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Abstract: Tobacco (Nicotiana tabacum L.) is associated with great uptake of soil macronutrients.
Following the need to understand the macronutrients levels before and after tobacco cultivation,
research was conducted in loamy sand soil of Sikonge, Urambo, and sand soil of Tabora, Tanzania.
The initial macronutrients levels in the soil were compared with those measured after unfertilized
and fertilized tobacco. Results showed that unfertilized tobacco plant influences the increase of
nicotine to the rhizosphere, the macronutrients Ca (135%) > N (25%), decrease in the order of S (81%)
> P (49%) > Mg (12%) > K (11%). The sole e↵ect of nitrogen–phosphorus–potassium (NPK) and
calcium–ammonium–nitrate (CAN) 27% fertilizers increased further nicotine, Ca (25%) >N (20%) > S
(8%) >Mg (4%) > P (3%), and decreased K (3%) in the rhizosphere. Both tobacco plant and NPK +
CAN fertilizers on the rhizosphere increased Ca (193%) > N (50%) and decreased S (80%) > P (48%) >
K (14%) >Mg (8%). Leaf concentrations in fertilized tobacco increased Ca (197%) > K (28%) > P (27%)
> S (26%) > N (18%) >Mg (12%). Therefore, tobacco plant increases soil N and Ca but decreases P, K,
Mg, and S.

Keywords: rhizosphere; fertilizers; nutrients; soil fertility; soil/plant interactions; arable crops

1. Introduction

The tobacco (Nicotiana tabacum L.) plant requires large quantities of primary macronutrients
such as nitrogen (N), phosphorous (P), and potassium (K) and secondary macronutrients including
calcium (Ca), magnesium (Mg), and sulphur (S) in order to attain high leaf yield and good quality.
Soil depletion of macronutrients is plausible because of the large input requirement to the tobacco
crop [1–3]. The residual levels of other macronutrients, such as Ca and Mg, have not been studied
following tobacco production. Recently, investigators have reported an increase in total soil-N levels
after tobacco cultivation [4,5], while others have reported a decline in soil macronutrients such as K, P,
and S [5–7]. The release of nicotine into the rhizosphere was considered to have a major impact on
the increase or decrease of these nutrients. Thus, nicotine (C10H14N2) released in the soil could be
mineralized and increase N in the soils, however, since nicotine is acidic, when mineralized could also
influence solubilization of P, K, and S to be readily available to the plant and reduce their levels in
the soil.

Nitrogen influences the growth and quality of flue-cured tobacco as well as the taste and aroma
and the smoke [8–10]. The su�cient leaf concentration has been reported to range from 3.5% to
6.5% [11]. However, Haghighi et al. [12] observed N content in tobacco leaves to fluctuate from 2%
to 5%, and the deficiency symptoms to appear when N falls below 1.5%. The recommendations for
N application in tobacco ranges from 60 to 90 kg ha�1 depending on topsoil depth, with lower rates
required on shallow clay soils and higher rates needed on deep sands [13,14]. The nutrient P is essential
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for hastening tobacco root development as well as improvement of the color and quality of leaves.
The su�ciency concentration of P in tobacco leaf ranges from 0.1% to 1.0% [11]. Studies have revealed
that for optimum tobacco production, P must be supplied at an application rate of not more than
20 kg ha�1 [13,14]. The nutrient K influences leaf yield and quality of the tobacco [15]. The adequate
foliar K range is from 1.6% to 4.1% for the tobacco [11], which typically requires a minimum of
100 kg K2O ha�1 to obtain maximum yield and quality [13,14]. However, Vann et al. [16,17] indicated
that the residual soil K and soil texture make it challenging to establish the actual amount of K to be
supplied to optimize yields especially for the new cultivars bred as higher yielding.

Calcium has a strong influence on biomass and dry matter production in the tobacco plant. It is
involved in the development of the cell wall, plasma membrane, cell growth, and enzyme secretion [18].
Calcium may also have a positive influence on N uptake and the activation of enzymes associated
with N assimilation [4]. Su�cient foliar Ca concentrations range from 1.5% to 3.5% [11]. Mg is a
constituent of the chlorophyll molecule, a co-factor of all enzymes involved in the phosphorylation
reaction as well as being as an activator of several enzymes such as biphosphate carboxylase in triose
sugar production [19]. The su�cient leaf concentrations for Mg are reported at 0.20%–0.85% [11]. S
is essential for tobacco growth, development, and metabolism. S also regulates plant responses to
various biological and non-biological stresses. Furthermore, S induces resistance to tobacco mosaic virus
(TMV) in correlation with glutathione metabolism [20]. The adequate leaf concentrations for S ranges
from 0.18% to 0.50% [11].

