traffic corresponds to the normal traffic. This traffic reflects different services,

including emails, DNS, HTTP, web, a few to mention. We finally managed to get a raw dataset

comprising attack traffic and normal traffic. Figure 10 shows some features and entries

obtained in a raw dataset.

Figure 10: Raw dataset collected before data preprocessing

3.4 Research Framework

Figure 11 depicts the research framework, which provides the study's logical flow and clear

explanation of how the research was carried out, from data generation, data preprocessing,

models developments and validation to the delivery of improved models. We firstly generated

18

the data and obtained our dataset. The raw dataset is stored in cloud storage. We used Google

Drive to store our dataset in this study. The dataset is then preprocessed, involving missing

data treatment, categorical encoding, data projection and data reduction. The dataset is split

into training and testing subsets before training on the models. In this work, we used the

training subset on four different classifiers.

After training the proposed models, performances are then evaluated using different evaluation

metrics, and the models’ parameters are tuned to get an optimized model. Finally, the best

selected model is deployed on an intrusion detection and prevention system (IDS/IPS) to enable

automatically detection and prevention of username enumeration attacks. An intrusion

prevention system (IDS) is a software or hardware-based system that detects and alerts

unauthorized or undesired access attempts, modifications, or resource restrictions on a

computer system (Abubakar & Pranggono, 2017). The intrusion detection system, in particular,

aids in the detection of external and internal attacks perpetrated by both users and hackers (Jain,

2021).

Figure 11: Research framework

3.5 Data Preprocessing

Data pre-processing is the data mining technique that transforms raw datasets into a readable

and understandable format. Machine learning algorithms make use of the datasets in

mathematical format, and such format is achieved through data pre-processing (Chandrasekar

et al., 2017; Huang et al., 2015). In this work, data pre-processing involved treating missing

values, encoding categorical values, data projection and data reduction. The preprocessed

dataset was then fed to the model as input data. All the data pre-processing techniques were

carried out using the scikit-learn library.

19

3.5.1 Missing Data Treatment

Missing data treatment in the dataset was conducted using the imputation technique. The

imputation technique involves either deletion of missing values or exchanging/replacing them

with estimations (Aljuaid & Sasi, 2016). In this work, the imputation technique was done by

replacing the missing values with the estimations. We chose to replace the missing values

rather than deleting them to avoid discarding a large proportion of the dataset and introducing

biases. The imputation technique was also done for both categorical and numerical features.

The most frequent strategy was used within each column for the categorical features to replace

the missing values. For the case of numerical features, a constant strategy was implemented to

replace the missing values.

3.5.2 Categorical Encoding

Categorical encoding aims to transform categorical values into numerical values. Categorical

values/variables represent string values rather than a continuous number (McGinnis et al.,

2018). We convert categorical variables to numerical values because machine learning

algorithms prefer numbers over strings which have no true order. There are many techniques

used for categorical encoding. The most commonly used ones are label encoding and one hot

encoding. This work used label encoding techniques to convert categorical variables to

numerical values. We selected this approach over one hot encoding technique because it

straightly converts categorical data to numerical data; hence, it does not increase the dimension

of the dataset.

3.5.3 Data Projection

Data projection, also called feature scaling, scales the data values into a similar range. Feature

scaling changes the appearance of the data and aids in the speeding up of the algorithm's

calculations (Bollegala, 2017). The dataset utilized in this study includes variables with varying

scales. As a result, the dataset was feature scaled to convert the feature vector into a format that

is more suitable for machine learning algorithms. For feature scaling of the dataset, there are a

variety of scalers available. MinMaxScaler (), StandardScaler () are the most widely used ones.

In this work, all features were scaled into the same predefined range using the Min-Max scaling

method. MinMaxScaler () scales the data so that all its values lie between 0 and 1.

20

3.5.4 Data Reduction

Data reduction intends to reduce the size of datasets using several techniques. In this study,

data reduction was implemented using the feature selection technique. Features selection intend

to find the best features in the dataset (Ahmad & Aziz, 2019). Hence, it aids in decreasing the

number of irrelevant features that increase computational complexity, training time, dataset

dimension and enhance performances (Wong et al., 2021). This work used mutual information

(MI) (Sharmin et al., 2019) as a features selection technique. The selection of the mutual

information technique was made due to its capacity to capture non-linear relations among

variables. The MI also has the advantage of being able to compute both categorical and

numerical variables, and deal with many classes (Rahmaninia et al., 2020). Seven different

features were selected from the dataset using the aforementioned features selection technique.

The description of each feature is shown in Table 2.

Table 2: Description of the features selected
Feature name Feature description
Time Packet duration time
Packet Length The length of the packet
Delta Time interval between packets
Flags Flags seen in the packet
Total Length The total length of the packet
Source Port The source port of the packet
Destination Port The destination port of the packet

3.6 Machine Learning Model Development

The machine-learning model is the outcome of the machine-learning training procedures.

Machine learning algorithms are used to train machine-learning models (Ahsan et al., 2021).

This work employs four distinctive machine learning algorithms/classifiers for the model

development. We selected these classifiers because they have dissimilar features and

lightweight computation. As discussed in Chapter two, they have also been used and shown

performances in other intrusion detection-related studies. We also picked different classifiers

in order to investigate a wider scale of investigation in username enumeration attack detection.

Therefore, we examined K-Nearest- Neighbor (KNN), Naïve Bayes (NB), Random Forest (RF)

and Decision Tree (DT) machine-learning classifiers.

21

3.6.1 Decision Tree (DT)

A decision tree is a widely known machine-learning classifier created in a tree-like structure

(Cherfi et al., 2018). Because of decision trees’ precision across many data types and their ease

of analysis, have discovered a diversity of implementation domains (Mazraeh et al., 2019). The

decision tree contains the internal nodes representing attributes and leaf nodes representing the

class label. The root node, a notable attribute for data separation, is first selected to form a

classification rule. The path is then chosen from the root node to the leaf nodes (Adel et al.,

2017; Priyanka & Kumar, 2020). The root node and internal nodes are referred to as non-

terminal nodes and are associated at the decision stage. The leaf nodes are collectively referred

to as terminal nodes, exemplifying final classification. In a decision tree, any path from the

root to the leaf node is characterized by a data separating sequence until a Boolean outcome is

reached (Adel et al., 2015; Liang et al., 2019). Thus, it is a structural illustration of the internal

nodes and links in the knowledge relationship (Charbuty & Abdulazeez, 2021). Figure 12

illustrates the structure of the decision tree.

Figure 12: The structure of the Decision Tree (https://javapoint/2021)

The decision tree classifier operates by recognizing associated attribute values as input data

and produces decisions as output. First, the tree is encoded as a string of symbols for

computation reasons. The string is then decoded, and pointers are assigned to each training

data to determine the proper classification route (Cherfi et al., 2018). Finally, the classifier

examines the training data to recognize the attributes with higher information gain than the

rest. Information gain tells how important a given attribute is. It decides the ordering of the

nodes of the decision tree classifier. As such, an attribute can effectively categorize or classify

the data. The root node is the attribute with the highest information gain since it instantly

22

classifies the training data into different classes. The attribute’s information gain is calculated

as follow:

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦	 −𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (1)

Mathematically can be presented as:

𝐺𝑎𝑖𝑛(𝐴)  = 	𝐻(𝑆𝑒𝑡) − (𝑤< 	× 𝐻(𝑎<) + 𝑤? 	× 𝐻(𝑎?)+. . . +𝑤A 	× 𝐻(𝑎A) (2)

Where

𝑎<, 𝑎?, 𝑎A	 are the different values of attribute A.

	𝑤<, 𝑤?, 𝑤A	are the weights of the subsets split by using the value of attribute A

𝐻	(𝑆𝑒𝑡)	is Entropy.

Entropy measures the purity or impurity of data instances that are often employed in

information theory. In addition, the entropy of instances can be used to determine their

homogeneity. The entropy of the data instances is calculated as follow:

𝐻(𝑆𝑒𝑡) = 	−𝑃< 	× 𝑙𝑜𝑔?𝑃< 	−	𝑃? 	×	 𝑙𝑜𝑔?𝑃? (3)

Where:

𝑃< is the proportion of the first decision.

𝑃?	is	the	proportion	of	the	second	decision

Similarly, each attribute is examined one by one in the increasing order of information gain

and constructs the tree. Consequently, the attributes with the next lower-level information gain

are used to divide the training data into sub-part until each training data record is given its class

label (Patil & Kulkarni, 2019). When the class labels for training data samples are known,

therefore decision trees are built by analyzing them.

3.6.2 Random Forest

Random Forest (RF) is another dominant machine-learning classifier under supervised learning

algorithms (Li et al., 2020) introduced by Breiman (2001). Similarly, to decision tree

classifiers, random forest is also used in machine-learning classification problems. Because of

its ability to deal with categorical and numerical attributes, minimal training time complexity,

quick prediction, robustness to unbalanced datasets, embedded feature selection approach, and

23

inherent metrics to order attributes by relevance, the random forest classifier is suitable for

classification problems (Resende & Drummond, 2018). Random Forest is an ensemble learning

that consists of decision trees. This is because random forest uses a bootstrap aggregation

technique to combine a variety of data sets and a feature selection process to anticipate the

outcome. It is formally defined as a classifier comprising a group of tree-structured classifiers.

Equation 4 shows the mathematical representation of a random forest classifier.

