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i 

ABSTRACT 

Over the last two decades (2000–2020), the Internet has rapidly evolved, resulting in 

symmetrical and asymmetrical Internet consumption patterns and billions of users worldwide. 

With the immense rise of the Internet, attacks and malicious behaviors pose a huge threat to 

our computing environment. Brute-force attack is among the most prominent and commonly 

used attacks, achieved out using password-attack tools, a wordlist dictionary, and a usernames 

list – obtained through a so – called an enumeration attack. In this study, we investigate 

username enumeration attack detection on SSH protocol by using machine-learning classifiers. 

We apply four asymmetrical classifiers on our generated dataset collected from a closed-

environment network to build machine-learning-based models for attack detection. The use of 

several machine-learners offers a wider investigation spectrum of the classifiers’ ability in 

attack detection. Additionally, we investigate how beneficial it is to include or exclude network 

ports information as features-set in the process of learning. We evaluated and compared the 

performances of machine-learning models for both cases. The models used are k-nearest 

neighbor (KNN), naïve Bayes (NB), random forest (RF) and decision tree (DT) with and 

without ports information. Our results show that machine-learning approaches to detect SSH 

username enumeration attacks were quite successful, with KNN having an accuracy of 99.93%, 

NB 95.70%, RF 99.92%, and DT 99.88%. Furthermore, the results improved when using ports 

information. The best selected model was then deployed into intrusion detection and prevention 

system (IDS/IPS) to automatically detect and prevent username enumeration attack. Study also 

recommends the use of Deep Learning in future studies.  



 

ii 

DECLARATION 

I, Abel Zauru Agghey, do declare hereby to the Senate of the Nelson Mandela African 

Institution of Science and Technology that, this project report is my own original work and that 

it has neither been submitted nor is it being concurrently submitted for a degree award in any 

other institution. 

Abel Zauru Agghey  

                                                                                                  11/07/2022 
Name and Signature of Candidate        Date 

 

 

The above declaration is confirmed by: 

 

 

Dr. Jema David Ndibwile 

                        11/07/2022  
Name and Signature of Supervisor 1        Date 

 

 

 

 

 

Dr. Mussa Ally Dida 
    

                                                                                                                       11/07/2022 
Name and Signature of Supervisor 2        Date  



 

iii 

COPYRIGHT 

This dissertation is copyright material protected under the Berne Convention, the Copyright 

Act of 1999 and other international and national enactments, in that behalf, on intellectual 

property. It must not be reproduced by any means, in full or in part, except for short extracts in 

fair dealing; for researcher, private study, critical scholarly review or discourse with an 

acknowledgment, without the written permission of the office of Deputy Vice-Chancellor for 

Academic, Research and Innovation on behalf of both the author and Nelson Mandela African 

Institution of Science and Technology.  

  



 

iv 

CERTIFICATION 

The undersigned certify that they have read and hereby recommend for acceptance by the 

Senate of the Nelson Mandela African Institution of Science and Technology the dissertation 

entitled: “Detection and Prevention of Username Enumeration Attack on SSH Protocol: 

Machine Learning Approach”, in Partial Fulfilment of the Requirements for the Degree of 

Master’s in Information and Communication Science and Engineering of the Nelson Mandela 

African Institution of Science and Technology. 

Dr. Jema David Ndibwile 

         11/07/2022 
Name and Signature of Supervisor 1        Date 

 

 

 

 

 

 

Dr. Mussa Ally Dida   
     

           11/07/2022 
Name and Signature of Supervisor 2        Date  



 

v 

ACKNOWLEDGEMENTS 

Completing this study successfully was made possible by several parties through their 

dedicated efforts, support and guidance.  

First and foremost, I thank God for granting me knowledge, ability, and opportunity of not only 

undertaking this research study but also persevering and completing it satisfactorily.  

I also gratefully acknowledge my main supervisor: Dr. Jema David Ndibwile and co-supervisor 

Dr. Mussa Ally Dida, and my mentor Mr. Sanket Mohan Pandhare who not only introduced 

me to the topic but also provided their support throughout this study. Their engagement, 

remarks, and comments have been invaluable.  

My deep appreciation goes out to all the lecturers for their help and support. I also take this 

opportunity to thank my fellow classmates for the classwork we did together and for their 

valuable inputs in this dissertation.  

Lastly, I appreciate all the help and guidance I received from my parents, siblings, and friends. 

Thank you very much.  

  



 

vi 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................................... i	

DECLARATION ...................................................................................................................... ii	

COPYRIGHT ........................................................................................................................... iii	

CERTIFICATION .................................................................................................................... iv	

ACKNOWLEDGEMENTS ...................................................................................................... v	

TABLE OF CONTENTS ......................................................................................................... vi	

LIST OF APPENDICES ......................................................................................................... xii	

LIST OF ABBREVIATION AND SYSMBOLS ................................................................... xiii	

CHAPTER ONE ....................................................................................................................... 1	

INTRODUCTION ..................................................................................................................... 1	

1.1	 Background of the Problem ........................................................................................... 1	

1.2	 Statement of the Problem .............................................................................................. 4	

1.3	 Rationale of the Study ................................................................................................... 5	

1.4	 Research Objectives ...................................................................................................... 5	

1.4.1	 General Objective .............................................................................................. 5	

1.4.2	 The Specific Objectives ..................................................................................... 5	

1.5	 Research Questions ....................................................................................................... 6	

1.6	 Significance of the Study .............................................................................................. 6	

1.7	 Delineation of the Study ................................................................................................ 7	

CHAPTER TWO ....................................................................................................................... 8	

LITERATURE REVIEW .......................................................................................................... 8	

2.1	 Brute-force Attack: The Overview ................................................................................ 8	

2.2	 Brute-force Attack: The Current Status ......................................................................... 9	

2.3	 Complication of Brute-force Attack Detection ............................................................. 9	



 

vii 

2.4	 Supervised Learning on Brute-force Attack Detection ............................................... 10	

2.5	 Research Gap ............................................................................................................... 12	

CHAPTER THREE ................................................................................................................. 13	

MATERIAL AND METHODS .............................................................................................. 13	

3.1	 Introduction ................................................................................................................. 13	

3.2	 Study Area ................................................................................................................... 13	

3.3	 Dataset Generation ...................................................................................................... 13	

3.3.1	 Experimental Setup .......................................................................................... 13	

3.3.2	 Attack Scenario ................................................................................................ 14	

3.3.3	 Data Collection and Labelling ......................................................................... 16	

3.4	 Research Framework ................................................................................................... 17	

3.5	 Data Preprocessing ...................................................................................................... 18	

3.5.1	 Missing Data Treatment .................................................................................. 19	

3.5.2	 Categorical Encoding ...................................................................................... 19	

3.5.3	 Data Projection ................................................................................................ 19	

3.5.4	 Data Reduction ................................................................................................ 20	

3.6	 Machine Learning Model Development ...................................................................... 20	

3.6.1	 Decision Tree (DT) .......................................................................................... 21	

3.6.2	 Random Forest ................................................................................................. 22	

3.6.3	 Naïve Bayes ..................................................................................................... 24	

3.6.4	 K-Nearest Neighbor ......................................................................................... 25	

3.7	 Implementation ............................................................................................................ 26	

3.8	 Training Phase ............................................................................................................. 26	

3.8.1	 Training Phase – Ports Exclusive .................................................................... 26	

3.8.2	 Training Phase – Port Inclusive ....................................................................... 32	

3.9	 Evaluation .................................................................................................................... 33	



 

viii 

3.9.1	 Precision .......................................................................................................... 33	

3.9.2	 Recall ............................................................................................................... 34	

3.9.3	 Accuracy .......................................................................................................... 34	

3.9.4	 Receiver Operating Characteristics (ROC) Curve ........................................... 35	

3.10	 Model Deployment Phase ........................................................................................... 36	

CHAPTER FOUR ................................................................................................................... 37	

RESULTS AND DISCUSSION ............................................................................................. 37	

4.1	 Introduction ................................................................................................................. 37	

4.2	 Dataset ......................................................................................................................... 37	

4.3	 Performance Metrics Results ....................................................................................... 37	

4.3.1	 Precision .......................................................................................................... 37	

4.3.2	 Accuracy .......................................................................................................... 38	

4.3.3	 Receiver Operating Characteristic Curve ........................................................ 38	

4.4	 Effectiveness Comparison when Including and Excluding Ports Information ........... 40	

4.5	 Custom IDS/IPS .......................................................................................................... 42	

CHAPTER FIVE ..................................................................................................................... 44	

5.1	 Conclusion ................................................................................................................... 44	

5.2	 Recommendations ....................................................................................................... 44	

REFERENCE .......................................................................................................................... 45	

APPENDICES ......................................................................................................................... 55	

RESEARCH OUTPUTS ......................................................................................................... 79	

 

  



 

ix 

LIST OF TABLES 

Table 1:	 Summary of devices used in experimental setup ................................................ 14	

Table 2: Description of the features selected .................................................................... 20	

Table 3:	 Dataset splitting ................................................................................................... 26	

Table 4:	 Hyperparameters used when training the decision tree classifier ....................... 28	

Table 5:	 Hyperparameters used when training Random Forest classifier ......................... 30	

Table 6:	 Hyperparameters used when training Naive Bayes classifier ............................. 31	

Table 7: 	 Hyperparameters used when training K-Nearest Neighbor classifier ................. 32	

Table 8: 	 Hyperparameters used for models training - Ports inclusive .............................. 33	

Table 9: Dataset distribution ............................................................................................. 37	

Table 10: Precision values obtained by different classifiers when including and excluding 

ports information ................................................................................................. 38	

Table 11: Accuracy values obtained by different classifiers when including and excluding 

ports information ................................................................................................ 38	

Table 12: 	 ROC values obtained by different classifiers when including and excluding ports 

information ......................................................................................................... 39	

Table 13: 	 Summary of performance metrics for all models - Ports exclusive .................... 40	

Table 14: Summary of performance metrics for all model - Ports inclusive ...................... 40	

 

  



 

x 

LIST OF FIGURES 

Figure 1:	 Top hacking varieties in breaches (https://Verizon/2020) ................................... 9	

Figure 2:	 Network topology of the experimental setup ...................................................... 14	

Figure 3:	 The ifconfig command to identify the IP Address of penetration platform ........ 15	

Figure 4:	 The netdiscover command to identify the IP Address of the victim machine .... 15	

Figure 5:	 Output of netdiscover command ......................................................................... 16	

Figure 6:	 The nmap command to scan open ports and services ......................................... 16	

Figure 7:	 The output of nmap command ............................................................................ 16	

Figure 8:	 Username enumeration command ....................................................................... 16	

Figure 9:	 Output of username enumeration ........................................................................ 16	

Figure 10: Raw dataset collected before data preprocessing ............................................... 17	

Figure 11:	 Research framework .......................................................................................... 18	

Figure 12:	 The structure of the Decision Tree (https://javapoint/2021) .............................. 21	

Figure 13:	 The structure of Random Forest (https://ai-pool/2021) ..................................... 23	

Figure 14: The structure of Naive Bayes network (https://mdpi/2021) ................................... 

  ............................................................................................................................ 25	

Figure 15: 	 Illustration of how Randomized Search CV is performed to get the best values for 

each parameter used in the Decision Tree classifier .......................................... 28	

Figure 16: 	 Illustration of how Randomized Search CV is performed to get the best values for 

each parameter used in the Random Forest classifier ........................................ 30	

Figure 17: 	 Illustration of how Randomized Search CV is performed to get the best values for 

each parameter used in the Naive Bayes classifier ............................................ 31	

Figure 18: 	 Illustration of how Randomized Search CV is performed to get the best values for 

each parameter used in the K-Nearest Neighbor classifier ................................ 32	

Figure 19: 	 ROC AUC - Ports Exclusive .............................................................................. 39	

Figure 20:	 ROC AUC - Port Inclusive ................................................................................ 39	

Figure 21: 	 Effectiveness comparison – Ports exclusive ...................................................... 41	



 

xi 

Figure 22: 	 Effectiveness comparison – Ports inclusive ....................................................... 42	

 

  



 

xii 

LIST OF APPENDICES 

Appendix 1: 	 Data preprocessing ...................................................................................... 55	

Appendix 2: 	 Optimization algorithm to select optimum hyperparameters Ports exclusive . 