Even though some studies have reported the tobacco crop to either deplete or increase
macronutrients in soils [1,2,4,5], none of these studies have investigated how tobacco plants a↵ect soil
chemistry and the levels of macronutrients in di↵erent soils [5,7]. Nor has previous research linked leaf
nutrient concentrations to these factors. Therefore, the objective of this study was to investigate the
e↵ects of fertilizer application on soil macronutrient levels and leaf nutrient concentrations compared to
non-fertilized tobacco systems. This study likewise took into account the e↵ects of nicotine exudation
into the rhizosphere and its impact on macronutrient availability. These findings may help tobacco
growers make proper decisions when supplementing macronutrients for planting crops next to tobacco.

2. Materials and Methods

2.1. Experimental Details and Treatments

Field experiments were conducted in Sikonge District (had mean atmospheric temperature and
rainfall of 29 �C and 1050 mm, respectively, located at 05�31047.4” S, 032�50003.2” E; 1,191 m a.s.l.),
Urambo District (had mean atmospheric temperature and rainfall of 25 �C and 890 mm, respectively,
located at 05�04033.5” S, 032�00009.8” E; 1,108 m a.s.l.), and Tabora District (had mean atmospheric
temperature and rainfall of 27 �C and 950 mm, respectively, located at 05�03044.4” S, 032�40007.4” E;
1160 m a.s.l.) sites, of Tabora region, Tanzania which grow tobacco as their commercial crop during the
2017/18 cropping season. The selected soil properties of the experimental area are given in Table 1.
Tobacco seed variety K326 was used from Tobacco Research Institute of Tanzania (TORITA).

Table 1. Selected soil properties of experimental soils before tobacco cultivation.

Description Measured Variables Unit
Sites

Sikonge Tabora Urambo

Soil pH pH (1:2.5) in H2O 5.89 5.49 5.87

Soil particle size
Clay (%) 11.5 6.96 12.12
Silt (%) 3.48 4.64 2.92

Sand (%) 85.04 88.4 84.96
Soil texture Texture Class Loamy sand Sand Loamy sand
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The seedlings were raised in a seedbed of 1.5 ⇥ 20 m and fertilized with 5 kg of N10P18K24 fertilizer.
Eight weeks after sowing, the seedlings were transplanted to the experimental plots at a spacing of
1.2 m between ridges and 0.50 m between plants making the total of 60 plants per plot equivalent to
16,666 plants/ha. Fertilizers nitrogen–phosphorus–potassium (NPK) and calcium–ammonium–nitrate
(CAN) were applied as treatments against unfertilized plots. Fertilizer N10P18K24 at a rate of 30 g per
plant was applied around the seedling at a distance of about 20 cm seven days after transplanting.
This is equivalent to 50 kg N, 90 kg P, and 120 kg K ha�1. Fertilizer CAN 27% was applied at a rate of
8 g per plant two weeks after application of NPK in a similar way and position. This is equivalent to
33.75 kg N and 5.4 kg Ca ha�1.

The layout of the experiment was a randomized complete block design (RCBD) and the two
treatments were replicated three times. The treatments were (1) fertilizers: (i) N10P18K24 fertilizer
blended with B, CaO, MgO, and S; and (ii) calcium–ammonium–nitrate (CAN + 27 N%) blended with
CaO, MgO, and S applied two weeks after application of NPK; and (2) unfertilized.

2.2. Plant Leaf Sample Harvesting and Macronutrient Assessment

A mature middle leaf in each tobacco plant was sampled such that the border rows and the
first three plants at the edges of the inner rows were excluded. Of the three inner rows in each plot,
the leaves were sampled from six plants hence 18 plants in a plot. Therefore, a total of 162 plants were
sampled in the experimental site as there were plots for two fertilizer sources (N10P18K24 and CAN
27% N) and unfertilized, all in three replications. These leaf samples were dried in the oven at 65 �C at
a constant weight. Chopping of the dried leaf samples was done and sieved with a 0.5 mm wire mesh.
Dry ash and wet digestion laboratory analyses were performed for concentrations of N, P, K, Ca, Mg,
and S [21]. Soil properties, leaf nicotine concentration, and harvested leaf yield are presented for each
research site as Supplementary Tables S1–S7 (Supplementary Materials).