Similarly, Random Trees blend single model trees with Random Forest concepts, where each

node comprises k randomly select features in the tree. As a result, it improves the accuracy of

Random Forest over a single tree. The operation of the Random Forest classifier is conducted

in two different steps. The first step creates the asymmetrical forest of the specified dataset,

and the second one predicts the classifier acquired in the initial stage (Bhavani et al., 2020).

Fig. 13 illustrates the structure of the random forest.

{ℎR	(𝑋, 𝑇R)}, 𝑘 = 1, 2. . . . , 𝐿 (4)

Where:

𝑇R	are random samples that are dispersed in a uniform manner.

	𝑋	each tree casts vote for the most popular class.

Figure 13: The structure of Random Forest (https://ai-pool/2021)

24

3.6.3 Naïve Bayes

Naïve Bayes (NB) is a common probabilistic machine-learning classifier used in classification

or prediction problems. It is referred to as a probabilistic classifier because it functions by

computing the probability of a certain class in a specified dataset. Naïve Bayes contains two

probabilities: class and conditional probabilities. Class probability is the ratio of every class

instance occurrence to the total instances. Conditional probability is the quotient of every

feature occurrence for a certain class to the sample occurrence of that class (Alqahtani et al.,

2020; John & Langley, 2013). Equation 5 shows the mathematical presentation of Naïve Bayes.

𝑓Z[\(𝑥) = 	𝛱_`<	a 𝑃 b𝑋_`cde𝐶 = 𝑖g𝑃(𝐶 = 𝑖) (5)

Where:

𝑃 b𝑋_`cde𝐶 = 𝑖g is the class-condition probability distribution, which is defined as:

𝑃 b𝑋_`cde𝐶 = 𝑖g = hi𝑋 = 𝑥j𝐶 = 𝑖kh(l`Z)
h(m`c)

 (6)

Where:

𝑋 = (𝑋<, . . …𝑋a) is a feature vector and C being a class.

Naïve Bayes classifier presumes that features are independent for a given class and

contemplates association between the features (Han et al., 2011). It assigns the class label to

sample cases based on the most frequent values of the features. During the training phase, it

determines the prior probability of each class using the occurrences of each feature for each

class. Naive Bayes calculates the class posterior probability based on the class prior probability.

It concludes that the predictor’s result outcome for a particular class is independent of the

values of another predictor. Naïve Bayes allocates the class label to the new data using the

probabilities mentioned above (Mehmood & Rais, 2016). Figure 14 illustrates the structure of

Naïve Bayes.

25

Figure 14: The structure of Naive Bayes network (https://mdpi/2021)

3.6.4 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a non-parametric classifier that has been applied to a variety of

classification problems. The term non-parametric refers to the absence of any assumptions

about the underlying data distribution. It means that the model structure is based on the given

dataset (Malhotra et al., 2017). The non-parametric nature of the classifier is quite useful in

practice, as most real-world datasets do not adhere to mathematical theoretical assumptions.

Other advantages that make the classifier quite useful in practices are the ability to work well

with huge amounts of training data and resistance to noisy data (Gou et al., 2019).

K-Nearest Neighbor considers three important elements in its classification manner: record set,

distance and value of K. It functions by calculating the distance between sample points and

training points. The smallest distance point calculated is the nearest neighbor (Bhatia &

Vandana, 2010). The nearest neighbor is measured with respect to the value of k (in our case

k=4); this defines the number of nearest neighbors required to be examined in order to define

the class of sample data point (Soofi & Awan, 2017).

There are four distinct measures of calculating the smallest distance in K-Nearest Neighbor

classifier. They are Euclidean distance, Manhattan distance, Minkowski distance, Hamming

distance. However, this study only employed Euclidean distance measure as illustrated in

Equation 7. Its ability to quickly calculate the shortest distance between two points makes it

favorable among others.

𝑑	(𝑥, 𝑦) = 	o𝛴Z`<R (𝑥Z −	𝑦Z)? (7)

26

3.7 Implementation

The implementation of model’s development was conducted on a computer with 512 GB SSD

storage, Intel® Core i7 2.8 GHz CPU, 16 GB 1600 MHz DDR3 RAM, AMD Radeon R9

M370X 2048 MB, Intel® Iris Pro 1536 MB that came pre-installed with Macintosh operating

system. In addition, the GPU environment from Google Collaboratory with 25 GB RAM was

used in the training phase. Python v3.7 (Turner et al., 2018) was used as the programming

language, with scikit-learn (Feurer et al., 2019) as the library. The scikit-learn framework was

chosen because it allows models to be deployed and interpreted across several devices.

3.8 Training Phase

In this study, two folds of experimentations were conducted. The first fold excludes source and

destination ports as input features in the process of learning. The second one includes them as

our input features. This is because network administrators sometimes customize the destination

port to some different number other than the default port number for SSH protocol which is

port 22.

All the classification models were trained using a subset of 80% data of the given dataset and

the remaining subset of 20% to test the models. The train-test split ratio was based on Pareto

(Dunford et al., 2014) principle and was even for each classifier. From a dataset of 36 273

instances, we attained 29 018 instances for training and 7255 instances for testing for the two

classes, as shown in Table 3.

Table 3: Dataset splitting

Dataset SSH Username Enumeration
Attack

Non-Username Enumeration
Attack Total

Training 15075 13943 29018
Testing 3769 3486 7255

3.8.1 Training Phase – Ports Exclusive

Four machine-learning classifiers, Decision Tree, Random Forest, Naïve Bayes and K-Nearest

Neighbor were trained on two classes, username enumeration attack and non-username

enumeration attack without including ports information as feature sets.

(i) Decision Tree – Training and Hyperparameters Tuning

The decision tree classifier was used to develop a username enumeration attack detection

model in the training phase. In training the model, different hyperparameters were used.

27

Hyperparameters are configurable points in a machine learning model that can be tailored to a

specific job or dataset. The hyperparameters used in the training phase include criterion,

maximum depth, maximum features, maximum leaf nodes and splitter. All the values in each

hyperparameter used were selected using Randomized Search CV. Randomized Search CV is

an optimization algorithm that selects the optimal hyperparameter to fit the model from a list

of hyperparameters given, as shown in Fig. 15.

Criterion

This hyperparameter specifies how the impurity of a split will be measured. It has two options;

Gini or Entropy as metrics. The default value is Gini.

max_dept

This hyperparameter defines the maximum depth of the decision tree to avoid over-fitting. The

value is set to none by default.

maxi_features

This determines the number of features when considering the best split.

maxi_leaf_nodes

This hyperparameter specifies the maximum number of leaf nodes for the tree to take.

Split

This hyperparameter specifies how the decision tree looks for a feature split.

The criterion hyperparameter was set to Gini during training, which was the default value. Gini

has a lower computing complexity than other metrics like Entropy, making it ideal for the

training process. To avoid model over-fitting and to regularize the way the tree grows, the

maximum depth parameter value was set to 50. The maximum features hyperparameter value

was set to auto to determine the number of features to consider when splitting. The splitter

hyperparameter value was set to best to decide how the model searches for the features. The

model checks all of the features for each node and selects the best split. A tree's maximum

number of leaf nodes was set to 950. Table 4 summarizes the hyperparameters used when

training the Decision Tree classifier.

28

Table 4: Hyperparameters used when training the decision tree classifier
Classifier Hyperparameter Value
Decision Tree Criterion Gini

Maximum depth 50
Maximum features Auto
Maximum leaf nodes 950
Splitter Best

Figure 15: Illustration of how Randomized Search CV is performed to get the best
values for each parameter used in the Decision Tree classifier

(ii) Random Forest – Training and Hyperparameters Tuning

Training random forest classifier included six different hyperparameters. They were bootstrap,

maximum depth, maximum features, minimum sample leaf, minimum sample split and a

number of n estimators.

Bootstrap

This determines the sampling approach for data points

Maximum depth

It defines the maximum depth of the model.

29

Maximum features

Number of features when considering the best split.

Minimum sample split

The minimum number of data points inserted in a node before split

Minimum sample leaf

It defines the minimum number of data points required to be at a leaf node

N estimators

This hyperparameter specifies the number of trees in the forest.

In training the random forest classifier, the value of the n estimators hyperparameter was set to

1600. This hyperparameter's value is always higher to make the prediction stable and strong.

The n estimator value was set to 1600 based on the result of the optimization algorithm used,

The Randomized Search CV, as shown in Fig. 16. The minimum sample leaf value was set to

1 to guarantee the minimum number of samples required in every leaf node. The minimum

sample split value was set to 5 to allow internal node split. The maximum depth parameter

value was set to 90 to avoid model over-fitting and normalizing the tree’s evolution. The

maximum features hyperparameter value was set to Auto to select the number of features while

splitting. The sampling approach value was set to true in the bootstrap hyperparameter. The

summary of hyperparameters used when training the random forest classifier is shown in Table

5.

30

Figure 16: Illustration of how Randomized Search CV is performed to get the best

values for each parameter used in the Random Forest classifier

Table 5: Hyperparameters used when training Random Forest classifier
Classifier Hyperparameter Value
Random Forest Bootstrap True
 Maximum depth 90
 Maximum features Auto
 Minimum sample leaf 1
 Minimum sample split 5
 N estimators 1600

(iii) Naïve Bayes – Training and Hyperparameters Tuning

Var_smoothing is the only hyperparameter for tuning in the naïve Bayes classifier. It stabilizes

the calculation to smooth or widen the curve in order to accommodate more samples that are

further distant from the distribution mean. Table 6 below show the summary hyperparameter

used in the naïve Bayes classifier. The selected parameter value was obtained using

Randomized Search CV, as shown in Fig. 17.