  ..................................................................................................................... 59	

Appendix 3: 	 Modeling - Ports exclusive .......................................................................... 64	

Appendix 4:	 Evaluation - Ports exclusive ........................................................................ 65	

Appendix 5: 	 Optimization Algorithm to select optimum hyperparameters Ports inclusive 

  ..................................................................................................................... 70	

Appendix 6: 	 Modeling - Ports inclusive .......................................................................... 74	

Appendix 7: 	 Evaluation - Ports inclusive ......................................................................... 75	

 

  



 

xiii 

LIST OF ABBREVIATION AND SYSMBOLS 

COVID-19  Corona Virus Disease of 2019 

CVE  Common Vulnerabilities and Exposures 

DNS  Domain Name System 

DT  Decision Tree 

FN  False Negative 

FTP  File Transfer Protocol 

GHz  Gigahertz 

HPC  High Performance Computers 

HTTP  Hyper Text Transfer Protocol 

IDS  Intrusion Detection System 

IoT  Internet of Things  

IPS  Intrusion Prevention System 

IPv4  Internet Protocol Version Four 

KNN  K-Nearest Neighbor 

LSTM  Long Short-Term Memory 

ML  Machine Learning 

OpenSSH  Open Secure Socket Shell 

PCAP  Packet Capture 

RAM  Random Access Memory 

RF  Random Forest 

ROC  Receiver Operating Characteristic 

SSH  Secure Socket Shell 

TCP  Transmission Control Protocol 

TN  True Negative 

TP  True Positive 

VPN  Virtual Private Network 

 

 

 



 

1 

CHAPTER ONE 

INTRODUCTION 

1.1 Background of the Problem 

The Internet is widely recognized for its rapid growth and tremendously usage in current years  

(Alshehri & Meziane, 2017). Over four billion individuals have Internet access and utilize it 

on a regular basis. The figure equates to 63.2% of the global population having access to the 

Internet. According to statistics, Internet usage surged by 1266% during the course of two 

decades (2000–2020) (Infante-Moro et al., 2016; internetworldstats., 2021). The explosiveness 

and widespread nature of the Internet have made almost everyone to rely on computer networks 

for their day-to-day activities (Hoque et al., 2014). With an immense rise in dependency on the 

Internet and computer networks services, cyberattacks and malicious behaviors have become 

unexceptional in our computing environment (Jang-Jaccard & Nepal, 2014; Najafabadi et al., 

2014).   

Cyberattacks cost millions of dollars each year, and the number of victims globally is 

significantly growing. At least 14 cyberattack victims emerge every second, which equals more 

than one million attacks every day (Jang-Jaccard & Nepal, 2014). For more than two decades, 

there has been a growth in the number of instances reported, as well as the complexity of the 

attacks. As a result, any person connected to the internet, whether internally or externally, is 

constantly at risk of malicious activity and cyber-attacks (Hansman & Hunt, 2005; Najafabadi 

et al., 2014).  

The emergence of attacks and malicious behaviors pose significant danger to computer 

security. They attempt to deviate from the deployed network security mechanism by exploiting 

the vulnerabilities found in the target networks. They disrupt normal network operations, such 

as causing network equipment to malfunction, attempting to overload a network, denying 

network services to authorized users, drastically reducing network throughput, scanning 

maliciously, and other similar activities (Hoque et al., 2014; Najafabadi et al., 2014). 

Computer system attacks are achievable at several levels, ranging from data link layer to 

application layers. Attacks can also be classified as passive or active attacks (Pawar & 

Anuradha, 2015; Sheikh, 2020). An active attack occurs when attackers change system 

resources and cause effect to their operations. A passive attack occurs when attackers gather or 

make use of information from the systems but do not cause effect to the system resources (Liu 



 

2 

& Morgan, 2018; Srivastava, 2021). Password-based attacks, like dictionary-based attacks and 

brute-force attacks, are among the various types of computer attacks (Nagamalai et al., 2011; 

Pawar & Anuradha, 2015). 

The brute-force attack often referred to as a high-level attack, is among the most popular 

insurmountable challenges in today's computer system attacks. In brute-force, attackers attempt 

to log in by trying different passwords on the victim’s machine to reveal the login passwords 

(Alata et al., 2006; Anandita et al., 2015; Hewlett-Packard:Top Cyber Security Risks Threat 

report, 2010; Hossain et al., 2020; Najafabadi et al., 2014; Vykopal, 2011). They generate 

password combinations using automated tools. Several smart brute-force attack tools are 

available, including Hydra, the most well-known brute-force attack tool, which comes pre-

installed in Kali Linux operating system (Hossain et al., 2020; Najafabadi et al., 2014). Other 

tools highlighted by Kyaw et al. (2016) are John the Ripper, Cain and Abel. Brute-force attacks 

can be used against a wide range of services or protocols, with SSH and FTP being among the 

primary target for the attack. 

In order to achieve a dictionary-based or brute-force attack, an attacker needs to have two 

important items; a valid and existing list of usernames of the targeted system and a wordlist 

dictionary (A text file containing a collection of words for use in the attacks). Therefore, one 

of the key first steps when attempting to gain access or launch an attack on a victim system or 

application is to enumerate usernames. An attacker first gathers the essential information about 

a user (Dave, 2013). Once intended usernames have been enumerated, targeted password-based 

attacks can be launched against found usernames.  

Username enumeration is a sort of a passive attack (reconnaissance) that retrieves a list of 

existing and valid usernames from a system requiring  user authentication (Li & Qiu, 2012; 

Virtue Security, 2021). This means an attacker could leverage to enumerate valid users on a 

targeted system (Rapid7, 2017). Since an attacker can quickly generate a list of legitimate 

usernames from the username enumeration attack, the time and effort necessary to brute-force 

a login is considerably reduced (Portswigger, 2018). However, it does not allow the attacker to 

log in immediately. Rather, it gives half of the necessary information which the attacker could 

use to run a password-based attacks such as brute-force to further exploit the obtained 

information. Once a list of validated usernames is created from the username enumeration 

attack, the attacker can perform another round of brute-force attacks. However, this time 

against the found usernames until access to the targeted system is eventually gained. 
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The username enumeration attacks can be initiated in any system that requires user 

authentication, including SSH server. Bhagwat and Kadwalkar (2020) described that Secure 

Socket Shell, SSH, is a typical software-based technique that deals with network security. It 

lets users over a network remotely connect and send data to the systems through a publicly 

exposed interface  (Khandait et al., 2021).  Whenever users send data to the network, SSH 

automatically encrypts it. The SSH decrypts the data when it reaches its intended recipient 

(Čeleda et al., 2019). The secured connection between the sender and receiver results in 

transparent encryption, making SSH a vital protocol in remote systems management (De 

Fuentes et al., 2018). With emergencies like the COVID-19 crisis where millions of employees 

work from home, using their own devices and accessing corporate assets through their home 

Wi-Fi, SSH protocol plays even a major role in remote system management (Gupta et al., 

2020). The SSH enables secure logins to remote computer systems. Network administrators 

and web admins use it to securely access remote servers, switches, routers, virtualization 

platforms, and operating systems. In addition, most administrators routinely utilize an SSH 

client to secure file transfers, automate data transfers using SSH scripts, set up VPNs, test 

applications, reboot systems, modify file permissions, and manage user access (Fiterǎu-

Broştean et al., 2017). The SFTP video streaming, generating a single authorized session for 

many connections, remote backups, linking distant files to a local directory, and utilizing an 

encryption key for several accounts instead of individual passwords are just a few tasks. 

However, the above use cases highlight the importance of SSH protocol and its secure and 

effective remote systems management. It is not a complete security solution because of the 

different drawbacks SSH encounters (Ylonen, 2019). 

Specific versions of OpenSSH experience suffering from a timing-based attack: If a valid 

username with a long password is given, the time taken to respond is noticeably longer than 

for an invalid username with a long password (Kannisto & Harju, 2017). The attacker can 

enumerate the service's registered usernames by exploiting how the server responds to forged 

queries. The server would respond with an authentication failure if the username does not exist, 

but the outcome would be different if the user exists. Other areas where username enumeration 

occurs are a website login page, and its ‘forgot password’ functionality.  

The demand for traffic anomaly detection in cybersecurity is increasing because of the 

enormous and rapid expansion of sophisticated computer attacks, including password-based 

attacks (Najafabadi et al., 2014). Several approaches for detecting and mitigating password-

based attacks, such as brute-force, have been suggested, developed, and deployed on a various 
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systems and services, including SSH, FTP, and HTTP. However, in the era of cybersecurity, 

username enumeration attacks continue to be a problem. The majority of the recommended 

solutions focus on detecting and preventing password-based attacks, ignoring the fact that 

username enumeration is the first attack to identify and resist.  

Inspired by the advancement and promising results of machine-learning techniques in traffic 

anomaly detection and mitigation (Elmrabit et al., 2020; Mahesh, 2018; Nawir et al., 2019), 

this study aims to develop a machine-learning model for detecting and preventing of username 

enumeration attack on SSH protocol by applying and analyzing machine-learning classifiers. 

1.2 Statement of the Problem 

In the existing literature, several detection and prevention approaches for password-based 

attacks, including dictionary-based or brute-force attacks on different services or protocols 

such as SSH, FTP, HTTP, have been proposed, developed and implemented.  Some of these 

methods incorporated machine-learning techniques, and others incorporated traffic 

authentication techniques. However, most proposed methods focus on detecting and preventing 

password-based attacks generated by various intelligent tools such as Hydra and Medusa. The 

previous approaches failed however to put into consideration the following:  

(i) At first sight, detection and prevention of the username enumeration attack 

(reconnaissance). Before any password-related attacks are deployed, an attacker must 

already have a valid and existing list of usernames of the targeted system and wordlist 

dictionaries. 

(ii) The valid and existing list of usernames is usually acquired by deploying the username 

enumeration, which is the first phase before actually deploying password-related 

attacks such as brute-force. 

In the current practices of detecting and preventing password-related attacks, studies indicated 

the attacks are based on a precompiled list of usernames of the targeted system (Najafabadi et 

al., 2014; Owens & Matthews, 2008). However, in reality, precompiling thousands of users is 

almost impossible in a production environment.  This is because most of these proposed 

approaches were lab-based studies where a precompiled list of usernames is possible due to its 

environmental nature, quite contrary to production environments where username enumeration 

is to be deployed first. Therefore, the detection and prevention of the username enumeration 
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attack is highly needed to deny an opportunity for an attacker to retrieve a valid and existing 

list of usernames of the targeted system. 

1.3 Rationale of the Study 

The demand for traffic anomaly detection in cybersecurity is increasing because of the 

enormous and rapid expansion of sophisticated computer attacks, including password-based 

attacks (Najafabadi et al., 2014). Several approaches for detecting and mitigating password-

based attacks, such as brute-force, have been suggested, developed, and deployed on a various 

systems and services, including SSH, FTP, and HTTP. However, in the era of cybersecurity, 

username enumeration attacks continue to be a problem. The majority of the recommended 

solutions focus on detecting and preventing password-based attacks, ignoring the fact that 

username enumeration is the first attack to identify and resist. Inspired by the advancement and 

promising results of machine-learning techniques in traffic anomaly detection and mitigation 

(Elmrabit et al., 2020; Mahesh, 2018; Nawir et al., 2019), this study aims to develop a machine-

learning model for detecting and preventing of username enumeration attack on SSH protocol 

by applying and analyzing machine-learning classifiers 

1.4 Research Objectives  

1.4.1 General Objective 

The general objective of the research is to develop a machine-learning model that detects and 

prevents username enumeration attacks on SSH protocol. 

1.4.2 The Specific Objectives 

(i) To review the existing approaches for anomaly detection and identify the requirements 

for the proposed model. 

(ii) To develop a machine-learning based model for detecting and preventing username 

enumeration attack. 

(iii) To evaluate the performance and validate the developed model. 
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1.5 Research Questions 

This research intends to answer the following questions: 

(i) What are the requirements for developing a model for detecting and mitigating 

username enumeration attack? 

(ii) How can a username enumeration detection and prevention model be developed? 

(iii) How well does the developed model perform? 

1.6 Significance of the Study 

Cybersecurity is an important field that plays a vital role in protecting the systems and networks 

against unauthorized access, modification, and destruction (Hossain et al., 2020). Several 

attacks have been discussed in the cybersecurity era from their types, detections, and mitigation 

techniques. Among other attacks discussed in cybersecurity is brute-force attack with its 

detection and prevention approaches. However, brute-force attacks suffer from one major 

drawback; detection and prevention of username enumeration from first sight. Therefore, the 

proposed approach is meant to be implemented as a computer algorithm that will be the basis 

of future development of username enumeration detection and prevention systems that will 

improve the classification accuracy between anomaly and normal traffic. The approach is not 

meant to completely eliminate cyberattacks. However, it will be a means which will offer 

assistance when accurately classifying traffic and create a base for further research in the 

cybersecurity era. This research has provided the groundwork for future research in username 

enumeration attack detection and prevention, theoretically and practically.  It demonstrated 

how the attack had been overlooked in developing brute-force attack detection methods. 