2.3. Soil Sampling Before the Experiment, After Harvesting Tobacco Leaves, and Assessment

Soil samples from each treatment plot were taken by zig zag method in three locations to the
depth of 0–20 cm. Composite soil samples at a depth of 0–20 cm were collected from experimental sites
before and after experimentation. These soils were tested for the texture, soil pH was determined using
soil water ratio 1:2.5, organic carbon (OC) was determined by Walkley Black method, and total N was
determined by the Kjedahl method. Available P was determined by Bray-1 method, exchangeable Ca,
Mg, and extractable S was determined by Atomic Adsorption Spectophotometer. Thermo Scientific,
iCE3300 AA System Serial No C113300088, Leicestershire, UK. Extractable Cu, Fe, and Mn was
determined by Diethylene Triamine Pentaacetic Acid (DTPA) extractant method and extractable B was
determined by water extractable B [21]. Nicotine was determined in these soils by spectrophotometric
analysis using a UV visible single beam fixed at 602 nm [22].

2.4. Statistical Analyses

Statistical analyses (two factors: sites; Sikonge, Tabora, Urambo, and fertilization) were done
using STATISTICA 8th Edition, StatSoft, Inc., Tulsa, OK, USA and analysis of variance (ANOVA).
The significant means were compared using Fisher’s least significance di↵erence at p = 0.05.

Regression and Correlation Assessment

Nicotine as a response variable (Y) was regressed against N, K, P, Ca, Mg, and S as constant
macronutrients in the following model:

Y = z1Vi + z2Vii + z3Viii + z4Viv + z5Vv + z6Vvi + C (1)

where Vi to Vvi stand for parameters N, K, P, Ca, Mg, and S, z1 to z6 represent coe�cients of the
parameters, Y is nicotine and C is the constant.
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Correlations of nicotine against N, K, P, Ca, Mg, and S were carried out to quantify the association
impact of released nicotine in soils on the macronutrients.

3. Results and Discussion

3.1. E↵ects of Tobacco Cultivation and Fertilizer Application on Soil pH, OC, and Nicotine

The soils from Sikonge and Urambo are characteristically loamy sand, while soils of Tabora are
characteristically sand (Table 1). Ratings of the studied parameters in these soils are based on the
descriptions compiled by Landon [23]. The soil pH in Tabora soil was strongly acid (5.1–5.5) and
medium acid (5.6–6.0) in Sikonge and Urambo. The results of the e↵ects of tobacco cultivation and
fertilizer application on soil pH, OC, and nicotine are presented in Table 2. Soil pH di↵ered significantly
di↵erent across the sites. The soil pH of 5.79 was observed in Urambo, followed by Sikonge (5.58) and
Tabora (5.47). Comparing the soil pH for the measurements taken before the establishment of tobacco in
the field (5.75), and the records taken after fertilization with NPK and CAN (5.52), the soil pH reduced
by 0.23 units whereas in unfertilized plots (5.57) there was a reduction of 0.18 units. Unfertilized
tobacco cultivated soils had a higher pH (5.57) than the fertilized tobacco soils (5.52). The NH4

+ could
attribute the acidic character of these soils as a source of N by 7.1% applied to the crop with NPK
fertilizer, and H+ might be a by-product of nitrification. The acid-forming cation could also have been
added from rain and inherent parent material as there is no detailed soil classification done to ascertain
the presence of sesquioxides of Fe3+ and/or Al3+ [24]. Besides the total N, Ca, and Mg which are very
low, other macronutrients including S, P, and K in soils from all sites were medium to high, suggesting
the likely e↵ect of soil reaction on their availability [25,26].

Furthermore, the results of this study showed significant interactions between sites and fertilizer
application on soil pH. The pH of Sikonge soils significantly reduced from 5.89 before the experiment
to 5.44 and 5.41 after unfertilized and fertilized tobacco harvesting, respectively. Soil pH for Tabora was
not a↵ected significantly by tobacco cultivation and fertilization when compared with measurements
taken before the field experimentation. At the Urambo site, the soil pH was reduced significantly by
the fertilization (Figure 1). This reduction in soil pH could be due to the H+ generated by nitrification
and the acidification e↵ects caused by the nicotine released by tobacco roots.