31

Table 6: Hyperparameters used when training Naive Bayes classifier
Classifier Hyperparameter Value
Naïve Bayes Var_smoothing 2.848035868435799 * 10-5

Figure 17: Illustration of how Randomized Search CV is performed to get the best

values for each parameter used in the Naive Bayes classifier

(iv) K-Nearest Neighbor – Training and Hyperparameters Tuning

Training of K-Nearest Neighbor classifier included three hyperparameters n_neighbors,

leaf_size and p.

n_neighbor

This hyperparameter defines the number of neighbors to be used.

leaf_size

This hyperparameter determines tree construction and memory required to store the tree.

p

This parameter specifies the distance measure used in training the model. If set to 1 equal to

Minkowski, 2 equals to Euclidean distance measures.

During the training, the p hyperparameters value was set to 2. It was set to 2 because the

Euclidean distance measure was used. Next, the leaf size value was set to 7 to determine the

speed of tree construction and the memory required to store the created tree. Finally, the

N_neighbor hyperparameter value was set to 4. It determines the number of neighbors to be

used. As shown in Fig. 18, all the hyperparameter values were selected using an optimization

algorithm, Randomized Search CV. Table 7 shows the summary of hyperparameters used when

training the K-Nearest Neighbor classifier.

32

Figure 18: Illustration of how Randomized Search CV is performed to get the best

values for each parameter used in the K-Nearest Neighbor classifier

Table 7: Hyperparameters used when training K-Nearest Neighbor classifier
Classifier Hyperparameter Value
Naïve Bayes N 4
 Leaf size 7
 P 1

3.8.2 Training Phase – Port Inclusive

Towards studying the effect of including ports information as input feature sets, the same

classifiers were used in the second fold of the experimentation/training phase to develop

username enumeration attack detection models. The same experiment conducted when

excluding source and destination ports has been repeated but with the inclusion of ports

information in the training process. As discussed above, network administrators sometimes

customize destination ports to other numbers than the default SSH port number 22. Therefore,

the same dataset with the same split ratio was utilized in this case. Table 8 shows the

configuration and hyperparameters used when training four classifiers, including ports

information as input features.

33

Table 8: Hyperparameters used for models training - Ports inclusive
Classifier Hyperparameter Value
Decision Tree Criterion Entropy
 Maximum depth 60
 Maximum features Auto
 Maximum leaf nodes 500
 Splitter Best
Random Forest Bootstrap True
 Maximum depth 30
 Maximum features Sqrt
 Minimum sample leaf 1
 Minimum sample split 5
 N estimators 400
Naïve Bayes Var_smoothing 0.022328467394420651
K-Nearest Neighbor N 8
 Leaf size 5
 P 2

3.9 Evaluation

Model evaluation is a degree of how well the trained model generalizes to a new unseen dataset.

The unseen dataset for this case was 20% remaining of the dataset, the test subset. Model

evaluations aimed at estimating the generalization accuracy of the new dataset. The

performance of machine-learning models can be evaluated using different evaluation or

performances metrics. The choice of performance metrics depends on a given machine-

learning task such as classification, regression, and a few to mention. In this work, the

performance metrics to evaluate the effectiveness of the developed models were computed in

terms of precision, recall and overall accuracy. In addition, the Receiver Operating

Characteristics (ROC) curve was also considered an additional performance metric. The

metrics are defined below:

3.9.1 Precision

Precision is the metric that computes the number of positive class predictions that truly belong

to the positive class. That is, how many True Positives are there among all positive

class predictions? Thus, precision is the ratio of True Positives to the total number of positive

predictions.

34

Formally, precision is defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝐹𝑃)

Where:

True Positive (TP) is the number of positive samples accurately predicted as positive.

False Positive is the number of negative samples incorrectly predicted as positive.

Recall counts the number of positive class predictions made out of all positive examples in the

dataset.

F-Measure provides a single score that balances both the concerns of precision and recall in

one number.

3.9.2 Recall

Recall is the metric that computes the number of positive class predictions made out of all

positive instances in the dataset. That is, how many True positive predictions are there out of

all the actual positives? Hence, recall is the ratio of True Positives to the total number of

instances that should have been classified as positive. The term recall is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝐹𝑁)

Where

True Positive (TP) is the number of positive samples accurately predicted as positive.

False Negative (FN) is the number of positive samples incorrectly predicted as negative.

3.9.3 Accuracy

Accuracy is the metric that computes the number of correct predictions made out of all number

of predictions in the dataset. That is, how many correct predictions are out there out of all total

predictions? Thus, accuracy is the ratio of the number of correct predictions to the total number

of predictions. Mathematically, accuracy is defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝐴𝑙𝑙	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

35

Where:

Correct Prediction is the number of samples correctly predicted.

All Prediction is the total number of all predictions in the dataset.

3.9.4 Receiver Operating Characteristics (ROC) Curve

The Receiver Operating Characteristics (ROC) curve is the evaluation metric that draws the

graph showing the performance of the subsequent model. The curve plots two parameters True

Positive Rate and False Positive Rate.

True Positive Rate is defined as:

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝑇𝑃𝑅) =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝐹𝑁)	

Where:

True Positive (TP) is the number of positive samples accurately predicted as positive.

False Negative (FN) is the number of positive samples incorrectly predicted as negative.

 False Positive Rate is defined as:

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	
𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝐹𝑃)

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝐹𝑃) + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑇𝑁)

Where

False Positive (FP) is the number of negative samples incorrectly predicted as positive.

True Negative (TN) is the number of negative samples correctly predicted as negative.

The ROC curve shows the difference between True Positive Rate and False Positive Rate. The

higher ROC value indicates a high True Positive Rate and low False Positive Rate, which is

desirable in anomaly detection.

The models were trained and evaluated, observing the performance metrics in both training

and testing subsets. The results of the developed models are presented and discussed in the next

chapter.

36

3.10 Model Deployment Phase

The model deployment phase refers to the process of integrating a machine learning model into

an existing production environment such as mobile applications, web applications or intrusion

detection and prevention systems (IDS/IPS) to make real-world evaluations based on input

data. The proposed model was deployed into SNORT (Chakrabarti et al., 2010) to

automatically detect and prevent username enumeration attacks.

The SNORT is an open-source software-based network detection and prevention system (IPS)

that monitors the network traffic for unusual activities to determine whether it has been

compromised. It contains one or more network-based sensors, monitoring and filtering all

network traffic. When suspicious or malicious traffic is identified, the sensors assist in filtering

network traffic and generating warnings. The SNORT IDS/IPS, in particular, assists in the

detection and prevention of both external and internal attacks carried out by both attackers and

benign users. It can be configured as a packet logger, sniffer or network intrusion detection and

prevention system (IDS/IPS). If SNORT is configured as an intrusion prevention system (IPS),

it monitors the network traffic and compares it against the defined rules. It issues alerts when

it detects suspicious network traffic. All SNORT rules are defined and modified in snort.conf

file.

37

CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This Chapter presents the results of the study and discusses them in detail. The activities result

in each specific objective were examined. Firstly, the evaluation of the data collection activity

was presented. Then the performance metrics for the two-fold experimentations were

conducted. The effectiveness comparison was examined when including and excluding ports

information as feature sets. Lastly, the best performing model was adopted to the intrusion

detection and prevention system.

4.2 Dataset

This work collected 18 844 and 17 429 instances for the SSH username enumeration attack

and non-username enumeration attack, respectively, from the closed-environment network. For

each class obtained, the dataset was split into a training subset and testing subset in a ratio of

80:20, respectively, as shown in Table 3. The training subset was used for models training

while the testing subset evaluated the models developed. Table 9 illustrates the dataset

distribution obtained for this study.

Table 9: Dataset distribution
Class Instances
SSH Username Enumeration Attack 18 844
Non-Username Enumeration Attack 17 429

4.3 Performance Metrics Results

The performance metrics were evaluated for the two-fold experimentations conducted when

including and excluding source and destination port as input features. Performance evaluation

for each classification model developed in both cases used the same testing subset of the dataset

shown in Table 3.

4.3.1 Precision

Table 10 presents precision values obtained in performance evaluation of the developed models

in detecting and preventing username enumeration attacks. As indicated in the table, the

precision values are for both cases, when including and excluding ports information as feature

sets. The precision values of the KNN classifier is as higher as 99.95% when excluding ports

38

information and 100% when including ports information, achieving the highest detection rate

compared to other developed models. On the other hand, the performance of NB is relatively

low, with the precision of 94.85% and 99.72%, respectively. It is likely because NB is a weak

classifier in nature and other models outperformed it.

Table 10: Precision values obtained by different classifiers when including and
excluding ports information

Classifier Precision - Ports exclusive Precision - Ports inclusive
DT 99.84 99.97
RF 99.87 99.89
NB 94.85 99.72
KNN 99.95 100

4.3.2 Accuracy

While evaluating the performance of the models developed on the dataset described in Table

3, the accuracy values for two-fold experimentations were recorded. Table 11 shows the

accuracy values obtained by different classifiers when including and including source and

destination ports as a feature set. The maximum accuracy was 99.93% when excluding ports

information and 99.95% when including ports information. The minimum accuracy values

obtained were 95.70% and 99.85% when excluding and including ports information. The

accuracy values obtained imply that the models detect the attack with a good performance, as

the values remained high for all models.