Furthermore, the study demonstrated how machine-learning integration with intrusion 

detection and prevention systems may contribute to the management and possibly eliminate 

computer attacks. 

The study has also published its dataset and made it available to the research community 

through open access to further facilitate research in username enumeration attacks (Agghey, 

2021). 
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1.7 Delineation of the Study 

This study only involves the use of Common Vulnerabilities and Exposures (CVE) with the 

identification CVE-2018-15473 from the public exploit database (exploits-db, 2018). The CVE 

is entirely written in python. Furthermore, the exploitation only works in OpenSSH server from 

version 2.3 to version 7.7. It is important to note that this study has certain limitations. The 

experiments conducted in this study only works for version 2.3 up to version 7.7 of the 

OpenSSH server configured in the Linux Operating System.  Despite the models’ better 

performances, the dataset size obtained is insufficient for machine-learning tasks. Restricted 

computer resources may also impair the models’ performances.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Brute-force Attack: The Overview  

The brute-force attack is one of the numerous security threats that network service 

administrators must manage (Saito et al., 2016). As Stiawan et al. (2019) defined, brute-force 

attack is password-related experimentation that uses a mixture of possible ASCII characters 

either in separation or  combinations. According to  Joshi et al. (2015), Kaynar (2016), Stiawan  

(2017), Stiawan et al. (2017) and kaspersky (2021), brute-force attack is an old attack technique 

but still prevalent and effectively used by attackers. 

This sort of attack can be deployed into several services or protocols. However, SSH and FTP 

protocols have been the major victims of brute-force attacks. Studies steered by Javed and 

Paxson (2013) on distributed brute-force SSH attack. Najafabadi et al. (2014) on SSH brute-

force attack, Stiawan et al. (2019) on FTP brute-force in IoT network and by Hossain et al. 

(2020) on FTP and SSH brute-force are good examples to how prone these protocols are  to 

this attack. The web application is another area where brute-force attack can prevail, as 

discussed by Hofstede et al. (2017). 

Attackers in a brute-force attack attempt to log in to the aforementioned protocols to reveal  the 

user’s login credentials (Anandita et al., 2015; Vykopal, 2011). A normal brute-force attack 

tests for the correct user and password combination, usually without knowing if the system 

user exists. It uses trial-and-error for checking correct user login credentials (kaspersky, 2021). 

It can also be repeatedly done by using a precompiled list of user’s accounts and passwords 

until successfully achieved  (Lee et al., 2016; Vizváry & Vykopal, 2013). Subject to the 

complexity of the password, brute-force can take a few minutes or a couple of years. Brute-

force attack can simply be achieved with the least attacking experience and intervention with 

the help of password attack tools such as hydra  (Hossain et al., 2020). 

 Brute-force attacks may lead to life-threatening impacts, including stealing private sensitive 

information and data such as bank accounts or social security details (Najafabadi et al., 2015). 

Shortly, in brute-force attacks, once attackers gain access to targeted systems, the damage 

potential is nothing short of catastrophic (techcesscyber, 2018).  
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2.2 Brute-force Attack: The Current Status 

A brute-force attack is still a major threat to our computing environment to date. Several studies 

and reports have been demonstrated this. For example, in its 2020 data breach investigation 

report, Verizon indicated that more than eighty percent of all breaches occurred in hacking in 

one way or another involved the use of brute-force attacks (Nathan & Scobell, 2020). The 

studies conducted by Stiawan (2017), Kaynar (2016) and Joshi et al. (2015) highlighted that of 

all the total cyberattacks available; brute-force attack occupies twenty-five percent and “it is 

the most common form of attack to compromise servers facing the Internet” (Kavitha, 2011). 

 

Figure 1:  Top hacking varieties in breaches (https://Verizon/2020) 

2.3 Complication of Brute-force Attack Detection  

The username enumeration attack to get a list of existing usernames, works hand in hand with 

password-related attacks like brute-force attacks. Studies on brute-force attacks on different 

protocols have been carried out over the past couple of years. In various studies, the dominance 

of brute-force attacks has indeed been observed. For example, one of the studies that observed 

the prevalence of brute-force attacks is by Owens and Matthews (2008). They studied 

passwords and methods used in brute-force SSH attacks. Vykopal et al. (2009) studied and 
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employed network-based dictionary attack detection methods on SSH protocol. Vykopal  

(2011) again presented a study on taxonomy and prevalence of brute-force attack. The three 

studies had promising results, however, none of them ever addressed the issue of username 

enumeration attack. 

Satoh et al. (2012) analyzed SSH dictionary attack detection based on netflow. Their study 

suggested a novel attack detection method. Javed and Paxson (2013) examined stealthy 

distributed brute-force attack on SSH protocol. Vizváry and Vykopal (2013) observed flow-

based detection of RDP brute-force attacks. The three approaches proved to be successful with 

promising results. The focus was on the detection of password-based attacks, but there was no 

effort on detecting username enumeration attacks. 

Najafabadi et al. (2014) investigated brute-force attacks at the network level on SSH protocol. 

Joshi et al. (2015) analyzed a cryptographic technique for protecting text messages from brute-

force and cryptanalytic attacks. Najafabadi et al. (2015) detected SSH brute-force attacks using 

aggregated flow data, and Lee et al. (2016) examined SSH brute-force in a multi-user 

environment. All of these studies provided outstanding results in a research community. 

However, the issue of username enumeration attack was never discussed. 

Furthermore, Saito et al. (2016) detected and prevented brute-force attacks using disciplined 

IPs from IDs logs. Patil et al. (2017) examined and implemented a multilevel system to mitigate 

brute-force attacks for cloud security. Hofstede et al. (2017) investigated flow-based web 

application brute-force attacks and comprise detection method. Similarly, both studies attained 

outstanding results, but none focused on detecting the username enumeration attacks. 

 Stiawan et al. (2019) examined brute-force attack patterns in IoT networks on FTP and SSH 

protocols. Hossain et al. (2020) also investigated brute-force attacks detection in computer 

networks. However, studies mentioned above on different protocols and services focused on 

detecting password-related attacks and there was no effort to detect username enumeration 

attacks.  

2.4 Supervised Learning on Brute-force Attack Detection 

Machine-learning is a branch of artificial intelligence that allows machines to learn without 

having to be plainly programmed (Charbuty & Abdulazeez, 2021; Hamid et al., 2016). Instead, 

machine-learning automates operations by skillfully taking each stage in a maintained way. 

Machine-learning contains several learning techniques categorized as supervised and 



 

11 

unsupervised learning. This categorization is subjected to the existence or nonexistence of a 

labelled dataset. Supervised learning uses labelled samples to train the model, allowing it to 

anticipate comparable unlabeled samples. There are no training samples in unsupervised 

learning. Hence it relies on the arithmetical method of density approximation. Unsupervised 

learning is based on gathering or grouping data of the same types to uncover the underlying 

design of the data (Pahwa & Agarwal, 2019; Sharma & Kumar, 2017).  

Machine-learning ability to recognize and give clues on real-life issues is greatly valued and 

thus lead to their appeal and perverseness. These accomplishments have steered the adoption 

of machine-learning in numerous fields (Apruzzese et al., 2018; Jordan & Mitchell, 2015). 

Cybersecurity is among other field affected by this trend where intrusion detection systems 

(IDS) are advanced with machine-learning modules (Buczak & Guven, 2016). With their real-

time response and adaptive learning process, machine learning algorithms are becoming 

particularly efficient in intrusion detection systems (Ahsan et al., 2021). The advancement in 

machine learning techniques has presented promising and impressive results in detecting, 

identifying, classifying, predicting and mitigating a diverse range of cyberattacks. They 

exemplify unsurpassed choice over conventional rule-based algorithms (LeCun et al., 2015).  

Attacks and anomaly detection use supervised learning, where a known dataset is used to make 

classification or predictions. This training dataset contains input features and target values. The 

supervised learning algorithm then builds a model to make a prediction of the target values 

(Ndibwile et al., 2015).  

In literature, the most notable examples include the work done by Vykopal et al. (2009), 

whereby a decision tree classifier in supervised learning was adopted to demonstrate and 

describe the novel network-based approach on detection of dictionary-based attack along with 

the capability to realize all successful attacks. According to their study, SSH break-in attempts 

at a flow level were examined, revealing a dictionary attack pattern. The evaluation was 

accomplished in a large high-speed university network with promising results. 

Another work was analyzed by Satoh et al. (2012) on detecting SSH dictionary-based attack 

detection using machine learning and subsequently suggested two novelty detection elements. 

In this approach, the combination of these two elements contains four functions. The first three 

functions recognize transition points of a sub-protocol through flow features and machine 

learning algorithms. The last function discovers an individual attack through differences in the 
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inter-arrival time of an auth-packet and then differentiates between a successful and an 

unsuccessful attack through the existence of a connection protocol. 

Moreover, the study done by Najafabadi et al. (2014) implemented several classifiers to 

develop models for detecting brute-force attack on SSH protocol at the network level. The 

study indicated that four different supervised learning classifiers were used to enable    

comparative study on the efficiency of learned models in distinguishing the brute-force traffic 

from the normal one. In their work, the dataset was generated from a live production network 

for over a 24 hours period. The study highlighted that the learned models were effective in 

detecting brute-force attack with a high rate of detection and low false alarms.  

Hynek et al. (2020) proposed a study on detecting redefined brute-force attacks using a 

machine-learning approach. Their study used extended IP flow features obtained from 

backbone network traffic and machine-learning algorithms to differentiate successful and 

unsuccessful login. The dataset generated from a real environment using a wide assessment of 

captured traffic steered developing a machine learning model that successfully reduced the 

number of false positives with similar sensitivity levels. 

Furthermore, the study done by Hossain et al. (2020) proposed the adoption of supervised 

learning and deep learning on detecting brute-force attack on two protocols, SSH and FTP, at 

the network level. In their work, Long Short-Term Memory (LSTM) and five different 

classifiers; J48, naïve Bayes (NB), decision table (DT), random forest (RF) and k-nearest 

neighbor were used for extra protection. The study elaborated that a well-known dataset from 

CICIDS2017 (Sharafaldin et al., 2018) was used. The developed models learnt the traffic 

features and identified the ones with FTP and SSH brute-force attacks and those without. 

2.5 Research Gap 

All the aforementioned studies have focused and achieved excellent results on detecting and 

mitigating password-related attacks such as brute-force that are generated by various password 

attack tools. However, none of them has adequately included and addressed the issue of 

detection and mitigation of username enumeration attack. Considering that for any password-

related attack to be launched, an attacker must have gathered all information, including the list 

of usernames of the targeted system obtained from the usernames enumeration attack. 

Therefore, the detection and prevention of the username enumeration attack is highly needed 

in order to deny an opportunity for an attacker to retrieve a valid and existing list of usernames 

of the targeted system. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Introduction 

This Chapter discusses the materials and methods used in this study in details. It discusses the 

study area, experimental setup, attack scenario, data generation and labelling, research 

framework, data preprocessing and models development.  

3.2 Study Area 

The study is a laboratory-based, conducted at Nelson Mandela African Institution of Science 

and Technology’s laboratory in Arusha. We chose Mandela’s lab because it has all the 

necessary equipment, including high-performance computers (HPC), important for this study. 

All the experiments in the laboratory were carried out in a closed-environment network. A 

closed-environment network is a private network with no external connectivity that is only 

accessible to approved devices. 

3.3 Dataset Generation 

The generation of a dataset for this study was achieved through the use of public exploit and 

normal traffic packets capture (pcap) retrieved from several public training repositories. The 

dataset generation process involved several subphases in this work, including experimental 

setup, attack scenario, data collection and labelling. 

3.3.1 Experimental Setup 

The attack simulation was carried out in a closed-environment network consisting of a victim 

machine, penetration testing platform, data collection point and benign users. The victim 

machine – SSH server was registered with thousands of users. The SSH server was a patched 

version of OpenSSH server 7.7 (OpenSSH, 2021) that listens on standard TCP port 22 for 

inbound and outbound traffic. We chose this version because the attack occurs between version 

2.3 and 7.7 (exploits-db, 2018). The SSH server runs on Ubuntu Linux 20.04 (x64) with a 2.8 

GHz Intel Core i7 CPU with a16GB RAM computer. A penetration testing platform - Kali 

Linux 2020.4 (x64) with kernel version 5.9.0 targets this SSH server. This penetration platform 

operates on a machine with 16 GB of RAM and a 3.4 GHz Intel Core i7 CPU. The data 

collection point installed with network monitoring tools collected all the traffic flowing through 
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the network topology. The data collection server runs on Linux Mint 20.2 with 16 GB RAM 

computer and a 2.8 GHz Intel Core i7 CPU. The benign users represented normal users 

accessing the network. The IP addresses for the SSH server, penetration testing system and 

data collection server are 192.168.56.115, 192.168.56.117 and 192.168.100.116, respectively, 

and are in the private IPv4 range. Table 1 shows the summary of the devices used and Fig. 2 

shows the network topology of the experimental setup. 