The organic carbon (OC) for Sikonge, Tabora, and Urambo were significantly di↵erent across
the sites. The higher OC value was recorded in Sikonge (0.32%) followed by Urambo (0.25%) and
Tabora (0.15%). The OC in the soil decreased significantly by planting tobacco and supplying fertilizers
(Table 2). For instance, there was a significant reduction in OC content from 0.25% to 0.23% by just
cultivating tobacco and fertilizing tobacco with N10P18K24 and CAN 27%. Furthermore, significant
interactions were observed between sites and cultivating tobacco and fertilizer application. OC for
Sikonge was significantly higher than in the other two sites, probably due to variation in soil particles.
The lowest organic matter content was reported in Tabora and followed by Urambo (Figure 2).
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The increase in soil total N was more pronounced in the loamy sand soil of Sikonge and Urambo,
while in the sand soil series (Tabora) an increase in soil N was not observed. At this site, N could
have been leached below the rooting and sampling zone following rainfall events. On the other hand,
nicotine is also very water soluble, so it could have been leached too. The increase in soil total N in
loamy sand soil could have been caused by the mineralization, nitrification, and nicotine released
in the soils, that inhibited soil bacteria with a role of converting nitrate into the inorganic form and
hence N mineralization rate reduced causing an increase of soil total N [5] as the leaching potential
is lessened in the loamy sand. Furthermore, an increase of total N in these soils could be a result of
released nicotine accumulation to the rhizosphere of which one of its forming components is N. It is
likely that the tobacco plant creates a favorable environment for increasing N in the rhizosphere as this
nutrient is required for nicotine synthesis.
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Calcium increased in the soil media due to the increase in soil acidity, which decomposed OC
thereby increasing Ca (Figure 2). Hermiyanto et al. [27] reported that OC has a significant impact
in improving biological, physical, and chemical properties in the soil. Thus, nicotine released to the
soil is impacting soil properties. Gulser et al. [28] observed changes in soil properties, including OC,
in di↵erent incubation period after tobacco waste application, indicating that tobacco waste has the
ability to modify soil properties. The increase in total N by 50% and exchangeable Ca by 193% was a
direct result of NPK and CAN fertilization application. However, the tobacco e↵ect on the increase
in exchangeable Ca in the studied soil is by 135%, and for NPK and CAN fertilization is only 193%.
The tobacco e↵ect on increasing more exchangeable Ca in soil than NPK and CAN fertilization could
be due to the ability of the tobacco plant increasing soil acidity, which hasten the decomposition of OC
and release more Ca to the rhizosphere. Calcium also has been reported to have a direct positive e↵ect
on N uptake by tobacco plants [4] as N is an essential nutrient component for nicotine synthesis in
tobacco roots. More work is needed to determine how Ca is being released.

Soil nicotine for Sikonge, Tabora, and Urambo were significantly di↵erent across the sites
(Figure 3). The highest soil nicotine of 5.93 mg kg�1 was observed in Sikonge, followed by Tabora
(3.97 mg kg�1) and Urambo (1.51 mg kg�1). Before the establishment of tobacco, soil nicotine was
negligible (0.01 mg kg�1). However, after harvesting unfertilized tobacco, the soil nicotine increased to
2.71 mg kg�1. Upon tobacco fertilization with NPK and CAN, nicotine in soil increased significantly
(p < 0.001) to 8.69 mg kg�1. Results showed significant interactions among sites and fertilizer application
on soil nicotine. The highest increase of nicotine was observed in the Sikonge soil, with an increase
from 0.01 mg kg�1 to 4.66 and 13.13 mg kg�1 for unfertilized and fertilized tobacco soils, respectively.
Soil nicotine for Tabora soil increased from 0.01 mg kg�1 to 2.29 and 9.63 mg kg�1 for unfertilized and
fertilized tobacco soils, respectively. The lowest increase of nicotine in soils observed in Urambo with
an increase from 0.02 to 1.19 and 3.31 mg kg�1 for unfertilized and fertilized tobacco soils, respectively
(Figure 3). Therefore, there was more nicotine in the soil following the fertilized treatments and the
nicotine could be mineralized and contribute to legacy N. Xi et al. [29] associating a close relationship
with N applied to the nicotine producing plant, of which may result in the increase of nicotine in soil
through exudation.
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Figure 3. E↵ect of tobacco and fertilization on nicotine in soil. ‘a’ is very highly significant; ‘b’ is highly
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The interactions of sites and soils with and/or without fertilization on soil pH, OC, nicotine,
and macronutrients (P, S, K, and Ca) were significant (Table 2, Figures 1–7). This finding suggests that
there is the high variability of these measured variables at various sites caused by tobacco cultivation
and application of NPK and CAN fertilizers within a cropping season. Interactions between sites and
fertilizers resulted in a significant reduction of soil pH in Sikonge but not in other sites. The low pH
observed in Sikonge warrants further investigation. Residual nicotine increased significantly in tobacco
cultivated soils with fertilization. The present study revealed that higher atmospheric temperatures
(25–29 �C) could have resulted in the release of more nicotine to the rhizosphere [30].
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Figure 5. E↵ect of tobacco and fertilization on soil S. ‘a’ is very highly significant; ‘b’ is highly significant;
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Figure 6. E↵ect of tobacco and fertilization on soil K. ‘a’ & ‘ab’ are very highly significant; ‘b’ is highly
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Agronomy 2020, 9, x FOR PEER REVIEW 11 of 17 