Table 11: Accuracy values obtained by different classifiers when including and
excluding ports information

Classifier Accuracy - Ports exclusive Accuracy - Ports inclusive
DT 99.88 99.93
RF 99.92 99.94
NB 95.70 99.85
KNN 99.93 99.95

4.3.3 Receiver Operating Characteristic Curve

The area under receiver operating characteristic (ROC) curve summarized the performance of

the developed models to detect and prevent username enumeration attacks. Table 12 indicates

the roc curve values obtained by all classifiers used. As can be seen, the correctly classified

rate is higher to the maximum value of 1, both when using and not using port information as a

feature set. It implies that the classifiers can effectively detect username enumeration attacks

with a high detection rate and low false alarm rate. Figure 19 and 20 show the roc curves for

all modes when using and not using ports information.

39

Table 12: ROC values obtained by different classifiers when including and excluding
ports information

Classifier ROC - Ports exclusive ROC - Ports inclusive
DT 0.997 0.998
RF 0.998 0.999
NB 0.994 0.997
KNN 0.999 1.000

Figure 19: ROC AUC - Ports Exclusive

Figure 20: ROC AUC - Port Inclusive

40

Table 13: Summary of performance metrics for all models - Ports exclusive
Classifier Precision Accuracy ROC
DT 99.84 99.88 0.997
RF 99.87 99.92 0.998
NB 94.85 95.70 0.994
KNN 99.95 99.93 0.999

Table 14: Summary of performance metrics for all model - Ports inclusive
Classifier Precision Accuracy ROC
DT 99.97 99.93 0.998
RF 99.89 99.94 0.999
NB 99.72 99.85 0.997
KNN 100 99.95 1.000

If we observe our prediction results, we see all the classification models in both tables – when

including and excluding ports information provide outstanding results as indicated by an

accuracy of greater than 95.70%, which ensures the models effectiveness in the detection of

username enumeration attack. The KNN classifier has the maximum performance metrics with

an accuracy of 99.95% when including source and destination ports as input features and an

accuracy of 99.93% while excluding source and destination ports as models input features.

Additionally, Fig. 19 and Fig. 20 show the ROC curves as the models’ outcome results for two

kinds of experiments conducted. They represent the True Positive rate versus False Positive

rate of each classification model developed.

From the figures, we observe that the correctly classified rate is higher, close to the maximum

value of 1. In contrast, the falsely classified rate is low for both cases – when including and

excluding ports information. Therefore, from the outcome results in Table 13 and Table 14

together with ROC curves in Fig. 19 and 20, we can conclude that our machine-learning-based

classification models effectively detect username enumeration attacks with high detection and

low false alarm rate.

4.4 Effectiveness Comparison when Including and Excluding Ports Information

The effectiveness comparison between two kinds of experiments conducted shows that when

including source and destination ports as input features, there are performance improvements

compared to when the source and destination ports are excluded. Figure 21 and 22 show the

relative comparison of precision, accuracy and roc-auc utilizing the dataset discussed in the

earlier section. The classification performances of the DT, RF and KNN models slightly

improve. The KNN model increases from an accuracy of 99.93% when it excludes source and

41

destination ports as a feature set to an accuracy of 99.95% when it includes source and

destination as a feature set. Similarly, the RF model slightly improves from an accuracy of

99.92% to 99.94% when including source and destination port as the model’s input features.

The Decision Tree improves its performance from an accuracy of 99.88% to 99.93%. Finally,

the Naïve Bayes model significantly improves when including ports information as a feature

set. It increases from an accuracy of 95.70% to 99.85%. Usually, Naïve Bayes is a weak

classifier, and for the case of excluding ports information as input features in our study, other

classifiers outperform it. However, by including source and destination port to its feature set,

Naïve Bayes produces almost the same performance outcome results compared to DT, RF and

KNN.

Figure 21: Effectiveness comparison – Ports exclusive

42

Figure 22: Effectiveness comparison – Ports inclusive

We observe that the DT, RF and KNN classification models produce almost the same

classification performances regardless of whether port information is included or excluded in

the feature set. It can be translated that even if source and destination ports are not included as

the model’s input features, the distribution of samples in the feature area is still a means that

samples with a similar label are dispersed together.

We also observe that the Naïve Bayes classification model significantly enhances performance

when including ports information as its input feature. This is due to the presumption that

features in Naïve Bayes are completely independent. Therefore, it is rational to accept that the

independent nature of Naïve Bayes’ features can be recompensed with the inclusion of

additional attributes to its attribute set and yields in performance improvement.

Thus, according to the results shown in Fig. 21 and 22 and the above experimental analysis,

we can conclude that including source and destination ports as input features has various

impacts on the developed classifiers depending on their type. However, it generally enhances

the performances, ensuring the models’ effectiveness in detecting username enumeration

attacks.

4.5 Custom IDS/IPS

K-Nearest Neighbor model was chosen for the deployment because it has a simpler structure

and requires fewer computing resources than the other training techniques used in this study.

43

The selected model was embedded into the SNORT intrusion detection and prevention system

(IDS/IPS), as mentioned in Section 3.10. The proposed customized SNORT IDS/IPS was

implemented by adding and editing KNN rules, specifically by modifying and fine-tuning

/user/local/etc/ in snort.conf. After deploying the KNN model into SNORT IDS/IPS, its default

action “alert” was changed to drop for dropping username enumeration attack traffic and

allowing non-username enumeration attack traffic according to rules in customized SNORT

IDS/IPS.

44

CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

This study presents a novel username enumeration attack detection and prevention method on

SSH protocol using machine-learning approaches. To achieve this, we collected the data from

a closed-environment network, and the dataset is then labelled to generate a labelled dataset.

We trained four distinct classifiers in a dataset containing two class labels: The username

enumeration and non-username enumeration attack class instances. The former represented the

normal class, while the latter represented the attack class. We evaluated the models’

performance using accuracy, precision and ROC-AUC values. Our findings show that using

machine-learning approaches to detect SSH username enumeration attacks achieves reasonable

results, with KNN having an accuracy of 99.93%, NB 95%, RF 99.92% and DT 99.88%.

In addition, when training classification models, we investigated the impact of including ports

information in the feature set. Our findings imply that including source and destination ports

as input features improved performances without compromising computation power. However,

the performance improvements vary from classifier to classifier based on their nature. The

classifier such as Naïve Bayes, significantly enhances performance when including ports

information. The nature of Naïve Bayes’ features is completely independent; hence, including

ports information yields significant performance improvements. The best selected model was

then deployed into intrusion detection and prevention system (IDS/IPS) to automatically detect

and prevent username enumeration attack

5.2 Recommendations

In future work, this research can be expanded into several directions. This study recommends

a further stabilization of the developed models' robustness by gathering more data in a

production-environment network and evaluating how developed models would perform on the

real-world live dataset. Deep-learning techniques may also be incorporated in the future to

detect username enumeration attacks. The study also recommends the use of machines with

high computation power.

45

REFERENCE

Abubakar, A., & Pranggono, B. (2017). Machine learning based intrusion detection system for

software defined networks. The 2017 Seventh International Conference on Emerging

Security Technologies (EST). https://www.google.com

Agghey, A. Z., Mwinuka, L. J., Pandhare, S. M., Dida, M. A., & Ndibwile, J. D. (2021).

Detection of Username Enumeration Attack on SSH Protocol: Machine Learning

Approach. Symmetry, 13(11), 2192.

Ahmad, T., & Aziz, M. N. (2019). Data preprocessing and feature selection for machine

learning intrusion detection systems. Express Letters, 13(2), 93–101.

Ahsan, M., Gomes, R., Chowdhury, M., & Nygard, K. E. (2021). Enhancing Machine Learning

Prediction in Cybersecurity Using Dynamic Feature Selector. Journal of Cybersecurity

and Privacy, 1(1), 199–218.

Alata, E., Nicomette, V., Kaâniche, M., Dacier, M., & Herrb, M. (2006). Lessons learned from

the deployment of a high-interaction honeypot. The 2006 Sixth European Dependable

Computing Conference. https://www.google.com

Aljuaid, T., & Sasi, S. (2016). Proper imputation techniques for missing values in data sets.

2016 International Conference on Data Science and Engineering.

https://www.google.com

Alqahtani, H., Sarker, I. H., Kalim, A., Minhaz Hossain, S. M., & Hossain, S. (2020). Cyber

Intrusion Detection Using Machine Learning Classification Techniques.

https://www.google.com

Alshehri, H., & Meziane, F. (2017). Current state on internet growth and usage in Saudi Arabia

and its ability to support e-commerce development. Journal of Advanced Management

Science, 5(2), 127–132.

Anandita, S., Rosmansyah, Y., Dabarsyah, B., & Choi, J. U. (2015). Implementation of

dendritic cell algorithm as an anomaly detection method for port scanning attack. The

2015 International Conference on Information Technology Systems and Innovation.

https://www.google.com

Apruzzese, G., Colajanni, M., Ferretti, L., Guido, A., & Marchetti, M. (2018). On the

46

effectiveness of machine and deep learning for cyber security. The 2018 10th International

Conference on Cyber Conflict (CyCon). https://www.google.com

Bhagwat, R., & Kadwalkar, A. (2020). A Research on Secure Shell Protocol. International

Journal of Advanced Research in Science, Communication and Technology, 9(2), 1-6.

Bhatia, N. (2010). Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085.

https://www.google.com

Bhavani, T. T., Rao, M. K., & Reddy, A. M. (2020). Network intrusion detection system using

random forest and decision tree machine learning techniques. First International

Conference on Sustainable Technologies for Computational Intelligence.

https://www.google.com

Bollegala, D. (2017). Dynamic feature scaling for online learning of binary classifiers.