Table 1: Summary of devices used in experimental setup 
Device Operating System RAM CPU IP Address 
Victim Machine Ubuntu 20.04  16 GB 2.8 GHz Intel 

Core i7 
192.168.56.115 

Penetration Platform Kali Linux 2020.4 16 GB 3.4 GHz Intel 
Core i7 

192.168.56.117 

Data Collection Point Linux Mint 16 GB 2.6 GHz Intel 
Core i7 

192.168.56.116 

Benign Users Various Various Various 192.168.56.XX 
 

 
Figure 2: Network topology of the experimental setup 

3.3.2 Attack Scenario 

The attack simulation was launched from Kali Linux, a penetration testing platform, to SSH 

server, a victim machine. The common vulnerabilities and exposures (CVE) with the 

identification number CVE-2018-15473 retrieved from the public exploits database (exploits-
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db, 2018) was used to achieve this. The CVE is developed entirely in Python language. Before 

launching an attack from the penetration testing platform to the victim machine, information 

gathering and scanning steps were conducted. The information-gathering step was used to 

identify the IP Address of the penetration testing platform and victim machine using the 

ifconfig and netdiscover command, respectively. Figure 3 up to Fig. 5 show the information-

gathering step. The scanning step examined all the protocols and services available to the 

victim machine using the Nmap command shown in Fig. 6 and Fig. 7. The attack was launched 

after the information gathering and scanning phase using the CVE mentioned above. It was 

accomplished by employing the attack command in Fig. 8. 

 Figure 9 depicts the attack's output by listing all the usernames found on the SSH server, 

including the root account. It displays a list of all existing usernames by indicating "valid user" 

and "not a valid user" for those not found in the system. To get a mix of normal and attack 

traffic, the tcpreplay tool (cite) was used to initiate a pcap file of normal traffic obtained from 

the public training repository (Stratosphere IPS, 2019). 

 
Figure 3: The ifconfig command to identify the IP Address of penetration platform 

 
Figure 4: The netdiscover command to identify the IP Address of the victim machine 
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Figure 5: Output of netdiscover command 

 
Figure 6: The nmap command to scan open ports and services 

 
Figure 7: The output of nmap command 

 
Figure 8: Username enumeration command 

 
Figure 9: Output of username enumeration 

3.3.3 Data Collection and Labelling 

The dataset was straightly collected from our closed-environment network using network 

monitoring tools Wireshark (Wireshark, 2021) and tcpdump (tcpdump, 2021) installed in the 

data collection point. The study chose Wireshark and tcpdump since they are open source and 
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support more than 1100 protocols with detailed information. Additionally, huge community 

support and the ability to filter packets during and after capturing make them the most preferred 

networking monitoring tools.  This study used both experimental and simulation research 

methods to collect raw packet data. The experiments were conducted by simulating attacks in 

for nine consecutive days. A total of 36273 raw packet data were collected, each containing 25 

features with label exclusive. The packet data collected were then given their corresponding 

labels, username enumeration attack, non-username enumeration attack with the help of the 

domain experts. We chose the terms “username enumeration attack” and “non-username 

enumeration” instead of the traditional "attack" and "normal" label notations since normal 

traffic data could contain attacks other than username enumeration attack, which is the focus 

of our research. Since the goal of this study is to detect username enumeration attacks, we 

found that labeling dataset in that way is more suitable.  

The username enumeration attack corresponds to the attack traffic while non-username 

enumeration traffic corresponds to the normal traffic. This traffic reflects different services, 

including emails, DNS, HTTP, web, a few to mention. We finally managed to get a raw dataset 

comprising attack traffic and normal traffic.  Figure 10 shows some features and entries 

obtained in a raw dataset. 

 
Figure 10: Raw dataset collected before data preprocessing 

3.4 Research Framework  

Figure 11 depicts the research framework, which provides the study's logical flow and clear 

explanation of how the research was carried out, from data generation, data preprocessing, 

models developments and validation to the delivery of improved models. We firstly generated 
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the data and obtained our dataset. The raw dataset is stored in cloud storage. We used Google 

Drive to store our dataset in this study. The dataset is then preprocessed, involving missing 

data treatment, categorical encoding, data projection and data reduction. The dataset is split 

into training and testing subsets before training on the models. In this work, we used the 

training subset on four different classifiers.  

After training the proposed models, performances are then evaluated using different evaluation 

metrics, and the models’ parameters are tuned to get an optimized model. Finally, the best 

selected model is deployed on an intrusion detection and prevention system (IDS/IPS) to enable 

automatically detection and prevention of username enumeration attacks. An intrusion 

prevention system (IDS) is a software or hardware-based system that detects and alerts 

unauthorized or undesired access attempts, modifications, or resource restrictions on a 

computer system (Abubakar & Pranggono, 2017). The intrusion detection system, in particular, 

aids in the detection of external and internal attacks perpetrated by both users and hackers (Jain, 

2021).

 
Figure 11: Research framework  

3.5 Data Preprocessing 

Data pre-processing is the data mining technique that transforms raw datasets into a readable 

and understandable format. Machine learning algorithms make use of the datasets in 

mathematical format, and such format is achieved through data pre-processing (Chandrasekar 

et al., 2017; Huang et al., 2015). In this work, data pre-processing involved treating missing 

values, encoding categorical values, data projection and data reduction. The preprocessed 

dataset was then fed to the model as input data. All the data pre-processing techniques were 

carried out using the scikit-learn library. 
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3.5.1 Missing Data Treatment 

Missing data treatment in the dataset was conducted using the imputation technique. The 

imputation technique involves either deletion of missing values or exchanging/replacing them 

with estimations (Aljuaid & Sasi, 2016). In this work, the imputation technique was done by 

replacing the missing values with the estimations. We chose to replace the missing values 

rather than deleting them to avoid discarding a large proportion of the dataset and introducing 

biases. The imputation technique was also done for both categorical and numerical features. 

The most frequent strategy was used within each column for the categorical features to replace 

the missing values. For the case of numerical features, a constant strategy was implemented to 

replace the missing values.  

3.5.2 Categorical Encoding 

Categorical encoding aims to transform categorical values into numerical values. Categorical 

values/variables represent string values rather than a continuous number (McGinnis et al., 

2018). We convert categorical variables to numerical values because machine learning 

algorithms prefer numbers over strings which have no true order. There are many techniques 

used for categorical encoding. The most commonly used ones are label encoding and one hot 

encoding. This work used label encoding techniques to convert categorical variables to 

numerical values. We selected this approach over one hot encoding technique because it 

straightly converts categorical data to numerical data; hence, it does not increase the dimension 

of the dataset.  

3.5.3 Data Projection 

Data projection, also called feature scaling, scales the data values into a similar range. Feature 

scaling changes the appearance of the data and aids in the speeding up of the algorithm's 

calculations (Bollegala, 2017). The dataset utilized in this study includes variables with varying 

scales. As a result, the dataset was feature scaled to convert the feature vector into a format that 

is more suitable for machine learning algorithms. For feature scaling of the dataset, there are a 

variety of scalers available. MinMaxScaler (), StandardScaler () are the most widely used ones. 

In this work, all features were scaled into the same predefined range using the Min-Max scaling 

method. MinMaxScaler () scales the data so that all its values lie between 0 and 1.  
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3.5.4 Data Reduction  

Data reduction intends to reduce the size of datasets using several techniques. In this study, 

data reduction was implemented using the feature selection technique. Features selection intend 

to find the best features in the dataset (Ahmad & Aziz, 2019). Hence, it aids in decreasing the 

number of irrelevant features that increase computational complexity, training time, dataset 

dimension and enhance performances (Wong et al., 2021). This work used mutual information 

(MI) (Sharmin et al., 2019) as a features selection technique. The selection of the mutual 

information technique was made due to its capacity to capture non-linear relations among 

variables. The MI also has the advantage of being able to compute both categorical and 

numerical variables, and deal with many classes (Rahmaninia et al., 2020). Seven different 

features were selected from the dataset using the aforementioned features selection technique. 

The description of each feature is shown in Table 2. 

Table 2:  Description of the features selected 
Feature name Feature description 
Time Packet duration time  
Packet Length The length of the packet  
Delta Time interval between packets  
Flags Flags seen in the packet 
Total Length The total length of the packet 
Source Port  The source port of the packet 
Destination Port The destination port of the packet 

3.6 Machine Learning Model Development 

The machine-learning model is the outcome of the machine-learning training procedures. 

Machine learning algorithms are used to train machine-learning models (Ahsan et al., 2021). 

This work employs four distinctive machine learning algorithms/classifiers for the model 

development. We selected these classifiers because they have dissimilar features and 

lightweight computation. As discussed in Chapter two, they have also been used and shown 

performances in other intrusion detection-related studies. We also picked different classifiers 

in order to investigate a wider scale of investigation in username enumeration attack detection. 

Therefore, we examined K-Nearest- Neighbor (KNN), Naïve Bayes (NB), Random Forest (RF) 

and Decision Tree (DT) machine-learning classifiers.  



 

21 

3.6.1 Decision Tree (DT) 

A decision tree is a widely known machine-learning classifier created in a tree-like structure 

(Cherfi et al., 2018). Because of decision trees’ precision across many data types and their ease 

of analysis, have discovered a diversity of implementation domains (Mazraeh et al., 2019). The 

decision tree contains the internal nodes representing attributes and leaf nodes representing the 

class label. The root node, a notable attribute for data separation, is first selected to form a 

classification rule. The path is then chosen from the root node to the leaf nodes (Adel et al., 

2017; Priyanka & Kumar, 2020). The root node and internal nodes are referred to as non-

terminal nodes and are associated at the decision stage. The leaf nodes are collectively referred 

to as terminal nodes, exemplifying final classification. In a decision tree, any path from the 

root to the leaf node is characterized by a data separating sequence until a Boolean outcome is 

reached (Adel et al., 2015; Liang et al., 2019). Thus, it is a structural illustration of the internal 

nodes and links in the knowledge relationship (Charbuty & Abdulazeez, 2021).  Figure 12 

illustrates the structure of the decision tree. 

 
Figure 12: The structure of the Decision Tree (https://javapoint/2021) 

The decision tree classifier operates by recognizing associated attribute values as input data 

and produces decisions as output. First, the tree is encoded as a string of symbols for 

computation reasons. The string is then decoded, and pointers are assigned to each training 

data to determine the proper classification route (Cherfi et al., 2018). Finally, the classifier 

examines the training data to recognize the attributes with higher information gain than the 

rest. Information gain tells how important a given attribute is. It decides the ordering of the 

nodes of the decision tree classifier. As such, an attribute can effectively categorize or classify 

the data. The root node is the attribute with the highest information gain since it instantly 
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classifies the training data into different classes. The attribute’s information gain is calculated 

as follow: 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛	𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦	 −𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑	𝐸𝑛𝑡𝑟𝑜𝑝𝑦     (1) 

Mathematically can be presented as: 

𝐺𝑎𝑖𝑛(𝐴)  = 	𝐻(𝑆𝑒𝑡) − (	𝑤< 	× 𝐻(𝑎<) + 𝑤? 	× 𝐻(𝑎?)+. . . +𝑤A 	× 𝐻(𝑎A) (2) 

Where 

𝑎<, 𝑎?, 𝑎A	 are the different values of attribute A. 

	𝑤<, 𝑤?, 𝑤A	are the weights of the subsets split by using the value of attribute A 

𝐻	(𝑆𝑒𝑡)	is Entropy. 

Entropy measures the purity or impurity of data instances that are often employed in 

information theory. In addition, the entropy of instances can be used to determine their 

homogeneity. The entropy of the data instances is calculated as follow: 

𝐻(𝑆𝑒𝑡) = 	−𝑃< 	× 𝑙𝑜𝑔?𝑃< 	−	𝑃? 	×	 𝑙𝑜𝑔?𝑃?       (3) 

Where: 

𝑃<  is the proportion of the first decision. 

𝑃?	is	the	proportion	of	the	second	decision 

Similarly, each attribute is examined one by one in the increasing order of information gain 

and constructs the tree. Consequently, the attributes with the next lower-level information gain 

are used to divide the training data into sub-part until each training data record is given its class 

label  (Patil & Kulkarni, 2019). When the class labels for training data samples are known, 

therefore decision trees are built by analyzing them. 