 

cultivated soils could be attributed to the mineralization of inherent Ca from parent material due to 
acidification caused by nicotine. Soil texture is an essential factor that determined concentrations of 
these macronutrients in tobacco plants and the differences observed [31].  

 

Figure 7. Effect of tobacco and fertilization on soil Ca. ‘a’ & ‘ab’ are very highly significant; ‘bc’ & ‘c’ are 
highly significant; ‘d’ & ‘e’ are significant; ‘f’ & ‘g’ non significant 

The soil exchangeable Mg measured in Sikonge (0.27 cmol (+) kg−1) and Urambo (0.26 cmol (+) 
kg−1) was significantly (p < 0.001) higher than soil exchangeable Mg (0.21 cmol (+) kg−1) of Tabora 
(Table 2). Further, soil Mg decreased significantly (p < 0.001) from 0.26 cmol (+) kg−1 in tobacco 
uncultivated soils to 0.23 and 0.24 cmol (+) kg−1 in unfertilized and fertilized plots, respectively.  

3.3. Linear Regression and Correlation of Nicotine Contents in Soils and Macronutrients 

Multiple linear regressions analysis results are presented in Table 3. The generated model is as 
follows: 

Nicotine (Y) = 21.57 + 327.29N + 47.71K − 15.96Ca − 8.15Mg − 1.46S − 0.61P (2) 

with the coefficient of determination (R2) of 95. 
The model 2 depicts that N and K were positively significant at p = 0.01. However, a significant 

negative relationship (p = 0.01) was observed in nicotine levels against Ca, Mg, S, and P. The 
correlation between nicotine and soil P, S, N, Ca, Mg, and K indicated a significant positive 
correlation of nicotine released in the rhizosphere with N, Ca, and K (Table 4). The negative 
correlation was observed between nicotine and P, S, and Mg. Nicotine reduced the presence of P, S, 
and Mg in the soil following lowering soil acidity which increases solubility of P, S and Mg . Parallel 
to that mineralization of N is increased and its uptake as a precursor for nicotine synthesis, while also 
uptaking Ca to influence biomass production. However, mechanisms for nicotine in reducing the 
presence of certain nutrients prompt a need for further investigation. 

d

g

f

c

e

c

a
bc

ab

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Sikonge Tabora Urambo

So
il 

ex
ch

an
ge

ab
le

 C
a 

(C
m

ol
 (+

) k
g-1

Experimental sites

Before tobacco After unfertilized tobacco After fertilized tobacco

Figure 7. E↵ect of tobacco and fertilization on soil Ca. ‘a’ & ‘ab’ are very highly significant; ‘bc’ & ‘c’
are highly significant; ‘d’ & ‘e’ are significant; ‘f’ & ‘g’ non significant.

3.2. E↵ect of Tobacco Cultivation and Fertilizer Application on Soil Macronutrients

Tobacco cultivated soils without fertilizer resulted in the reduction of soil S, P, Mg, and K, but the
application of fertilizers increased the levels of these nutrients and N and Ca (Table 2). These findings
suggest that in situations with no NPK and CAN application, the tobacco crop exhausted more
nutrients, but under fertilization these nutrients are adequately absorbed. It is likely that despite their
deficiencies in the soils, the availability of these nutrients were enhanced by the phyto-e↵ect from
tobacco roots [13,14]. Interestingly, fertilization in tobacco cultivated soils resulted in a decrease in
soil available P, extractable S, exchangeable K, and Mg. The decrease of these nutrients in soils, when
compared with unfertilized and fertilized scenarios, gave a signal that tobacco is a heavy nutrient
feeder crop for these nutrients. This study revealed that the influence of tobacco on the increase in
the rhizosphere macronutrients was in the order of Ca (135%) > N (25%) and decrease in the order
of S (81%) > P (49%) > Mg (12%) > K (11%). In addition, the individual e↵ects of NPK and CAN
fertilizers on this rhizosphere increase is Ca (25%) > N (20%) > S (8%) >Mg (4%) > P (3%) and only a
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decrease was observed in K (3%). Further, the influence of tobacco, NPK, and CAN fertilizers on the
rhizosphere increase is Ca (193%) > N (50%) while the decreased e↵ect was on S (80%) > P (48%) > K
(14%) >Mg (8%).