Knowledge-Based Systems, 129, 97–105.

Buczak, A. L., & Guven, E. (2016). A Survey of Data Mining and Machine Learning Methods

for Cyber Security Intrusion Detection. Communications Surveys and Tutorials, 18(2),

1153–1176. https://doi.org/10.1109/COMST.2015.2494502

Čeleda, P., Velan, P., Král, B., & Kozák, O. (2019). Enabling SSH Protocol Visibility in Flow

Monitoring. The 2019 IFIP/IEEE Symposium on Integrated Network and Service

Management. https://www.google.com

Chakrabarti, S., Chakraborty, M., & Mukhopadhyay, I. (2010). Study of snort-based IDS.

Proceedings of the International Conference and Workshop on Emerging Trends in

Technology. https://www.google.com

Chandrasekar, P., Qian, K., Shahriar, H., & Bhattacharya, P. (2017). Improving the prediction

accuracy of decision tree mining with data preprocessing. The 2017 IEEE 41st Annual

Computer Software and Applications Conference. https://www.google.com

Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree algorithm for

machine learning. Journal of Applied Science and Technology Trends, 2(01), 20–28.

Cherfi, A., Nouira, K., & Ferchichi, A. (2018). Very fast C4. 5 decision tree algorithm. Applied

Artificial Intelligence, 32(2), 119–137.

Dave, K. T. (2013). Brute-force Attack ‘Seeking but Distressing’. International Journal of

47

Innovations in Engineering and Technology Brute-force, 2(3), 75-78.

De Fuentes, J. M., Hernandez-Encinas, L., & Ribagorda, A. (2018). Security Protocols for

Networks and Internet: A Global Vision. In Computer and Network Security Essentials.

https://www.google.com

Dunford, R., Su, Q., & Tamang, E. (2014). The pareto principle. https://www.google.com

Eesa, A. S., Abdulazeez, A. M., & Orman, Z. (2017). A DIDS Based on The Combination of

Cuttlefish Algorithm and Decision Tree. Science Journal of University of Zakho, 5(4),

313-318.

Eesa, A. S., Orman, Z., & Brifcani, A. M. A. (2015). A novel feature-selection approach based

on the cuttlefish optimization algorithm for intrusion detection systems. Expert systems

with applications, 42(5), 2670-2679.

Elmrabit, N., Zhou, F., Li, F., & Zhou, H. (2020). Evaluation of machine learning algorithms

for anomaly detection. The 2020 International Conference on Cyber Security and

Protection of Digital Services (Cyber Security). https://www.google.com

Exploits-db. (2018). OpenSSH 2.3 < 7.7 - Username Enumeration. https://www.exploit-

db.com/exploits/45233

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J. T., Blum, M., & Hutter, F. (2019).

Auto-sklearn: Efficient and robust automated machine learning. In Automated Machine

Learning. https://www.google.com

Fiterǎu-Broştean, P., Lenaerts, T., Poll, E., De Ruiter, J., Vaandrager, F., & Verleg, P. (2017).

Model learning and model checking of SSH implementations. The 2017 - Proceedings of

the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software.

https://doi.org/10.1145/3092282.3092289

Gou, J., Ma, H., Ou, W., Zeng, S., Rao, Y., & Yang, H. (2019). A generalized mean distance-

based k-nearest neighbor classifier. Expert Systems with Applications, 115, 356–372.

Gupta, P., Mehrotra, S., Panwar, N., Sharma, S., Venkatasubramanian, N., & Wang, G. (2020).

Quest: Practical and oblivious mitigation strategies for COVID-19 using WiFi datasets.

ArXiv Preprint ArXiv:2005.02510. https://www.google.com

Hamid, Y., Sugumaran, M., & Journaux, L. (2016). Machine learning techniques for intrusion

48

detection: A comparative analysis. Proceedings of the International Conference on

Informatics and Analytics. https://www.google.com

Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques.

https://www.google.com

Hansman, S., & Hunt, R. (2005). A taxonomy of network and computer attacks. Computers &

Security, 24(1), 31–43.

Hewlett-Packard. (2010). Top Cyber Security Risks Threat report for 2010. http:// dvlabs.

tippingpoint. com/toprisks2010.

Hofstede, R., Jonker, M., Sperotto, A., & Pras, A. (2017). Flow-based web application brute-

force attack and compromise detection. Journal of Network and Systems Management,

25(4), 735–758.

Hoque, N., Bhuyan, M. H., Baishya, R. C., Bhattacharyya, D. K., & Kalita, J. K. (2014).

Network attacks: Taxonomy, tools and systems. Journal of Network and Computer

Applications, 40, 307–324.

Hossain, M. D., Ochiai, H., Doudou, F., & Kadobayashi, Y. (2020). SSH and FTP brute-force

Attacks Detection in Computer Networks: LSTM and Machine Learning Approaches.

2020 5th International Conference on Computer and Communication Systems.

https://www.google.com

Huang, J., Li, Y. F., & Xie, M. (2015). An empirical analysis of data preprocessing for machine

learning-based software cost estimation. Information and Software Technology, 67, 108–

127. https://doi.org/10.1016/j.infsof.2015.07.004

Hynek, K., Beneš, T., Čejka, T., & Kubátová, H. (2020). Refined Detection of SSH Brute-Force

Attackers Using Machine Learning. IFIP International Conference on ICT Systems

Security and Privacy Protection. https://www.google.com

Infante-Moro, A., Infante-Moro, J. C., Martínez-López, F. J., & García-Ordaz, M. (2016). The

importance of internet and online social networks in the Spanish hotel sector. Applied

Computer Science, 12(1), 57-86.

Internetworldstats. (2021). World Internet Users Statistics and 2021 World Population Stats.

https://www.internetworldstats.com/stats.htm

49

Jain, G. (2021). Application of SNORT and Wireshark in Network Traffic Analysis. IOP

Conference Series: Materials Science and Engineering. https://www.google.com

Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of

Computer and System Sciences, 80(5), 973–993.

Javed, M., & Paxson, V. (2013). Detecting stealthy, distributed SSH brute-forcing.

Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications

Security. https://www.google.com

John, G. H., & Langley, P. (2013). Estimating Continuous Distributions in Bayesian

Classifiers. https://arxiv.org/abs/1302.4964v1

Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects.

Science, 349(6245), 255–260.

Joshi, A., Wazid, M., & Goudar, R. H. (2015). An efficient cryptographic scheme for text

message protection against brute force and cryptanalytic attacks. Procedia Computer

Science, 48, 360–366.

Kannisto, J., & Harju, J. (2017). The time will tell on you: Exploring information leaks in ssh

public key authentication. International Conference on Network and System Security.

https://www.google.com

kaspersky. (2021). Brute Force Attacks: Password Protection | Kaspersky.

https://www.kaspersky.com/resource-center/definitions/brute-force-attack

Kavitha, M. P. (2011). Secured Password Hacking Process Using Multi Authentication

Process. https://www.google.com

Kaynar, K. (2016). A taxonomy for attack graph generation and usage in network security.

Journal of Information Security and Applications, 29, 27–56.

Khandait, P., Tiwari, N., & Hubballi, N. (2021). Who is Trying to Compromise Your SSH

Server ? An Analysis of Authentication Logs and Detection of Bruteforce Attacks. ACM

International Conference Proceeding Series. https://doi.org/10.1145/3427477.3429772

Kyaw, A. K., Sioquim, F., & Joseph, J. (2016). Dictionary attack on Wordpress: Security and

forensic analysis. The 2015 2nd International Conference on Information Security and

Cyber Forensics, InfoSec 2015. https://doi.org/10.1109/InfoSec.2015.7435522

50

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Lee, J. K., Kim, S. J., Park, C. Y., Hong, T., & Chae, H. (2016). Heavy-tailed distribution of

the SSH Brute-force attack duration in a multi-user environment. Journal of the Korean

Physical Society, 69(2), 253–258.

Li, P., & Qiu, X. (2012). NodeRank: an algorithm to assess state enumeration attack graphs.

2012 8th International Conference on Wireless Communications, Networking and Mobile

Computing. https://www.google.com

Li, X., Chen, W., Zhang, Q., & Wu, L. (2020). Building auto-encoder intrusion detection

system based on random forest feature selection. Computers & Security, 95, 101851.

Liang, J., Qin, Z., Xiao, S., Ou, L., & Lin, X. (2019). Efficient and secure decision tree

classification for cloud-assisted online diagnosis services. Transactions on Dependable

and Secure Computing, 18(4), 1632-1644.

Liu, Y., & Morgan, Y. (2018). Security against passive attacks on network coding system: A

survey. Computer Networks, 138, 57–76.

Mahesh, B. (2020). Machine learning algorithms: A review. International Journal of Science

and Research, 9, 381-386.

Malhotra, S., Bali, V., & Paliwal, K. K. (2017). Genetic programming and K-nearest neighbour

classifier based intrusion detection model. The 2017 7th International Conference on

Cloud Computing, Data Science & Engineering-Confluence. https://www.google.com

Mazraeh, S., Ghanavati, M., & Neysi, S. H. N. (2019). Intrusion detection system with decision

tree and combine method algorithm. International Academic Journal of Science and

Engineering, 6(1), 167–177.

McGinnis, W. D., Siu, C., Andre, S., & Huang, H. (2018). Category encoders: A scikit-learn-

contrib package of transformers for encoding categorical data. Journal of Open Source

Software, 3(21), 501.