3.6.2 Random Forest  

Random Forest (RF) is another dominant machine-learning classifier under supervised learning 

algorithms (Li et al., 2020) introduced by Breiman (2001). Similarly, to decision tree 

classifiers, random forest is also used in machine-learning classification problems. Because of 

its ability to deal with categorical and numerical attributes, minimal training time complexity, 

quick prediction, robustness to unbalanced datasets, embedded feature selection approach, and 
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inherent metrics to order attributes by relevance, the random forest classifier is suitable for 

classification problems (Resende & Drummond, 2018). Random Forest is an ensemble learning 

that consists of decision trees. This is because random forest uses a bootstrap aggregation 

technique to combine a variety of data sets and a feature selection process to anticipate the 

outcome. It is formally defined as a classifier comprising a group of tree-structured classifiers. 

Equation 4 shows the mathematical representation of a random forest classifier.  

Similarly, Random Trees blend single model trees with Random Forest concepts, where each 

node comprises k randomly select features in the tree. As a result, it improves the accuracy of 

Random Forest over a single tree. The operation of the Random Forest classifier is conducted 

in two different steps. The first step creates the asymmetrical forest of the specified dataset, 

and the second one predicts the classifier acquired in the initial stage (Bhavani et al., 2020). 

Fig. 13 illustrates the structure of the random forest.  

{ℎR	(𝑋, 𝑇R)}, 𝑘 = 1, 2. . . . , 𝐿         (4) 

Where: 

𝑇R	are random samples that are dispersed in a uniform manner. 

	𝑋	each tree casts vote for the most popular class. 

 

Figure 13: The structure of Random Forest (https://ai-pool/2021) 
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3.6.3 Naïve Bayes  

Naïve Bayes (NB) is a common probabilistic machine-learning classifier used in classification 

or prediction problems. It is referred to as a probabilistic classifier because it functions by 

computing the probability of a certain class in a specified dataset. Naïve Bayes contains two 

probabilities: class and conditional probabilities. Class probability is the ratio of every class 

instance occurrence to the total instances. Conditional probability is the quotient of every 

feature occurrence for a certain class to the sample occurrence of that class (Alqahtani et al., 

2020; John & Langley, 2013). Equation 5 shows the mathematical presentation of Naïve Bayes. 

𝑓Z[\(𝑥) = 	𝛱_`<	a 𝑃 b𝑋_`cde𝐶 = 𝑖g𝑃(𝐶 = 𝑖)      (5) 

Where: 

𝑃 b𝑋_`cde𝐶 = 𝑖g  is the class-condition probability distribution, which is defined as: 

𝑃 b𝑋_`cde𝐶 = 𝑖g = hi𝑋 = 𝑥j𝐶 = 𝑖kh(l`Z)
h(m`c)

      (6) 

Where:  

𝑋 = (𝑋<, . . …𝑋a)  is a feature vector and C being a class. 

Naïve Bayes classifier presumes that features are independent for a given class and 

contemplates association between the features (Han et al., 2011). It assigns the class label to 

sample cases based on the most frequent values of the features. During the training phase, it 

determines the prior probability of each class using the occurrences of each feature for each 

class. Naive Bayes calculates the class posterior probability based on the class prior probability. 

It concludes that the predictor’s result outcome for a particular class is independent of the 

values of another predictor. Naïve Bayes allocates the class label to the new data using the 

probabilities mentioned above (Mehmood & Rais, 2016). Figure 14 illustrates the structure of 

Naïve Bayes.  
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Figure 14: The structure of Naive Bayes network (https://mdpi/2021) 

3.6.4 K-Nearest Neighbor  

K-Nearest Neighbor (KNN) is a non-parametric classifier that has been applied to a variety of 

classification problems. The term non-parametric refers to the absence of any assumptions 

about the underlying data distribution. It means that the model structure is based on the given 

dataset (Malhotra et al., 2017). The non-parametric nature of the classifier is quite useful in 

practice, as most real-world datasets do not adhere to mathematical theoretical assumptions. 

Other advantages that make the classifier quite useful in practices are the ability to work well 

with huge amounts of training data and resistance to noisy data (Gou et al., 2019). 

K-Nearest Neighbor considers three important elements in its classification manner: record set, 

distance and value of K. It functions by calculating the distance between sample points and 

training points. The smallest distance point calculated is the nearest neighbor (Bhatia & 

Vandana, 2010). The nearest neighbor is measured with respect to the value of k (in our case 

k=4); this defines the number of nearest neighbors required to be examined in order to define 

the class of sample data point (Soofi & Awan, 2017).  

There are four distinct measures of calculating the smallest distance in K-Nearest Neighbor 

classifier. They are Euclidean distance, Manhattan distance, Minkowski distance, Hamming 

distance. However, this study only employed Euclidean distance measure as illustrated in 

Equation 7. Its ability to quickly calculate the shortest distance between two points makes it 

favorable among others.  

𝑑	(𝑥, 𝑦) = 	o𝛴Z`<R (𝑥Z −	𝑦Z)?        (7) 



 

26 

3.7 Implementation 

The implementation of model’s development was conducted on a computer with 512 GB SSD 

storage, Intel® Core i7 2.8 GHz CPU, 16 GB 1600 MHz DDR3 RAM, AMD Radeon R9 

M370X 2048 MB, Intel® Iris Pro 1536 MB that came pre-installed with Macintosh operating 

system. In addition, the GPU environment from Google Collaboratory with 25 GB RAM was 

used in the training phase. Python  v3.7 (Turner et al., 2018) was used as the programming 

language, with scikit-learn (Feurer et al., 2019) as the library. The scikit-learn framework was 

chosen because it allows models to be deployed and interpreted across several devices. 

3.8 Training Phase 

In this study, two folds of experimentations were conducted. The first fold excludes source and 

destination ports as input features in the process of learning. The second one includes them as 

our input features. This is because network administrators sometimes customize the destination 

port to some different number other than the default port number for SSH protocol which is 

port 22.  

All the classification models were trained using a subset of 80% data of the given dataset and 

the remaining subset of 20% to test the models. The train-test split ratio was based on Pareto 

(Dunford et al., 2014) principle and was even for each classifier. From a dataset of 36 273 

instances, we attained 29 018 instances for training and 7255 instances for testing for the two 

classes, as shown in Table 3.  

Table 3: Dataset splitting 

Dataset SSH Username Enumeration 
Attack 

Non-Username Enumeration 
Attack Total 

Training  15075 13943 29018 
Testing 3769 3486 7255 

3.8.1 Training Phase – Ports Exclusive 

Four machine-learning classifiers, Decision Tree, Random Forest, Naïve Bayes and K-Nearest 

Neighbor were trained on two classes, username enumeration attack and non-username 

enumeration attack without including ports information as feature sets. 

(i) Decision Tree – Training and Hyperparameters Tuning 

The decision tree classifier was used to develop a username enumeration attack detection 

model in the training phase. In training the model, different hyperparameters were used. 



 

27 

Hyperparameters are configurable points in a machine learning model that can be tailored to a 

specific job or dataset. The hyperparameters used in the training phase include criterion, 

maximum depth, maximum features, maximum leaf nodes and splitter. All the values in each 

hyperparameter used were selected using Randomized Search CV. Randomized Search CV is 

an optimization algorithm that selects the optimal hyperparameter to fit the model from a list 

of hyperparameters given, as shown in Fig. 15. 

Criterion  

This hyperparameter specifies how the impurity of a split will be measured. It has two options; 

Gini or Entropy as metrics. The default value is Gini. 

max_dept 

This hyperparameter defines the maximum depth of the decision tree to avoid over-fitting. The 

value is set to none by default.  

maxi_features  

This determines the number of features when considering the best split.  

maxi_leaf_nodes  

This hyperparameter specifies the maximum number of leaf nodes for the tree to take.  

Split   

This hyperparameter specifies how the decision tree looks for a feature split.  

The criterion hyperparameter was set to Gini during training, which was the default value. Gini 

has a lower computing complexity than other metrics like Entropy, making it ideal for the 

training process. To avoid model over-fitting and to regularize the way the tree grows, the 

maximum depth parameter value was set to 50. The maximum features hyperparameter value 

was set to auto to determine the number of features to consider when splitting. The splitter 

hyperparameter value was set to best to decide how the model searches for the features. The 

model checks all of the features for each node and selects the best split. A tree's maximum 

number of leaf nodes was set to 950. Table 4 summarizes the hyperparameters used when 

training the Decision Tree classifier.  
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Table 4: Hyperparameters used when training the decision tree classifier 
Classifier Hyperparameter Value 
Decision Tree Criterion Gini 

Maximum depth 50 
Maximum features Auto 
Maximum leaf nodes 950 
Splitter Best 

 

Figure 15:  Illustration of how Randomized Search CV is performed to get the best 
values for each parameter used in the Decision Tree classifier 

(ii) Random Forest – Training and Hyperparameters Tuning 

Training random forest classifier included six different hyperparameters. They were bootstrap, 

maximum depth, maximum features, minimum sample leaf, minimum sample split and a 

number of n estimators.  

Bootstrap 

This determines the sampling approach for data points 

Maximum depth 

It defines the maximum depth of the model. 
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Maximum features 

Number of features when considering the best split.  

Minimum sample split 

The minimum number of data points inserted in a node before split 

Minimum sample leaf  

It defines the minimum number of data points required to be at a leaf node 

N estimators  

This hyperparameter specifies the number of trees in the forest. 

In training the random forest classifier, the value of the n estimators hyperparameter was set to 

1600. This hyperparameter's value is always higher to make the prediction stable and strong. 

The n estimator value was set to 1600 based on the result of the optimization algorithm used, 

The Randomized Search CV, as shown in Fig. 16. The minimum sample leaf value was set to 

1 to guarantee the minimum number of samples required in every leaf node. The minimum 

sample split value was set to 5 to allow internal node split. The maximum depth parameter 

value was set to 90 to avoid model over-fitting and normalizing the tree’s evolution. The 

maximum features hyperparameter value was set to Auto to select the number of features while 

splitting. The sampling approach value was set to true in the bootstrap hyperparameter. The 

summary of hyperparameters used when training the random forest classifier is shown in Table 

5.  
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Figure 16:  Illustration of how Randomized Search CV is performed to get the best 

values for each parameter used in the Random Forest classifier 

Table 5: Hyperparameters used when training Random Forest classifier 
Classifier  Hyperparameter Value 
Random Forest  Bootstrap True 
 Maximum depth 90 
 Maximum features Auto 
 Minimum sample leaf 1 
 Minimum sample split 5 
 N estimators 1600 

(iii) Naïve Bayes – Training and Hyperparameters Tuning 

Var_smoothing is the only hyperparameter for tuning in the naïve Bayes classifier. It stabilizes 

the calculation to smooth or widen the curve in order to accommodate more samples that are 

further distant from the distribution mean. Table 6 below show the summary hyperparameter 

used in the naïve Bayes classifier. The selected parameter value was obtained using 

Randomized Search CV, as shown in Fig. 17.  



 

31 

Table 6: Hyperparameters used when training Naive Bayes classifier 
Classifier  Hyperparameter Value 
Naïve Bayes  Var_smoothing 2.848035868435799 * 10-5 

 

 
Figure 17:  Illustration of how Randomized Search CV is performed to get the best 

values for each parameter used in the Naive Bayes classifier 

(iv) K-Nearest Neighbor – Training and Hyperparameters Tuning 

Training of K-Nearest Neighbor classifier included three hyperparameters n_neighbors, 

leaf_size and p.  

n_neighbor 

This hyperparameter defines the number of neighbors to be used. 

leaf_size  

This hyperparameter determines tree construction and memory required to store the tree. 

p  

This parameter specifies the distance measure used in training the model. If set to 1 equal to 

Minkowski, 2 equals to Euclidean distance measures. 