Soil N (0.06%) for Sikonge was significantly (p < 0.001) higher when compared with total that
of Tabora and Urambo (0.04%) (Table 2). Total soil N increased significantly (p < 0.001) from 0.04%
to 0.05% and 0.06% in unfertilized and fertilized tobacco, respectively. The highest available soil
P (37.87 mg kg�1) was in Sikonge, followed by 29.36 mg kg�1 in Urambo and 28.14 mg kg�1 in
Tabora. The available P was significantly (p < 0.001) reduced from 47.09 to 23.81 and 24.56 mg kg�1

in unfertilized and fertilized tobacco cultivated soils, respectively. Significant interactions between
sites and fertilizer application was observed in this study. Available soil P in Sikonge was reduced
significantly (p < 0.001) from 43.48 mg kg�1 before planting tobacco to 34.8 mg kg�1 in unfertilized
tobacco soils. Before tobacco cultivation at the site, soil P was 53.31 mg P kg�1 and was reduced to
14.22 mg kg�1 at the end of the season. In the Urambo soil, P decreased from 44.41 to 22.43 mg kg�1

before planting tobacco in unfertilized treatments (Figure 4). Therefore, these findings indicated that
cultivation of tobacco caused a decrease in P and the decrease was higher when the plants were grown
without fertilizers.

Extractable soil S followed a similar trend of P for Sikonge, Tabora, and Urambo (Table 2). Sikonge
soil had significantly (p < 0.001) the highest S (4.80 mg kg�1) followed by Urambo (3.52 mg kg�1)
and Tabora (3.45 mg kg�1) soils. The extractable S was reduced from 8.47 to 1.59 mg kg�1 between
uncultivated and cultivated tobacco in unfertilized soils. The cultivation of tobacco caused a decrease in
extractable S, and the decrease was higher when the plants were grown without fertilizers. Interactions
between sites and treatments indicated that extractable S levels were significantly (p < 0.001) decreased
in all sites after tobacco cultivation regardless of the fertilizer applications (Figure 5). Tobacco cultivation
without fertilization resulted in the reduction of extractable S from 9.12 to 1.06 mg kg�1 in all soils.
The application of fertilizer in tobacco cultivated soils increased extractable S from 2.74 to 1.21 mg
kg�1 relative to unfertilized tobacco cultivated soils where S decreased from 2.54 to 1.06 mg kg�1.
The decrease of soil S in unfertilized tobacco could be due to the high plant requirement of this nutrient
for its metabolic activities [20].

Exchangeable K for Sikonge soil was significantly (p < 0.001) di↵erent when compared with
Tabora and Urambo sites (Table 2). Exchangeable K in soils were 0.52, 0.24, and 0.23 cmol (+) kg�1 for
Sikonge, Tabora, and Urambo, respectively. In soils where tobacco was cultivated without and with
fertilization, the levels of K were reduced significantly. Exchangeable soil K was significantly higher in
Sikonge (Figure 6). Application of fertilizer did not increase K levels in soil due to the genetic nature of
tobacco plants requiring K for increasing leaf yield and quality [15].

Soil exchangeable Ca di↵ered significantly (p < 0.001) across the sites where the highest
(1.56 cmol (+) kg�1) was recorded in Sikonge (Table 2). Inclusion of tobacco significantly (p < 0.001)
increased Ca in soils from 0.60 to 1.41 and 1.76 cmol (+) kg�1 in unfertilized and fertilized plots,
respectively. Interactions between sites and treatments on Ca were significant (Figure 7). In all sites,
soil exchangeable Ca was higher in fertilized tobacco. The increase in Ca in the unfertilized tobacco
cultivated soils could be attributed to the mineralization of inherent Ca from parent material due to
acidification caused by nicotine. Soil texture is an essential factor that determined concentrations of
these macronutrients in tobacco plants and the di↵erences observed [31].