Mehmood, T., & Rais, H. B. M. (2016). Machine learning algorithms in context of intrusion

detection. The 2016 3rd International Conference on Computer and Information Sciences.

https://www.google.com

Nagamalai, D., Renault, E., & Dhanuskodi, M. (2011). Trends in Computer Science,

51

Engineering and Information Technology: First International Conference, CCSEIT 2011,

Tirunelveli, Tamil Nadu, India, September 23-25, 2011, Proceedings.

https://www.google.com

Najafabadi, M. M., Khoshgoftaar, T. M., Calvert, C., & Kemp, C. (2015). Detection of ssh

brute force attacks using aggregated netflow data. The 2015 14th International

Conference on Machine Learning and Applications. https://www.google.com

Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., & Zuech, R. (2014). Machine

learning for detecting brute force attacks at the network level. The 2014 International

Conference on Bioinformatics and Bioengineering. https://www.google.com

Nathan, A. J., & Scobell, A. (2020). 2020 Data Breach Investigations Report. Verizon.

https://enterprise.verizon.com/resources/reports/2020-data-breach-investigations-

report.pdf%0Ahttp://bfy.tw/HJvH

Nawir, M., Amir, A., Yaakob, N., & Lynn, O. B. (2019). Effective and efficient network

anomaly detection system using machine learning algorithm. Bulletin of Electrical

Engineering and Informatics, 8(1), 46–51.

Ndibwile, J. D., Govardhan, A., Okada, K., & Kadobayashi, Y. (2015). Web server protection

against application layer DDoS attacks using machine learning and traffic authentication.

Proceedings - International Computer Software and Applications Conference, 3, 261–

267. https://doi.org/10.1109/COMPSAC.2015.240

OpenSSH. (2021). OpenSSH https://www.openssh.com/

Owens, J., & Matthews, J. (2008). A study of passwords and methods used in brute-force SSH

attacks. USENIX Workshop on Large-Scale Exploits and Emergent Threats.

https://www.google.com

Pahwa, K., & Agarwal, N. (2019). Stock market analysis using supervised machine learning.

2019 International Conference on Machine Learning, Big Data, Cloud and Parallel

Computing. https://www.google.com

Patil, A., Laturkar, A., Athawale, S. V., Takale, R., & Tathawade, P. (2017). A multilevel

system to mitigate DDOS, brute force and SQL injection attack for cloud security. The

2017 International Conference on Information, Communication, Instrumentation and

Control. https://www.google.com

52

Patil, S., & Kulkarni, U. (2019). Accuracy prediction for distributed decision tree using

machine learning approach. The 2019 3rd International Conference on Trends in

Electronics and Informatics. https://www.google.com

Pawar, M. V., & Anuradha, J. (2015). Network security and types of attacks in network.

Procedia Computer Science, 48, 503–506.

Portswigger, 2018. (n.d.). Vulnerabilities in password-based login | Web Security Academy.

https://portswigger.net/web-security/authentication/password-based

Priyanka, & Kumar, D. (2020). Decision tree classifier: A detailed survey. International

Journal of Information and Decision Sciences, 12(3), 246-269.

Rahmaninia, M., Moradi, P., & Jalili, M. (2020). A Multi-Objective Feature Selection Method

based on the Conditional Mutual Information and Pareto Set Theory. Tabriz Journal of

Electrical Engineering, 50(3), 1225–1237.

Rapid7. (n.d.). User Enumeration Explained: Techniques and Prevention Tips | Rapid7 Blog.

2017. https://www.rapid7.com/blog/post/2017/06/15/about-user-enumeration/

Resende, P. A. A., & Drummond, A. C. (2018). A survey of random forest based methods for

intrusion detection systems. Computing Surveys (CSUR), 51(3), 1–36.

Saito, S., Maruhashi, K., Takenaka, M., & Torii, S. (2016). Topase: Detection and prevention

of brute force attacks with disciplined IPs from IDs logs. Journal of Information

Processing, 24(2), 217–226.

Satoh, A., Nakamura, Y., & Ikenaga, T. (2012). SSH dictionary attack detection based on flow

analysis. The 2012 12th International Symposium on Applications and the Internet.

https://www.google.com

Sharafaldin, I., Lashkari, A. H., & Ghorbani, A. A. (2018). A detailed analysis of the cicids2017

data set. International Conference on Information Systems Security and Privacy.

https://www.google.com

Sharma, D., & Kumar, N. (2017). A review on machine learning algorithms, tasks and

applications. International Journal of Advanced Research in Computer Engineering &

Technology, 6(10), 1548–1552.

Sharmin, S., Shoyaib, M., Ali, A. A., Khan, M. A. H., & Chae, O. (2019). Simultaneous feature

53

selection and discretization based on mutual information. Pattern Recognition, 91, 162–

174.

Sheikh, A. F. (2020). CompTIA Security+ Certification Study Guide. CompTIA Security+

Certification Study Guide. https://doi.org/10.1007/978-1-4842-6234-4

Soofi, A. A., & Awan, A. (2017). Classification techniques in machine learning: Applications

and issues. Journal of Basic and Applied Sciences, 13, 459–465.

Srivastava, M. (2021). An introduction to network security attacks. In Inventive Systems and

Control (pp. 505-515). Springer, Singapore. https://www.google.com

Stiawan, D. (2017). Cyber-attack penetration test and vulnerability analysis.

https://www.google.com

Stiawan, D., Idris, M., Malik, R. F., Nurmaini, S., Alsharif, N., & Budiarto, R. (2019).

Investigating brute force attack patterns in IoT network. Journal of Electrical and

Computer Engineering, 2019, 1-14.

Stiawan, D., Sandra, S., Alzahrani, E., & Budiarto, R. (2017). Comparative analysis of K-

Means method and Naïve Bayes method for brute force attack visualization. The 2017 2nd

International Conference on Anti-Cyber Crimes. https://www.google.com

Stratosphere IPS. (2019). Malware Capture Facility Project: Normal Captures: Stratosphere

IPS. https://www.stratosphereips.org/datasets-normal

Techcesscyber. (2018). Protecting Network Against Brute Force Password Attacks - TechCess.

https://www.techcesscyber.com/2018/09/protecting-network-against-brute-force-

password-attacks/

Turner, P. R., Arildsen, T., & Kavanagh, K. (2018). Applied Scientific Computing: With

Python. https://www.google.com

Virtue Security. (2021). Username Enumeration. https://www.google.com

Vizváry, M., & Vykopal, J. (2013). Flow-based detection of RDP brute-force attacks.

Proceedings of 7th International Conference on Security and Protection of Information.

https://www.google.com

Vykopal, J. (2011). A flow-level taxonomy and prevalence of brute force attacks. International

54

Conference on Advances in Computing and Communications. https://www.google.com

Vykopal, J., Plesnik, T., & Minarik, P. (2009). Network-based dictionary attack detection. The

2009 International Conference on Future Networks. https://www.google.com

Wong, H. M., Chen, X., Tam, H. H., Lin, J., Zhang, S., Yan, S., Li, X., & Wong, K. C. (2021).

Feature Selection and Feature Extraction: Highlights. International Conference

Proceeding Series. https://doi.org/10.1145/3461598.3461606

Ylonen, T. (2019). SSH key management challenges and requirements. The 2019 10th IFIP

International Conference on New Technologies, Mobility and Security, NTMS 2019 -

Proceedings and Workshop. https://doi.org/10.1109/NTMS.2019.8763773

55

APPENDICES

Appendix 1: Data preprocessing

Import libraries

#Mount Google Drive with Google Colab

from google.colab import drive

drive.mount('/content/gdrive')

import numpy as np

np.random.seed(42)

import pandas as pd

#For visualization

import matplotlib.pyplot as plt

import seaborn as sns

%config InlineBackend.figure_format = 'retina'

#Metrics

from sklearn.metrics import accuracy_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import roc_auc_score

#DT Classifier

from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.naive_bayes import GaussianNB

from sklearn.neighbors import KNeighborsClassifier

#Split data

from sklearn.model_selection import train_test_split

56

Check dataset encoding

import chardet

with open("../content/gdrive/MyDrive/research/data_unprocessed.csv",

'rb') as rawdata:

 result = chardet.detect(rawdata.read(10000))

check what the character encoding might be

print(result)

Load the dataset according to encoding obtained

raw_data =

pd.read_csv('/content/gdrive/MyDrive/research/data_unprocessed.csv',

encoding='latin-1')

Save the dataset to standard encoding UTF-8

raw_data.to_csv('/content/gdrive/MyDrive/research/raw_data.csv',

index=False)

Load the dataset with standard encoding UTF-8

raw_data = pd.read_csv('/content/gdrive/MyDrive/research/raw_data.csv'

Data preprocessing

#Drop unnecessary columns

raw_data = raw_data.drop(['Info', 'ArrivalTime',

'FrameLengthStoredIntoCaptureFile.1'], axis=1)

Columns with missing values

missing_values = [misval for misval in raw_data.columns

 if raw_data[misval].isnull().any()]

print(missing_values)

Fill missing values in columns

#Filling missing values with zeros

raw_data['SourcePort'].fillna(0, inplace=True)

57

raw_data['DestinationPort'].fillna(0, inplace=True)

#Filling missing values with pre or post data entry

raw_data['Flags'].fillna('noflag', inplace=True)

raw_data = raw_data.fillna(method='bfill')

Categorical encoding

#First know all categorical columns in dataset

cat_cols = [ccol for ccol in raw_data.columns

 if raw_data[ccol].dtypes=='object']

print(cat_cols)