During the training, the p hyperparameters value was set to 2. It was set to 2 because the 

Euclidean distance measure was used. Next, the leaf size value was set to 7 to determine the 

speed of tree construction and the memory required to store the created tree. Finally, the 

N_neighbor hyperparameter value was set to 4. It determines the number of neighbors to be 

used. As shown in Fig. 18, all the hyperparameter values were selected using an optimization 

algorithm, Randomized Search CV. Table 7 shows the summary of hyperparameters used when 

training the K-Nearest Neighbor classifier. 
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Figure 18:  Illustration of how Randomized Search CV is performed to get the best 

values for each parameter used in the K-Nearest Neighbor classifier 

Table 7:  Hyperparameters used when training K-Nearest Neighbor classifier 
Classifier Hyperparameter Value 
Naïve Bayes N 4 
 Leaf size 7 
 P 1 

3.8.2 Training Phase – Port Inclusive 

Towards studying the effect of including ports information as input feature sets, the same 

classifiers were used in the second fold of the experimentation/training phase to develop 

username enumeration attack detection models. The same experiment conducted when 

excluding source and destination ports has been repeated but with the inclusion of ports 

information in the training process. As discussed above, network administrators sometimes 

customize destination ports to other numbers than the default SSH port number 22. Therefore, 

the same dataset with the same split ratio was utilized in this case. Table 8 shows the 

configuration and hyperparameters used when training four classifiers, including ports 

information as input features.   
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Table 8:  Hyperparameters used for models training - Ports inclusive 
Classifier Hyperparameter Value 
Decision Tree Criterion Entropy 
 Maximum depth 60 
 Maximum features Auto 
 Maximum leaf nodes 500 
 Splitter Best 
Random Forest Bootstrap True 
 Maximum depth 30 
 Maximum features Sqrt 
 Minimum sample leaf 1 
 Minimum sample split 5 
 N estimators 400 
Naïve Bayes  Var_smoothing 0.022328467394420651 
K-Nearest Neighbor N 8 
 Leaf size 5 
 P 2 

3.9 Evaluation 

Model evaluation is a degree of how well the trained model generalizes to a new unseen dataset. 

The unseen dataset for this case was 20% remaining of the dataset, the test subset. Model 

evaluations aimed at estimating the generalization accuracy of the new dataset. The 

performance of machine-learning models can be evaluated using different evaluation or 

performances metrics. The choice of performance metrics depends on a given machine-

learning task such as classification, regression, and a few to mention. In this work, the 

performance metrics to evaluate the effectiveness of the developed models were computed in 

terms of precision, recall and overall accuracy. In addition, the Receiver Operating 

Characteristics (ROC) curve was also considered an additional performance metric. The 

metrics are defined below: 

3.9.1 Precision 

Precision is the metric that computes the number of positive class predictions that truly belong 

to the positive class. That is, how many True Positives are there among all positive 

class predictions? Thus, precision is the ratio of True Positives to the total number of positive 

predictions.   
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Formally, precision is defined as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝐹𝑃) 

Where:  

True Positive (TP) is the number of positive samples accurately predicted as positive. 

False Positive is the number of negative samples incorrectly predicted as positive. 

Recall counts the number of positive class predictions made out of all positive examples in the 

dataset. 

F-Measure provides a single score that balances both the concerns of precision and recall in 

one number. 

3.9.2 Recall 

Recall is the metric that computes the number of positive class predictions made out of all 

positive instances in the dataset. That is, how many True positive predictions are there out of 

all the actual positives? Hence, recall is the ratio of True Positives to the total number of 

instances that should have been classified as positive. The term recall is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝐹𝑁) 

Where 

True Positive (TP) is the number of positive samples accurately predicted as positive. 

False Negative (FN) is the number of positive samples incorrectly predicted as negative. 

3.9.3 Accuracy 

Accuracy is the metric that computes the number of correct predictions made out of all number 

of predictions in the dataset. That is, how many correct predictions are out there out of all total 

predictions? Thus, accuracy is the ratio of the number of correct predictions to the total number 

of predictions. Mathematically, accuracy is defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝐴𝑙𝑙	𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  
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Where: 

Correct Prediction is the number of samples correctly predicted. 

All Prediction is the total number of all predictions in the dataset. 

3.9.4 Receiver Operating Characteristics (ROC) Curve 

The Receiver Operating Characteristics (ROC) curve is the evaluation metric that draws the 

graph showing the performance of the subsequent model. The curve plots two parameters True 

Positive Rate and False Positive Rate.  

True Positive Rate is defined as: 

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝑇𝑃𝑅) =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃)

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝐹𝑁)	 

Where: 

True Positive (TP) is the number of positive samples accurately predicted as positive. 

False Negative (FN) is the number of positive samples incorrectly predicted as negative. 

 False Positive Rate is defined as:  

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	
𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝐹𝑃)

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	(𝐹𝑃) + 𝑇𝑟𝑢𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	(𝑇𝑁) 

Where 

False Positive (FP) is the number of negative samples incorrectly predicted as positive. 

True Negative (TN) is the number of negative samples correctly predicted as negative. 

The ROC curve shows the difference between True Positive Rate and False Positive Rate. The 

higher ROC value indicates a high True Positive Rate and low False Positive Rate, which is 

desirable in anomaly detection. 

The models were trained and evaluated, observing the performance metrics in both training 

and testing subsets. The results of the developed models are presented and discussed in the next 

chapter. 
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3.10 Model Deployment Phase  

The model deployment phase refers to the process of integrating a machine learning model into 

an existing production environment such as mobile applications, web applications or intrusion 

detection and prevention systems (IDS/IPS) to make real-world evaluations based on input 

data. The proposed model was deployed into SNORT (Chakrabarti et al., 2010) to 

automatically detect and prevent username enumeration attacks.  

The SNORT is an open-source software-based network detection and prevention system (IPS) 

that monitors the network traffic for unusual activities to determine whether it has been 

compromised. It contains one or more network-based sensors, monitoring and filtering all 

network traffic. When suspicious or malicious traffic is identified, the sensors assist in filtering 

network traffic and generating warnings. The SNORT IDS/IPS, in particular, assists in the 

detection and prevention of both external and internal attacks carried out by both attackers and 

benign users. It can be configured as a packet logger, sniffer or network intrusion detection and 

prevention system (IDS/IPS). If SNORT is configured as an intrusion prevention system (IPS), 

it monitors the network traffic and compares it against the defined rules. It issues alerts when 

it detects suspicious network traffic. All SNORT rules are defined and modified in snort.conf 

file. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This Chapter presents the results of the study and discusses them in detail. The activities result 

in each specific objective were examined. Firstly, the evaluation of the data collection activity 

was presented. Then the performance metrics for the two-fold experimentations were 

conducted. The effectiveness comparison was examined when including and excluding ports 

information as feature sets. Lastly, the best performing model was adopted to the intrusion 

detection and prevention system. 

4.2 Dataset 

This work collected 18 844 and 17 429 instances for the SSH username enumeration attack 

and non-username enumeration attack, respectively, from the closed-environment network. For 

each class obtained, the dataset was split into a training subset and testing subset in a ratio of 

80:20, respectively, as shown in Table 3. The training subset was used for models training 

while the testing subset evaluated the models developed. Table 9 illustrates the dataset 

distribution obtained for this study. 

Table 9:  Dataset distribution 
Class Instances 
SSH Username Enumeration Attack 18 844 
Non-Username Enumeration Attack 17 429 

4.3 Performance Metrics Results 

The performance metrics were evaluated for the two-fold experimentations conducted when 

including and excluding source and destination port as input features. Performance evaluation 

for each classification model developed in both cases used the same testing subset of the dataset 

shown in Table 3. 

4.3.1 Precision 

Table 10 presents precision values obtained in performance evaluation of the developed models 

in detecting and preventing username enumeration attacks. As indicated in the table, the 

precision values are for both cases, when including and excluding ports information as feature 

sets. The precision values of the KNN classifier is as higher as 99.95% when excluding ports 
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information and 100% when including ports information, achieving the highest detection rate 

compared to other developed models. On the other hand, the performance of NB is relatively 

low, with the precision of 94.85% and 99.72%, respectively. It is likely because NB is a weak 

classifier in nature and other models outperformed it.  

Table 10:  Precision values obtained by different classifiers when including and 
excluding ports information 

Classifier Precision - Ports exclusive Precision - Ports inclusive 
DT 99.84 99.97 
RF 99.87 99.89 
NB 94.85 99.72 
KNN 99.95 100 

4.3.2 Accuracy  

While evaluating the performance of the models developed on the dataset described in Table 

3, the accuracy values for two-fold experimentations were recorded. Table 11 shows the 

accuracy values obtained by different classifiers when including and including source and 

destination ports as a feature set. The maximum accuracy was 99.93% when excluding ports 

information and 99.95% when including ports information. The minimum accuracy values 

obtained were 95.70% and 99.85% when excluding and including ports information. The 

accuracy values obtained imply that the models detect the attack with a good performance, as 

the values remained high for all models. 

Table 11:  Accuracy values obtained by different classifiers when including and 
excluding ports information 

Classifier Accuracy - Ports exclusive Accuracy - Ports inclusive 
DT 99.88 99.93 
RF 99.92 99.94 
NB 95.70 99.85 
KNN 99.93 99.95 

4.3.3 Receiver Operating Characteristic Curve 

The area under receiver operating characteristic (ROC) curve summarized the performance of 

the developed models to detect and prevent username enumeration attacks. Table 12  indicates 

the roc curve values obtained by all classifiers used. As can be seen, the correctly classified 

rate is higher to the maximum value of 1, both when using and not using port information as a 

feature set. It implies that the classifiers can effectively detect username enumeration attacks 

with a high detection rate and low false alarm rate. Figure 19 and 20 show the roc curves for 

all modes when using and not using ports information. 
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Table 12:  ROC values obtained by different classifiers when including and excluding 
ports information 

Classifier ROC - Ports exclusive ROC - Ports inclusive 
DT 0.997 0.998 
RF 0.998 0.999 
NB 0.994 0.997 
KNN 0.999 1.000 

 

 
Figure 19:  ROC AUC - Ports Exclusive 

 
Figure 20: ROC AUC - Port Inclusive 
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Table 13:  Summary of performance metrics for all models - Ports exclusive 
Classifier Precision Accuracy ROC 
DT 99.84 99.88 0.997 
RF 99.87 99.92 0.998 
NB 94.85 95.70 0.994 
KNN 99.95 99.93 0.999 

 

Table 14: Summary of performance metrics for all model - Ports inclusive 
Classifier Precision Accuracy ROC 
DT 99.97 99.93 0.998 
RF 99.89 99.94 0.999 
NB 99.72 99.85 0.997 
KNN 100 99.95 1.000 

 

If we observe our prediction results, we see all the classification models in both tables – when 

including and excluding ports information provide outstanding results as indicated by an 

accuracy of greater than 95.70%, which ensures the models effectiveness in the detection of 

username enumeration attack. The KNN classifier has the maximum performance metrics with 

an accuracy of 99.95% when including source and destination ports as input features and an 

accuracy of 99.93% while excluding source and destination ports as models input features.  

Additionally, Fig. 19 and Fig. 20 show the ROC curves as the models’ outcome results for two 

kinds of experiments conducted. They represent the True Positive rate versus False Positive 

rate of each classification model developed.  

From the figures, we observe that the correctly classified rate is higher, close to the maximum 

value of 1. In contrast, the falsely classified rate is low for both cases – when including and 

excluding ports information. Therefore, from the outcome results in Table 13 and Table 14 

together with ROC curves in Fig. 19 and 20, we can conclude that our machine-learning-based 

classification models effectively detect username enumeration attacks with high detection and 

low false alarm rate. 

4.4 Effectiveness Comparison when Including and Excluding Ports Information 

The effectiveness comparison between two kinds of experiments conducted shows that when 

including source and destination ports as input features, there are performance improvements 

compared to when the source and destination ports are excluded. Figure 21 and 22 show the 

relative comparison of precision, accuracy and roc-auc utilizing the dataset discussed in the 

earlier section. The classification performances of the DT, RF and KNN models slightly 

improve. The KNN model increases from an accuracy of 99.93% when it excludes source and 
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destination ports as a feature set to an accuracy of 99.95% when it includes source and 

destination as a feature set. Similarly, the RF model slightly improves from an accuracy of 

99.92% to 99.94% when including source and destination port as the model’s input features. 

The Decision Tree improves its performance from an accuracy of 99.88% to 99.93%. Finally, 

the Naïve Bayes model significantly improves when including ports information as a feature 

set. It increases from an accuracy of 95.70% to 99.85%. Usually, Naïve Bayes is a weak 

classifier, and for the case of excluding ports information as input features in our study, other 

classifiers outperform it. However, by including source and destination port to its feature set, 

Naïve Bayes produces almost the same performance outcome results compared to DT, RF and 

KNN. 

 
Figure 21:  Effectiveness comparison – Ports exclusive  
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Figure 22:  Effectiveness comparison – Ports inclusive 

We observe that the DT, RF and KNN classification models produce almost the same 

classification performances regardless of whether port information is included or excluded in 

the feature set. It can be translated that even if source and destination ports are not included as 

the model’s input features, the distribution of samples in the feature area is still a means that 

samples with a similar label are dispersed together. 