The soil exchangeable Mg measured in Sikonge (0.27 cmol (+) kg�1) and Urambo
(0.26 cmol (+) kg�1) was significantly (p < 0.001) higher than soil exchangeable Mg (0.21 cmol (+) kg�1)
of Tabora (Table 2). Further, soil Mg decreased significantly (p < 0.001) from 0.26 cmol (+) kg�1 in
tobacco uncultivated soils to 0.23 and 0.24 cmol (+) kg�1 in unfertilized and fertilized plots, respectively.
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3.3. Linear Regression and Correlation of Nicotine Contents in Soils and Macronutrients

Multiple linear regressions analysis results are presented in Table 3. The generated model is
as follows:

Nicotine (Y) = 21.57 + 327.29N + 47.71K � 15.96Ca � 8.15Mg � 1.46S � 0.61P (2)

with the coe�cient of determination (R2) of 95.

Table 3. A multiple linear regression analysis of nicotine as a response parameter and the measured
macronutrients in soils.

Fitted Parameters Coe�cients Standard Error t-Stat p-Value Lower 95% Upper 95%

Intercept 21.570464 6.63464987 3.251183 0.007719 6.96769807 36.17322987
P (mg kg�1) �0.60876671 0.174988087 �3.4789 0.005158 �0.99391289 �0.22362052
S (mg kg�1) �1.46317501 0.501902323 �2.91526 0.014056 �2.567854574 �0.35849545

N (%) 327.291899 97.86795681 3.344219 0.006544 111.8859781 542.697819
Ca (cmol (+) kg�1) �15.9599962 3.972355713 �4.01777 0.002024 �24.70309214 �7.2169002
Mg (cmol (+) kg�1) �8.15136543 23.84940711 �0.34178 0.738953 �60.64355652 44.34082565
K (cmol (+) kg�1) 47.7142636 11.67659588 4.086316 0.001801 22.01424932 73.41427779

The model 2 depicts that N and K were positively significant at p = 0.01. However, a significant
negative relationship (p = 0.01) was observed in nicotine levels against Ca, Mg, S, and P. The correlation
between nicotine and soil P, S, N, Ca, Mg, and K indicated a significant positive correlation of nicotine
released in the rhizosphere with N, Ca, and K (Table 4). The negative correlation was observed between
nicotine and P, S, and Mg. Nicotine reduced the presence of P, S, and Mg in the soil following lowering
soil acidity which increases solubility of P, S and Mg. Parallel to that mineralization of N is increased
and its uptake as a precursor for nicotine synthesis, while also uptaking Ca to influence biomass
production. However, mechanisms for nicotine in reducing the presence of certain nutrients prompt a
need for further investigation.

Table 4. Correlations between nicotine and the measured macronutrients in soils.

1 2 3 4 5 6 7

1. Nicotine (mg kg�1) 1
2. P (mg kg�1) �0.58 1
3. S (mg kg�1) �0.76 0.90 1

4. N (%) 0.84 �0.42 �0.59 1
5. Ca (cmol (+) kg�1) 0.72 �0.80 �0.78 0.79 1
6. Mg (cmol (+) kg�1) �0.33 0.34 0.46 0.05 0.02 1
7. K (cmol (+) kg�1) 0.18 0.37 0.33 0.49 0.23 0.57 1

3.4. E↵ects of NPK and CAN Fertilization on Macronutrient Concentrations in Tobacco Leaves

The tobacco leaf concentrations of macronutrients for N, P, K, S, Ca, and Mg are presented in
Table 5. Leaf N, Ca, and Mg di↵ered significantly (p < 0.001) across the sites. Leaf K (2.57%) in Urambo
site was significantly (p < 0.001) higher when compared with Sikonge (2.26%) and Tabora (2.28%) sites,
while leaf S (0.29%) for Tabora was significantly (p < 0.001) higher in comparison to Sikonge (0.22%)
and Urambo (0.20%) sites. Leaf P did not di↵er significantly across the sites. The data in Table 5 shows
that the di↵erences between N, P, K, S, Ca, and Mg in the leaves of fertilized and unfertilized tobacco
was significant. The initial P in soils at each site was adequate (>25 mg P kg�1 soil) which is likely the
reason why a response in foliar accumulation of P was observed [32]. However, across the sites the
observed significant di↵erences as a response of tobacco to P application could be attributed to other
factors including nutrient P imbalance with others (largely N, S, K, Fe, Mn, and B) and variation in
rainfall and temperature during the crop growth periods [33].



Agronomy 2020, 10, 418 12 of 15

Table 5. Macronutrient concentration (%) in tobacco leaves harvested in fertilized and unfertilized soils.