#Label Encoding

from sklearn.preprocessing import LabelEncoder

le=LabelEncoder()

for col in cat_cols:

 if col in proc_data.columns:

 i = proc_data.columns.get_loc(col)

 proc_data.iloc[:,i] = proc_data.apply(lambda

i:le.fit_transform(i.astype(str)), axis=0, result_type='expand')

Scaling

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

number_cols = [no for no in proc_data.columns

 if proc_data[no].dtypes in ['int64', 'float64']]

print(number_cols)

proc_data[['Time', 'SourceIP', 'SourcePort', 'DestinationIP',

'DestinationPort', 'Protocol', 'PacketLength', 'Delta',

'TimeShiftForPacket', 'FrameLengthStoredIntoCaptureFile', 'Flags',

'TCPFlags', 'TextItem', 'EpochTime', 'FrameNumber',

58

'FrameLengthOnTheWire', 'HeaderLength', 'TotalLength', 'TimeToLive',

'Label']] = scaler.fit_transform(proc_data[['Time', 'SourceIP',

'SourcePort', 'DestinationIP', 'DestinationPort', 'Protocol',

'PacketLength', 'Delta', 'TimeShiftForPacket',

'FrameLengthStoredIntoCaptureFile', 'Flags', 'TCPFlags', 'TextItem',

'EpochTime', 'FrameNumber', 'FrameLengthOnTheWire', 'HeaderLength',

'TotalLength', 'TimeToLive', 'Label']])

#Visualize

plt.figure(figsize=(50,25))

sns.scatterplot(data=proc_data)	

59

Appendix 2: Optimization algorithm to select optimum hyperparameters Ports

exclusive

Modeling

#Shuffle data

proc_data = proc_data.reindex(np.random.permutation(proc_data.index))

Models - Ports Exclusive

#Split target value

y = proc_data.Label

y.head()

#Split feature values

#Five Features: Time, PackeLength, Delta, Flags,TotalLength

X = proc_data[['Time','PacketLength', 'Delta', 'Flags', 'TotalLength']]

X.head()

#Split data

train_X, val_X, train_y, val_y = train_test_split(X, y,

train_size=0.8,test_size=0.2, random_state=42)

#DT Classifier

#Optimization Algorithm to select optimum hyperparameters

#DT Hyperparameter Selection

from sklearn.model_selection import RandomizedSearchCV

#Assign parameters

criterion = ['gini','entropy']

#Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]

max_depth.append(None)

#Number of features to consider at every split

60

max_features = ['auto', 'sqrt']

#Leaf node

max_leaf_nodes = [int(x) for x in np.linspace (start=50,stop=1000,

num=20)]

splitter = ['best','random']

dt_param_grid = {'criterion':criterion,

 'max_depth': max_depth,

 'max_features': max_features,

 'max_leaf_nodes': max_leaf_nodes,

 'splitter': splitter}

dt_model = DecisionTreeClassifier()

dt_random = RandomizedSearchCV(estimator=dt_model,

param_distributions=dt_param_grid, n_iter=100, cv=3, verbose=2,

random_state=42, n_jobs=-1)

dt_random.best_params_

dt_model = DecisionTreeClassifier(random_state=42,

 criterion = 'gini',

 max_depth = 50,

 max_features = 'auto',

 max_leaf_nodes = 950,

 splitter = 'best')

#RF Classifier

#Optimization Algorithm for best hyperparameters selection

from sklearn.model_selection import RandomizedSearchCV

#Assign values to hyperparameters

Number of trees in random forest

61

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000,

num = 10)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]

max_depth.append(None)

Minimum number of samples required to split a node

min_samples_split = [2, 5, 10]

Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2, 4]

Method of selecting samples for training each tree

bootstrap = [True, False]

#Minimum impurity decrease

min_impurity_decrease = [0.01, 0.1, 0.02, 0.2, 0.03, 0.3]

random_grid = {'n_estimators': n_estimators,

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'min_impurity_decrease': min_impurity_decrease,

 'bootstrap': bootstrap}

#Use the random grid to search for best hyperparameters

First create the base model to tune

rf_model = RandomForestClassifier()

62

rf_random = RandomizedSearchCV(estimator = rf_model, param_distributions

= random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs

= -1)

rf_random.best_params_

rf_model = RandomForestClassifier(random_state=42,

 bootstrap =True,

 max_depth = 90,

 max_features = 'auto',

 min_samples_leaf = 1,

 min_samples_split = 5,

 n_estimators = 1600)

#NB Classifier

#Optimization Algorithm for best hyperparameters selection

from sklearn.model_selection import RandomizedSearchCV

#Setting parameter distribution

nv_param_grid_ = {

 'var_smoothing': np.logspace(0,-9, num=100)

}

nv_model = GaussianNB()

nv_random = RandomizedSearchCV(estimator=nv_base_model,

param_distributions = nv_param_grid_, n_iter = 100, cv = 3, verbose=2,

random_state=42, n_jobs = -1)

#Check best parameters

nv_random.best_params_

nv_model = GaussianNB(var_smoothing = 2.848035868435799e-05)

#KNN Classifier

#Optimization Algorithm for best hyperparameters selection

63

from sklearn.model_selection import RandomizedSearchCV

#Creating parameters

leaf_size = list(range(1,50))

n_neighbors = list(range(1,30))

p=[1,2]

#Convert to dictionary

param_grid_nn = dict(leaf_size=leaf_size, n_neighbors=n_neighbors, p=p)

nn_model = KNeighborsClassifier()

nn_random = RandomizedSearchCV(estimator=nn_model,

param_distributions=param_grid_nn, n_iter=100, cv=3, n_jobs=-1,

verbose=2, random_state=42)

nn_random.best_params_

nn_model = KNeighborsClassifier(leaf_size=7, n_neighbors =4, p = 1)	

64

Appendix 3: Modeling - Ports exclusive

#Fit Models

dt_model.fit(train_X, train_y)

rf_model.fit(train_X, train_y)

nv_model.fit(train_X, train_y)

nn_model.fit(train_X, train_y)

#Prediction

dt_prediction = dt_model.predict(val_X)

rf_prediction = rf_model.predict(val_X)

nv_prediction = nv_model.predict(val_X)

nn_prediction = nn_model.predict(val_X)	

65

Appendix 4: Evaluation - Ports exclusive

#Evaluation

print('DT Accuracy is:')

dt_accuracy = accuracy_score(val_y, dt_prediction)

print(dt_accuracy)

print('\t')

print('DT Precision is:')

dt_prec = precision_score(val_y, dt_prediction)

print(dt_prec)

print('\t')

print('RF Accuracy is:')

rf_accuracy = accuracy_score(val_y, rf_prediction)

print(rf_accuracy)

print('\t')

print('RF Precision is:')

rf_prec = precision_score(val_y, rf_prediction)

print(rf_prec)

print('\t')

print('NV Accuracy is:')

nv_accuracy = accuracy_score(val_y, nv_prediction)

print(nv_accuracy)

print('\t')

print('NV Precision is:')

nv_prec = precision_score(val_y, nv_prediction)

66

print(nv_prec)

print('\t')

print('KNN Accuracy is:')

nn_accuracy = accuracy_score(val_y, nn_prediction)

print(nn_accuracy)

print('\t')

print('KNN Precision is:')

nn_prec = precision_score(val_y, nn_prediction)

print(nn_prec)

print('\t')

#predict probabilities

pred_prob1 = dt_model.predict_proba(val_X)

pred_prob2 = rf_model.predict_proba(val_X)

pred_prob3 = nv_model.predict_proba(val_X)

pred_prob4 = nn_model.predict_proba(val_X)

roc curve for models

from sklearn.metrics import roc_curve

fpr1, tpr1, thresh1 = roc_curve(val_y, pred_prob1[:,1], pos_label=1)

fpr2, tpr2, thresh2 = roc_curve(val_y, pred_prob2[:,1], pos_label=1)

fpr3, tpr3, thresh3 = roc_curve(val_y, pred_prob3[:,1], pos_label=1)

fpr4, tpr4, thresh4 = roc_curve(val_y, pred_prob4[:,1], pos_label=1)

#roc curve for tpr = fpr

random_probs = [0 for i in range(len(val_y))]

p_fpr, p_tpr, _ = roc_curve(val_y, random_probs, pos_label=1)

from sklearn.metrics import roc_auc_score

67

#auc scores

auc_score1 = roc_auc_score(val_y, pred_prob1[:,1])

auc_score2 = roc_auc_score(val_y, pred_prob2[:,1])

auc_score3 = roc_auc_score(val_y, pred_prob3[:,1])

auc_score4 = roc_auc_score(val_y, pred_prob4[:,1])

print('ROC for DT:')

print(auc_score1)

print('\t')

print('ROC for RF:')

print(auc_score2)

print('\t')

print('ROC for NB:')

print(auc_score3)

print('\t')

print('ROC for KNN:')

print(auc_score4)

print('\t')

print(auc_score1, auc_score2)

matplotlib

import matplotlib.pyplot as plt

%config InlineBackend.figure_format = 'retina'

#.style.use('seaborn')

plt.grid()

plot roc curves

plt.plot(fpr1, tpr1, linestyle='--',color='blue', label='DT = 0.997')