We also observe that the Naïve Bayes classification model significantly enhances performance 

when including ports information as its input feature. This is due to the presumption that 

features in Naïve Bayes are completely independent. Therefore, it is rational to accept that the 

independent nature of Naïve Bayes’ features can be recompensed with the inclusion of 

additional attributes to its attribute set and yields in performance improvement.  

Thus, according to the results shown in Fig. 21 and 22 and the above experimental analysis, 

we can conclude that including source and destination ports as input features has various 

impacts on the developed classifiers depending on their type. However, it generally enhances 

the performances, ensuring the models’ effectiveness in detecting username enumeration 

attacks. 

4.5 Custom IDS/IPS 

K-Nearest Neighbor model was chosen for the deployment because it has a simpler structure 

and requires fewer computing resources than the other training techniques used in this study. 
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The selected model was embedded into the SNORT intrusion detection and prevention system 

(IDS/IPS), as mentioned in Section 3.10. The proposed customized SNORT IDS/IPS was 

implemented by adding and editing KNN rules, specifically by modifying and fine-tuning 

/user/local/etc/ in snort.conf. After deploying the KNN model into SNORT IDS/IPS, its default 

action “alert” was changed to drop for dropping username enumeration attack traffic and 

allowing non-username enumeration attack traffic according to rules in customized SNORT 

IDS/IPS.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This study presents a novel username enumeration attack detection and prevention method on 

SSH protocol using machine-learning approaches. To achieve this, we collected the data from 

a closed-environment network, and the dataset is then labelled to generate a labelled dataset. 

We trained four distinct classifiers in a dataset containing two class labels: The username 

enumeration and non-username enumeration attack class instances. The former represented the 

normal class, while the latter represented the attack class. We evaluated the models’ 

performance using accuracy, precision and ROC-AUC values. Our findings show that using 

machine-learning approaches to detect SSH username enumeration attacks achieves reasonable 

results, with KNN having an accuracy of 99.93%, NB 95%, RF 99.92% and DT 99.88%.  

In addition, when training classification models, we investigated the impact of including ports 

information in the feature set. Our findings imply that including source and destination ports 

as input features improved performances without compromising computation power. However, 

the performance improvements vary from classifier to classifier based on their nature. The 

classifier such as Naïve Bayes, significantly enhances performance when including ports 

information. The nature of Naïve Bayes’ features is completely independent; hence, including 

ports information yields significant performance improvements. The best selected model was 

then deployed into intrusion detection and prevention system (IDS/IPS) to automatically detect 

and prevent username enumeration attack 

5.2 Recommendations 

In future work, this research can be expanded into several directions. This study recommends 

a further stabilization of the developed models' robustness by gathering more data in a 

production-environment network and evaluating how developed models would perform on the 

real-world live dataset. Deep-learning techniques may also be incorporated in the future to 

detect username enumeration attacks. The study also recommends the use of machines with 

high computation power. 
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APPENDICES 

Appendix 1:  Data preprocessing 

Import libraries 

#Mount Google Drive with Google Colab 

from google.colab import drive 

drive.mount('/content/gdrive') 

import numpy as np 

np.random.seed(42) 

import pandas as pd 

#For visualization 

import matplotlib.pyplot as plt 

import seaborn as sns 

%config InlineBackend.figure_format = 'retina' 

#Metrics  

from sklearn.metrics import accuracy_score 

from sklearn.metrics import precision_score 

from sklearn.metrics import recall_score 

from sklearn.metrics import roc_auc_score 

#DT Classifier 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.neighbors import KNeighborsClassifier 

#Split data 

from sklearn.model_selection import train_test_split 
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Check dataset encoding 

import chardet 

with open("../content/gdrive/MyDrive/research/data_unprocessed.csv", 

'rb') as rawdata: 

    result = chardet.detect(rawdata.read(10000)) 

check what the character encoding might be 

print(result) 

Load the dataset according to encoding obtained 

raw_data = 

pd.read_csv('/content/gdrive/MyDrive/research/data_unprocessed.csv', 

encoding='latin-1') 

Save the dataset to standard encoding UTF-8 

raw_data.to_csv('/content/gdrive/MyDrive/research/raw_data.csv', 

index=False) 

Load the dataset with standard encoding UTF-8 

raw_data = pd.read_csv('/content/gdrive/MyDrive/research/raw_data.csv' 

Data preprocessing 

#Drop unnecessary columns 

raw_data = raw_data.drop(['Info', 'ArrivalTime', 

'FrameLengthStoredIntoCaptureFile.1'], axis=1) 

Columns with missing values 

missing_values = [misval for misval in raw_data.columns 

                  if raw_data[misval].isnull().any()] 

print(missing_values) 

Fill missing values in columns 

#Filling missing values with zeros 

raw_data['SourcePort'].fillna(0, inplace=True) 
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raw_data['DestinationPort'].fillna(0, inplace=True) 

#Filling missing values with pre or post data entry 

raw_data['Flags'].fillna('noflag', inplace=True) 

raw_data = raw_data.fillna(method='bfill') 

Categorical encoding 

#First know all categorical columns in dataset 

cat_cols = [ccol for ccol in raw_data.columns 

            if raw_data[ccol].dtypes=='object'] 

print(cat_cols) 

#Label Encoding 

from sklearn.preprocessing import LabelEncoder 

le=LabelEncoder() 

for col in cat_cols: 

    if col in proc_data.columns: 

        i = proc_data.columns.get_loc(col) 

        proc_data.iloc[:,i] = proc_data.apply(lambda 

i:le.fit_transform(i.astype(str)), axis=0, result_type='expand') 

Scaling 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

number_cols = [no for no in proc_data.columns 

               if proc_data[no].dtypes in ['int64', 'float64']] 

print(number_cols) 

proc_data[['Time', 'SourceIP', 'SourcePort', 'DestinationIP', 

'DestinationPort', 'Protocol', 'PacketLength', 'Delta', 

'TimeShiftForPacket', 'FrameLengthStoredIntoCaptureFile', 'Flags', 

'TCPFlags', 'TextItem', 'EpochTime', 'FrameNumber', 
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'FrameLengthOnTheWire', 'HeaderLength', 'TotalLength', 'TimeToLive', 

'Label']] = scaler.fit_transform(proc_data[['Time', 'SourceIP', 

'SourcePort', 'DestinationIP', 'DestinationPort', 'Protocol', 

'PacketLength', 'Delta', 'TimeShiftForPacket', 

'FrameLengthStoredIntoCaptureFile', 'Flags', 'TCPFlags', 'TextItem', 

'EpochTime', 'FrameNumber', 'FrameLengthOnTheWire', 'HeaderLength', 

'TotalLength', 'TimeToLive', 'Label']]) 

#Visualize 

plt.figure(figsize=(50,25)) 

sns.scatterplot(data=proc_data)	  
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Appendix 2:  Optimization algorithm to select optimum hyperparameters Ports 

exclusive 

Modeling 

#Shuffle data 

proc_data = proc_data.reindex(np.random.permutation(proc_data.index)) 

Models - Ports Exclusive 

#Split target value 

y = proc_data.Label 

y.head() 

#Split feature values 

#Five Features: Time, PackeLength, Delta, Flags,TotalLength 

X = proc_data[['Time','PacketLength', 'Delta', 'Flags', 'TotalLength']] 

X.head() 

#Split data 

train_X, val_X, train_y, val_y = train_test_split(X, y, 

train_size=0.8,test_size=0.2, random_state=42) 

#DT Classifier 

#Optimization Algorithm to select optimum hyperparameters 

#DT Hyperparameter Selection 

from sklearn.model_selection import RandomizedSearchCV 

#Assign parameters 

criterion = ['gini','entropy'] 

#Maximum number of levels in tree 

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] 

max_depth.append(None) 

#Number of features to consider at every split 
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max_features = ['auto', 'sqrt'] 

#Leaf node  

max_leaf_nodes = [int(x) for x in np.linspace (start=50,stop=1000, 

num=20)] 

splitter = ['best','random'] 

dt_param_grid = {'criterion':criterion, 

                 'max_depth': max_depth, 

                 'max_features': max_features, 

                 'max_leaf_nodes': max_leaf_nodes, 

                 'splitter': splitter} 

dt_model = DecisionTreeClassifier() 

dt_random = RandomizedSearchCV(estimator=dt_model, 

param_distributions=dt_param_grid, n_iter=100, cv=3, verbose=2, 

random_state=42, n_jobs=-1) 

dt_random.best_params_ 

dt_model = DecisionTreeClassifier(random_state=42, 

                                  criterion = 'gini', 

                                  max_depth = 50, 

                                  max_features = 'auto', 

                                  max_leaf_nodes = 950, 

                                  splitter = 'best') 

#RF Classifier 

#Optimization Algorithm for best hyperparameters selection 

from sklearn.model_selection import RandomizedSearchCV 

#Assign values to hyperparameters 

# Number of trees in random forest 



 

61 

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, 

num = 10)] 

# Number of features to consider at every split 

max_features = ['auto', 'sqrt'] 

# Maximum number of levels in tree 

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] 

max_depth.append(None) 

# Minimum number of samples required to split a node 

min_samples_split = [2, 5, 10] 

# Minimum number of samples required at each leaf node 

min_samples_leaf = [1, 2, 4] 

# Method of selecting samples for training each tree 

bootstrap = [True, False] 

#Minimum impurity decrease 

min_impurity_decrease = [0.01, 0.1, 0.02, 0.2, 0.03, 0.3] 

random_grid = {'n_estimators': n_estimators, 

               'max_features': max_features, 

               'max_depth': max_depth, 

               'min_samples_split': min_samples_split, 

               'min_samples_leaf': min_samples_leaf, 

               'min_impurity_decrease': min_impurity_decrease, 

               'bootstrap': bootstrap} 

#Use the random grid to search for best hyperparameters 

# First create the base model to tune 

rf_model = RandomForestClassifier() 
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rf_random = RandomizedSearchCV(estimator = rf_model, param_distributions 

= random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs 

= -1) 

rf_random.best_params_ 

rf_model = RandomForestClassifier(random_state=42, 

                                  bootstrap =True, 

                                  max_depth = 90, 

                                  max_features = 'auto', 

                                  min_samples_leaf = 1, 

                                  min_samples_split = 5, 

                                  n_estimators = 1600) 

#NB Classifier 

#Optimization Algorithm for best hyperparameters selection 

from sklearn.model_selection import RandomizedSearchCV 

#Setting parameter distribution 

nv_param_grid_ = { 

    'var_smoothing': np.logspace(0,-9, num=100) 

} 

nv_model = GaussianNB() 

nv_random = RandomizedSearchCV(estimator=nv_base_model, 

param_distributions = nv_param_grid_, n_iter = 100, cv = 3, verbose=2, 

random_state=42, n_jobs = -1) 

#Check best parameters 

nv_random.best_params_ 

nv_model = GaussianNB(var_smoothing =  2.848035868435799e-05) 

#KNN Classifier 

#Optimization Algorithm for best hyperparameters selection 
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from sklearn.model_selection import RandomizedSearchCV 

#Creating parameters 

leaf_size = list(range(1,50)) 

n_neighbors = list(range(1,30)) 

p=[1,2] 

#Convert to dictionary 

param_grid_nn  = dict(leaf_size=leaf_size, n_neighbors=n_neighbors, p=p) 

nn_model = KNeighborsClassifier() 

nn_random = RandomizedSearchCV(estimator=nn_model, 

param_distributions=param_grid_nn, n_iter=100, cv=3, n_jobs=-1, 

verbose=2, random_state=42) 

nn_random.best_params_ 

nn_model = KNeighborsClassifier(leaf_size=7, n_neighbors =4, p = 1)	  
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Appendix 3:  Modeling - Ports exclusive 

#Fit Models 

dt_model.fit(train_X, train_y) 

rf_model.fit(train_X, train_y) 

nv_model.fit(train_X, train_y) 

nn_model.fit(train_X, train_y) 

#Prediction  

dt_prediction = dt_model.predict(val_X) 

rf_prediction = rf_model.predict(val_X) 

nv_prediction = nv_model.predict(val_X) 

nn_prediction = nn_model.predict(val_X)	  
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Appendix 4: Evaluation - Ports exclusive 

#Evaluation 

print('DT Accuracy is:') 

dt_accuracy = accuracy_score(val_y, dt_prediction) 

print(dt_accuracy) 

print('\t') 

print('DT Precision is:') 

dt_prec = precision_score(val_y, dt_prediction) 

print(dt_prec) 

print('\t') 

print('RF Accuracy is:') 

rf_accuracy = accuracy_score(val_y, rf_prediction) 

print(rf_accuracy) 

print('\t') 

print('RF Precision is:') 

rf_prec = precision_score(val_y, rf_prediction) 

print(rf_prec) 

print('\t') 

print('NV Accuracy is:') 

nv_accuracy = accuracy_score(val_y, nv_prediction) 

print(nv_accuracy) 

print('\t') 