Factors Measured Variables in Tobacco Leaves

N P K Ca Mg S

(%)

Site:
Sikonge 2.14 ± 0.11a 0.12 ± 0.02a 2.26 ± 0.19b 8.11 ± 0.37a 0.91 ± 0.04b 0.22 ± 0.03b
Tabora 1.55 ± 0.03c 0.12 ± 0.02a 2.28 ± 0.23b 4.29 ± 0.17c 0.47 ± 0.02c 0.29 ± 0.02a

Urambo 1.64 ± 0.10b 0.13 ± 0.01a 2.57 ± 0.10a 6.08 ± 0.39b 1.54 ± 0.04a 0.20 ± 0.01b

Treatments:
Unfertilized tobacco 1.60 ± 0.08b 0.11 ± 0.01b 1.98 ± 0.09b 5.49 ± 0.49b 0.91 ± 0.15b 0.20 ± 0.02b

Fertilized tobacco 1.95 ± 0.11a 0.15 ± 0.01a 2.76 ± 0.02a 6.84 ± 0.62a 1.03 ± 0.17a 0.27 ± 0.02a

Two-Way ANOVA F-Statistics
Site (S) 265.49 *** 0.0842 ns 22.91 *** 426.61 *** 568.158 *** 7.60 **

Treatment (T) 235.33 *** 4.36 * 334.97 *** 160.73 *** 22.807 *** 13.21 **
S ⇥ T 25.82 *** 1.34 ns 17.28 *** 8.06 ** 3.296 ns 1.17 ns

Values presented are means ± SE (standard error); *, **, *** significant at p  0.05, p  0.01, and p < 0.001, respectively;
ns = non-significant; means in the same category of evaluated interface sharing similar letter (s) do not di↵er
significantly based on their respective least significance di↵erence (LSD) value at 5% error rate. Leaf samples were
collected when tobacco plants were about to flower.

Comparisons of leaf concentrations in fertilized and unfertilized tobacco results indicated that
leaf concentrations for N, K, Ca, and S increased significantly (p < 0.001) when fertilized. There was
a significant increase in leaf P and Mg concentrations at p < 0.05 and p < 0.001 for unfertilized and
fertilized tobacco, respectively. Results indicated that the interaction between sites and tobacco
fertilization was significant for leaf N (p < 0.001), K (p < 0.001), and Ca (p = 0.01) concentrations
(Figure 8). However, there was no significant interaction on tobacco leaf concentrations of P, Mg, and S.
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In fertilized tobacco plants, the leaf concentrations of N, P, K, Ca, Mg, and S increased significantly
compared with the quantities obtained in unfertilized plants (Table 5). The significant increase of
these nutrients in leaves of fertilized plants is due to the applied NPK and CAN fertilizers, and is also
attributed to the high tobacco requirements of these nutrients. Furthermore, inherently low levels to
some of these nutrients in the studied soils and the likely synergism between N and S in the formation
of amino acids could account for the leaf concentration increase [34]. As a result of fertilization,
the tobacco leaf concentrations for N, P, K, Ca, Mg, and S are all above the critical levels of 1.5% N
given by Haghighi et al. [12], 0.1–1.0% P, 1.6–4.1% K, 1.5–3.5% Ca, 0.20–0.85% Mg, and 0.18–0.50% S
given by Bryson and Mills [11]. However, further research is required to measure the mass of plant
minerals as the leaf nutrient concentrations were at the adequate levels since this may give the actual
amounts of nutrients taken-up by the tobacco plants from soils.

4. Conclusions

The application of NPK and CAN fertilizers improved growth of tobacco plants, and the crop
released more nicotine to the rhizosphere, whereas exchangeable Ca2+ increased in the sand and loamy
sand soil textures and total N only in loamy sand soils. The availability of S, P, Mg, and K decreased in
all soil textures, but fertilization increased the levels of these nutrients and nicotine, N, and Ca. The leaf
concentrations of Ca, K, P, S, N, and Mg increased significantly above the critical leaf levels upon
fertilization with NPK and CAN. It is therefore likely that any subsequent crop after tobacco cultivation
might benefit mainly from the increased Ca2+ and N, although N is subject to various transformations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/3/418/s1,
Table S1: Soil properties of the Sikonge site, Table S2: Soil properties of the Tabora site, Table S3: Soil properties of the
Urambo site, Table S4: Leaf nicotine and tobacco leaf yield from three sites (Sikonge, Tabora, and Urambo), Table S5:
Leaf nicotine concentrations and tobacco leaf yield of the Sikonge site, Table S6: Leaf nicotine concentrations
and tobacco leaf yield of the Tabora site, Table S7: Leaf nicotine concentrations and tobacco leaf yield of the
Urambo site.
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