68

plt.plot(fpr2, tpr2, linestyle='--',color='red', label='RF = 0.998')

plt.plot(fpr3, tpr3, linestyle='--',color='green', label='NB = 0.994')

plt.plot(fpr4, tpr4, linestyle='--',color='purple', label='KNN = 0.999')

plt.plot(p_fpr, p_tpr, linestyle='--', color='black')

title

plt.title('ROC curve')

x label

plt.yticks ([0.94, 0.96,0.98,1.0])

plt.xticks([0.94, 0.96,0.98,1.0])

plt.xlabel('False Positive Rate')

y label

plt.ylabel('True Positive Rate')

plt.legend(loc='best')

plt.savefig('ROC',dpi=500)

plt.show()

Models – Ports Inclusive

#Split target value

y = proc_data.Label

y.head()

#Split feature values

#Seven Features: Time, PackeLength, Delta, Flags,TotalLength

X = proc_data[['Time','PacketLength', 'Delta', 'Flags',

'TotalLength''SourcePort', 'DestinationPort']]

X.head()

#Split data

69

train_X, val_X, train_y, val_y = train_test_split(X, y,

train_size=0.8,test_size=0.2, random_state=42)

#DT Classifier

#Optimization Algorithm to select optimum hyperparameters	

70

Appendix 5: Optimization Algorithm to select optimum hyperparameters Ports

inclusive

#DT Hyperparameter Selection

from sklearn.model_selection import RandomizedSearchCV

#Assign parameters

criterion = ['gini','entropy']

#Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]

max_depth.append(None)

#Number of features to consider at every split

max_features = ['auto', 'sqrt']

#Leaf node

max_leaf_nodes = [int(x) for x in np.linspace (start=50,stop=1000,

num=20)]

splitter = ['best','random']

dt_param_grid = {'criterion':criterion,

 'max_depth': max_depth,

 'max_features': max_features,

 'max_leaf_nodes': max_leaf_nodes,

 'splitter': splitter}

dt_model = DecisionTreeClassifier()

dt_random = RandomizedSearchCV(estimator=dt_model,

param_distributions=dt_param_grid, n_iter=100, cv=3, verbose=2,

random_state=42, n_jobs=-1)

dt_random.best_params_

dt_model = DecisionTreeClassifier(random_state=42,

71

 criterion = 'entropy',

 max_depth = 60,

 max_features = 'auto',

 max_leaf_nodes = 500,

 splitter = 'best')

#RF Classifier

#Optimization Algorithm for best hyperparameters selection

from sklearn.model_selection import RandomizedSearchCV

#Assign values to hyperparameters

Number of trees in random forest

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000,

num = 10)]

Number of features to consider at every split

max_features = ['auto', 'sqrt']

Maximum number of levels in tree

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)]

max_depth.append(None)

Minimum number of samples required to split a node

min_samples_split = [2, 5, 10]

Minimum number of samples required at each leaf node

min_samples_leaf = [1, 2, 4]

Method of selecting samples for training each tree

bootstrap = [True, False]

#Minimum impurity decrease

min_impurity_decrease = [0.01, 0.1, 0.02, 0.2, 0.03, 0.3]

random_grid = {'n_estimators': n_estimators,

72

 'max_features': max_features,

 'max_depth': max_depth,

 'min_samples_split': min_samples_split,

 'min_samples_leaf': min_samples_leaf,

 'min_impurity_decrease': min_impurity_decrease,

 'bootstrap': bootstrap}

#Use the random grid to search for best hyperparameters

First create the base model to tune

rf_model = RandomForestClassifier()

rf_random = RandomizedSearchCV(estimator = rf_model, param_distributions

= random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs

= -1)

rf_random.best_params_

rf_model = RandomForestClassifier(random_state=42,

 bootstrap =True,

 max_depth = 30,

 max_features = 'sqrt',

 min_samples_leaf = 1,

 min_samples_split = 5,

 n_estimators = 400)

#NB Classifier

#Optimization Algorithm for best hyperparameters selection

from sklearn.model_selection import RandomizedSearchCV

#Setting parameter distribution

nv_param_grid_ = {

 'var_smoothing': np.logspace(0,-9, num=100)

73

}

nv_model = GaussianNB()

nv_random = RandomizedSearchCV(estimator=nv_base_model,

param_distributions = nv_param_grid_, n_iter = 100, cv = 3, verbose=2,

random_state=42, n_jobs = -1)

#Check best parameters

nv_random.best_params_

nv_model = GaussianNB(var_smoothing = 0.022328467394420651)

#KNN Classifier

#Optimization Algorithm for best hyperparameters selection

from sklearn.model_selection import RandomizedSearchCV

#Creating parameters

leaf_size = list(range(1,50))

n_neighbors = list(range(1,30))

p=[1,2]

#Convert to dictionary

param_grid_nn = dict(leaf_size=leaf_size, n_neighbors=n_neighbors, p=p)

nn_model = KNeighborsClassifier()

nn_random = RandomizedSearchCV(estimator=nn_model,

param_distributions=param_grid_nn, n_iter=100, cv=3, n_jobs=-1,

verbose=2, random_state=42)

nn_random.best_params_

nn_model = KNeighborsClassifier(leaf_size=8, n_neighbors =5, p = 2)	

74

Appendix 6: Modeling - Ports inclusive

#Fit Models

dt_model.fit(train_X, train_y)

rf_model.fit(train_X, train_y)

nv_model.fit(train_X, train_y)

nn_model.fit(train_X, train_y)	

75

Appendix 7: Evaluation - Ports inclusive

#Prediction

dt_prediction = dt_model.predict(val_X)

rf_prediction = rf_model.predict(val_X)

nv_prediction = nv_model.predict(val_X)

nn_prediction = nn_model.predict(val_X)

#Evaluation

print('DT Accuracy is:')

dt_accuracy = accuracy_score(val_y, dt_prediction)

print(dt_accuracy)

print('\t')

print('DT Precision is:')

dt_prec = precision_score(val_y, dt_prediction)

print(dt_prec)

print('\t')

print('RF Accuracy is:')

rf_accuracy = accuracy_score(val_y, rf_prediction)

print(rf_accuracy)

print('\t')

print('RF Precision is:')

rf_prec = precision_score(val_y, rf_prediction)

print(rf_prec)

print('\t')

print('NV Accuracy is:')

76

nv_accuracy = accuracy_score(val_y, nv_prediction)

print(nv_accuracy)

print('\t')

print('NV Precision is:')

nv_prec = precision_score(val_y, nv_prediction)

print(nv_prec)

print('\t')

print('KNN Accuracy is:')

nn_accuracy = accuracy_score(val_y, nn_prediction)

print(nn_accuracy)

print('\t')

print('KNN Precision is:')

nn_prec = precision_score(val_y, nn_prediction)

print(nn_prec)

print('\t')

#predict probabilities

pred_prob1 = dt_model.predict_proba(val_X)

pred_prob2 = rf_model.predict_proba(val_X)

pred_prob3 = nv_model.predict_proba(val_X)

pred_prob4 = nn_model.predict_proba(val_X)

roc curve for models

from sklearn.metrics import roc_curve

fpr1, tpr1, thresh1 = roc_curve(val_y, pred_prob1[:,1], pos_label=1)

fpr2, tpr2, thresh2 = roc_curve(val_y, pred_prob2[:,1], pos_label=1)

fpr3, tpr3, thresh3 = roc_curve(val_y, pred_prob3[:,1], pos_label=1)

77

fpr4, tpr4, thresh4 = roc_curve(val_y, pred_prob4[:,1], pos_label=1)

#roc curve for tpr = fpr

random_probs = [0 for i in range(len(val_y))]

p_fpr, p_tpr, _ = roc_curve(val_y, random_probs, pos_label=1)

from sklearn.metrics import roc_auc_score

#auc scores

auc_score1 = roc_auc_score(val_y, pred_prob1[:,1])

auc_score2 = roc_auc_score(val_y, pred_prob2[:,1])

auc_score3 = roc_auc_score(val_y, pred_prob3[:,1])

auc_score4 = roc_auc_score(val_y, pred_prob4[:,1])

print('ROC for DT:')

print(auc_score1)

print('\t')

print('ROC for RF:')

print(auc_score2)

print('\t')

print('ROC for NB:')

print(auc_score3)

print('\t')

print('ROC for KNN:')

print(auc_score4)

print('\t')

print(auc_score1, auc_score2)

matplotlib

import matplotlib.pyplot as plt

78

%config InlineBackend.figure_format = 'retina'

style.use('seaborn')

plt.grid()

plot roc curves

plt.plot(fpr1, tpr1, linestyle='--',color='blue', label='DT = 0.998')

plt.plot(fpr2, tpr2, linestyle='--',color='red', label='RF = 0.999')

plt.plot(fpr3, tpr3, linestyle='--',color='green', label='NB = 0.997')

plt.plot(fpr4, tpr4, linestyle='--',color='purple', label='KNN = 1.000')

plt.plot(p_fpr, p_tpr, linestyle='--', color='black')

title

plt.title('ROC curve')

x label

plt.yticks ([0.94, 0.96,0.98,1.0])

plt.xticks([0.94, 0.96,0.98,1.0])

plt.xlabel('False Positive Rate')

y label

plt.ylabel('True Positive Rate')

plt.legend(loc='best')

plt.savefig('ROC',dpi=500)

plt.show()	

79

RESEARCH OUTPUTS

Research output 1: Publications

Agghey, A. Z., Mwinuka, L. J., Pandhare, S. M., Dida, M. A., & Ndibwile, J. D. (2021).

Detection of Username Enumeration Attack on SSH Protocol: Machine Learning

Approach. Symmetry, 13(11), 2192.

Research output 2: Poster Presentation