 

print('NV Precision is:') 

nv_prec = precision_score(val_y, nv_prediction) 
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print(nv_prec) 

print('\t') 

print('KNN Accuracy is:') 

nn_accuracy = accuracy_score(val_y, nn_prediction) 

print(nn_accuracy) 

print('\t') 

print('KNN Precision is:') 

nn_prec = precision_score(val_y, nn_prediction) 

print(nn_prec) 

print('\t') 

#predict probabilities 

pred_prob1 = dt_model.predict_proba(val_X) 

pred_prob2 = rf_model.predict_proba(val_X) 

pred_prob3 = nv_model.predict_proba(val_X) 

pred_prob4 = nn_model.predict_proba(val_X) 

# roc curve for models 

from sklearn.metrics import roc_curve 

fpr1, tpr1, thresh1 = roc_curve(val_y, pred_prob1[:,1], pos_label=1) 

fpr2, tpr2, thresh2 = roc_curve(val_y, pred_prob2[:,1], pos_label=1) 

fpr3, tpr3, thresh3 = roc_curve(val_y, pred_prob3[:,1], pos_label=1) 

fpr4, tpr4, thresh4 = roc_curve(val_y, pred_prob4[:,1], pos_label=1) 

#roc curve for tpr = fpr  

random_probs = [0 for i in range(len(val_y))] 

p_fpr, p_tpr, _ = roc_curve(val_y, random_probs, pos_label=1) 

from sklearn.metrics import roc_auc_score 
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#auc scores 

auc_score1 = roc_auc_score(val_y, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(val_y, pred_prob2[:,1]) 

auc_score3 = roc_auc_score(val_y, pred_prob3[:,1]) 

auc_score4 = roc_auc_score(val_y, pred_prob4[:,1]) 

print('ROC for DT:') 

print(auc_score1) 

print('\t') 

print('ROC for RF:') 

print(auc_score2) 

print('\t') 

print('ROC for NB:') 

print(auc_score3) 

print('\t') 

print('ROC for KNN:') 

print(auc_score4) 

print('\t') 

print(auc_score1, auc_score2) 

# matplotlib 

import matplotlib.pyplot as plt 

%config InlineBackend.figure_format = 'retina' 

#.style.use('seaborn') 

plt.grid() 

# plot roc curves 

plt.plot(fpr1, tpr1, linestyle='--',color='blue', label='DT = 0.997') 
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plt.plot(fpr2, tpr2, linestyle='--',color='red', label='RF = 0.998') 

plt.plot(fpr3, tpr3, linestyle='--',color='green', label='NB = 0.994') 

plt.plot(fpr4, tpr4, linestyle='--',color='purple', label='KNN = 0.999') 

plt.plot(p_fpr, p_tpr, linestyle='--', color='black') 

# title 

plt.title('ROC curve') 

# x label 

plt.yticks ([0.94, 0.96,0.98,1.0]) 

plt.xticks([0.94, 0.96,0.98,1.0]) 

plt.xlabel('False Positive Rate') 

# y label 

plt.ylabel('True Positive Rate') 

plt.legend(loc='best') 

plt.savefig('ROC',dpi=500) 

plt.show() 

Models – Ports Inclusive 

#Split target value 

y = proc_data.Label 

y.head() 

#Split feature values 

#Seven Features: Time, PackeLength, Delta, Flags,TotalLength 

X = proc_data[['Time','PacketLength', 'Delta', 'Flags', 

'TotalLength''SourcePort', 'DestinationPort']] 

X.head() 

#Split data 
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train_X, val_X, train_y, val_y = train_test_split(X, y, 

train_size=0.8,test_size=0.2, random_state=42) 

#DT Classifier 

#Optimization Algorithm to select optimum hyperparameters	  
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Appendix 5:  Optimization Algorithm to select optimum hyperparameters Ports 

inclusive 

#DT Hyperparameter Selection 

from sklearn.model_selection import RandomizedSearchCV 

#Assign parameters 

criterion = ['gini','entropy'] 

#Maximum number of levels in tree 

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] 

max_depth.append(None) 

 

#Number of features to consider at every split 

max_features = ['auto', 'sqrt'] 

#Leaf node  

max_leaf_nodes = [int(x) for x in np.linspace (start=50,stop=1000, 

num=20)] 

splitter = ['best','random'] 

dt_param_grid = {'criterion':criterion, 

                 'max_depth': max_depth, 

                 'max_features': max_features, 

                 'max_leaf_nodes': max_leaf_nodes, 

                 'splitter': splitter} 

dt_model = DecisionTreeClassifier() 

dt_random = RandomizedSearchCV(estimator=dt_model, 

param_distributions=dt_param_grid, n_iter=100, cv=3, verbose=2, 

random_state=42, n_jobs=-1) 

dt_random.best_params_ 

dt_model = DecisionTreeClassifier(random_state=42, 



 

71 

                                  criterion = 'entropy', 

                                  max_depth = 60, 

                                  max_features = 'auto', 

                                  max_leaf_nodes = 500, 

                                  splitter = 'best') 

#RF Classifier 

#Optimization Algorithm for best hyperparameters selection 

from sklearn.model_selection import RandomizedSearchCV 

#Assign values to hyperparameters 

# Number of trees in random forest 

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, 

num = 10)] 

# Number of features to consider at every split 

max_features = ['auto', 'sqrt'] 

# Maximum number of levels in tree 

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] 

max_depth.append(None) 

# Minimum number of samples required to split a node 

min_samples_split = [2, 5, 10] 

# Minimum number of samples required at each leaf node 

min_samples_leaf = [1, 2, 4] 

# Method of selecting samples for training each tree 

bootstrap = [True, False] 

#Minimum impurity decrease 

min_impurity_decrease = [0.01, 0.1, 0.02, 0.2, 0.03, 0.3] 

random_grid = {'n_estimators': n_estimators, 



 

72 

               'max_features': max_features, 

               'max_depth': max_depth, 

               'min_samples_split': min_samples_split, 

               'min_samples_leaf': min_samples_leaf, 

               'min_impurity_decrease': min_impurity_decrease, 

               'bootstrap': bootstrap} 

#Use the random grid to search for best hyperparameters 

# First create the base model to tune 

rf_model = RandomForestClassifier() 

rf_random = RandomizedSearchCV(estimator = rf_model, param_distributions 

= random_grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs 

= -1) 

rf_random.best_params_ 

rf_model = RandomForestClassifier(random_state=42, 

                                  bootstrap =True, 

                                  max_depth = 30, 

                                  max_features = 'sqrt', 

                                  min_samples_leaf = 1, 

                                  min_samples_split = 5, 

                                  n_estimators = 400) 

#NB Classifier 

#Optimization Algorithm for best hyperparameters selection 

from sklearn.model_selection import RandomizedSearchCV 

#Setting parameter distribution 

nv_param_grid_ = { 

    'var_smoothing': np.logspace(0,-9, num=100) 
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} 

nv_model = GaussianNB() 

nv_random = RandomizedSearchCV(estimator=nv_base_model, 

param_distributions = nv_param_grid_, n_iter = 100, cv = 3, verbose=2, 

random_state=42, n_jobs = -1) 

#Check best parameters 

nv_random.best_params_ 

nv_model = GaussianNB(var_smoothing =  0.022328467394420651)  

#KNN Classifier 

#Optimization Algorithm for best hyperparameters selection 

from sklearn.model_selection import RandomizedSearchCV 

#Creating parameters 

leaf_size = list(range(1,50)) 

n_neighbors = list(range(1,30)) 

p=[1,2] 

#Convert to dictionary 

param_grid_nn  = dict(leaf_size=leaf_size, n_neighbors=n_neighbors, p=p) 

nn_model = KNeighborsClassifier() 

nn_random = RandomizedSearchCV(estimator=nn_model, 

param_distributions=param_grid_nn, n_iter=100, cv=3, n_jobs=-1, 

verbose=2, random_state=42) 

nn_random.best_params_ 

nn_model = KNeighborsClassifier(leaf_size=8, n_neighbors =5, p = 2)	  
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Appendix 6:  Modeling - Ports inclusive 

#Fit Models 

dt_model.fit(train_X, train_y) 

rf_model.fit(train_X, train_y) 

nv_model.fit(train_X, train_y) 

nn_model.fit(train_X, train_y)	  
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Appendix 7:  Evaluation - Ports inclusive 

#Prediction  

dt_prediction = dt_model.predict(val_X) 

rf_prediction = rf_model.predict(val_X) 

nv_prediction = nv_model.predict(val_X) 

nn_prediction = nn_model.predict(val_X) 

#Evaluation 

print('DT Accuracy is:') 

dt_accuracy = accuracy_score(val_y, dt_prediction) 

print(dt_accuracy) 

print('\t') 

print('DT Precision is:') 

dt_prec = precision_score(val_y, dt_prediction) 

print(dt_prec) 

print('\t') 

print('RF Accuracy is:') 

rf_accuracy = accuracy_score(val_y, rf_prediction) 

print(rf_accuracy) 

print('\t') 

 

print('RF Precision is:') 

rf_prec = precision_score(val_y, rf_prediction) 

print(rf_prec) 

print('\t') 

print('NV Accuracy is:') 



 

76 

nv_accuracy = accuracy_score(val_y, nv_prediction) 

print(nv_accuracy) 

print('\t') 

print('NV Precision is:') 

nv_prec = precision_score(val_y, nv_prediction) 

print(nv_prec) 

print('\t') 

print('KNN Accuracy is:') 

nn_accuracy = accuracy_score(val_y, nn_prediction) 

print(nn_accuracy) 

print('\t') 

print('KNN Precision is:') 

nn_prec = precision_score(val_y, nn_prediction) 

print(nn_prec) 

print('\t') 

#predict probabilities 

pred_prob1 = dt_model.predict_proba(val_X) 

pred_prob2 = rf_model.predict_proba(val_X) 

pred_prob3 = nv_model.predict_proba(val_X) 

pred_prob4 = nn_model.predict_proba(val_X) 

# roc curve for models 

from sklearn.metrics import roc_curve 

fpr1, tpr1, thresh1 = roc_curve(val_y, pred_prob1[:,1], pos_label=1) 

fpr2, tpr2, thresh2 = roc_curve(val_y, pred_prob2[:,1], pos_label=1) 

fpr3, tpr3, thresh3 = roc_curve(val_y, pred_prob3[:,1], pos_label=1) 
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fpr4, tpr4, thresh4 = roc_curve(val_y, pred_prob4[:,1], pos_label=1) 

#roc curve for tpr = fpr  

random_probs = [0 for i in range(len(val_y))] 

p_fpr, p_tpr, _ = roc_curve(val_y, random_probs, pos_label=1) 

from sklearn.metrics import roc_auc_score 

#auc scores 

auc_score1 = roc_auc_score(val_y, pred_prob1[:,1]) 

auc_score2 = roc_auc_score(val_y, pred_prob2[:,1]) 

auc_score3 = roc_auc_score(val_y, pred_prob3[:,1]) 

auc_score4 = roc_auc_score(val_y, pred_prob4[:,1]) 

print('ROC for DT:') 

print(auc_score1) 

print('\t') 

print('ROC for RF:') 

print(auc_score2) 

print('\t') 

print('ROC for NB:') 

print(auc_score3) 

print('\t') 

print('ROC for KNN:') 

print(auc_score4) 

print('\t') 

print(auc_score1, auc_score2) 

# matplotlib 

import matplotlib.pyplot as plt 
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%config InlineBackend.figure_format = 'retina' 

style.use('seaborn') 

plt.grid() 

# plot roc curves 

plt.plot(fpr1, tpr1, linestyle='--',color='blue', label='DT = 0.998') 

plt.plot(fpr2, tpr2, linestyle='--',color='red', label='RF = 0.999') 

plt.plot(fpr3, tpr3, linestyle='--',color='green', label='NB = 0.997') 

plt.plot(fpr4, tpr4, linestyle='--',color='purple', label='KNN = 1.000') 

plt.plot(p_fpr, p_tpr, linestyle='--', color='black') 

# title 

plt.title('ROC curve') 

# x label 

plt.yticks ([0.94, 0.96,0.98,1.0]) 

plt.xticks([0.94, 0.96,0.98,1.0]) 

plt.xlabel('False Positive Rate') 

# y label 

plt.ylabel('True Positive Rate') 

plt.legend(loc='best') 

plt.savefig('ROC',dpi=500) 

plt.show()	  
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