
The Nelson Mandela AFrican Institution of Science and Technology

NM-AIST Repository https://dspace.mm-aist.ac.tz

Materials, Energy, Water and Environmental Sciences Research Articles [MEWES]

2022-04

Rainfall and temperature changes under

different climate scenarios at the

watersheds surrounding the Ngorongoro

Conservation Area in Tanzania

Mwabumba, Mohamed

Elsevier

https://doi.org/10.1016/j.envc.2022.100446

Provided with love  from The Nelson Mandela African Institution of Science and Technology



Environmental Challenges 7 (2022) 100446 

Contents lists available at ScienceDirect 

Environmental Challenges 

journal homepage: www.elsevier.com/locate/envc 

Rainfall and temperature changes under different climate scenarios at the 

watersheds surrounding the Ngorongoro Conservation Area in Tanzania 

Mohamed Mwabumba 

a , ∗ , Brijesh K. Yadav 

b , Mwemezi J. Rwiza 

a , Isaac Larbi c , 
Sam-Quarcoo Dotse 

c , Andrew Manoba Limantol c , Solomon Sarpong 

d , Daniel Kwawuvi e 

a The Nelson Mandela African Institution of Science and Technology, PO Box 447, Arusha, Tanzania 
b Indian Institute of Technology (IIT.) Roorkee, Uttarakhand, 247667, India 
c School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana 
d School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana 
e Climate Change and Water Resources, West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL), Université d’Abomey-Calavi, 

Cotonou, Benin 

a r t i c l e i n f o 

Keywords: 

Rainfall 
Temperature 
Projection 
SDSM 

Regional climate models 
Ngorongoro conservation area 

a b s t r a c t 

Considering the high vulnerability of Northern Tanzania to climate change, an in-depth assessment at the local 
scale is required urgently to formulate sustainable adaptations measures. Therefore, this study analyzed the fu- 
ture (2021-2050) changes in rainfall and temperature under the representative concentration pathways (RCP4.5 
and RCP8.5) for the watersheds surrounding the Ngorongoro Conservation Area (NCA) at a spatio-temporal scale 
relative to the observed historical (1982-2011) period. The climate change analysis was performed at monthly 
and annual scale using outputs from a multi-model ensemble of Regional Climate Models (RCMs) and statistically 
downscaled Global Climate Models (GCMs). The performance of the RCMs were evaluated, and the downscaling 
of the GCMs were performed using Statistical Downscaling System Model (SDSM) and LARS-WG, with all the 
models indicating a higher accuracy at monthly scale when evaluated using statistical indicators such as corre- 
lation ( r ), Nash-Sutcliff Efficiency (NSE) and percentage bias (PBIAS). The results show an increase in the mean 
annual rainfall and temperature in both RCPs. The percentage change in rainfall indicated an increase relative to 
historical data for all seasons under both RCPs, except for the June, July, August and September (JJAS) season, 
which showed a decrease in rainfall. Spatially, rainfall would increase over the entire basin under both RCPs with 
higher increase under RCP4.5. Similar spatial increase results are also projected for temperature under both RCPs. 
The results of this study provide vital information for the planning and management of the studied watershed 
under changing climatic conditions. 
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. Introduction 

Climate change has become a global threat that significantly affects
he water sector ( Adhikari et al., 2015 , Amirabadizadeh et al., 2016 ).
frica is expected to be seriously affected by the impacts of climate
hange due to the high dependency of economy on natural resources
n the region ( Adhikari et al., 2015 ). The region’s water resources are
lready affected by the rapid population growth, urbanization, inten-
ive agriculture, and hydropower demand. Therefore, climatic change
oses significant challenges to the sustainability of water resources, es-
ecially in developing countries ( Adhikari et al., 2015 , Amirabadizadeh
t al., 2016 , Huang et al., 2011 ). It is one of the major drivers for en-
ironmental changes, leading to socio-economic implications related to
he hydrological processes. With increasing temperatures and fluctuat-
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ng precipitation, it is expected that water availability will decrease sig-
ificantly in the future ( Huang et al., 2011 , Bessah et al., 2021 ). For
ustainability, water resources need proper planning and management,
aking into consideration the site-prevailing climate change assessment
 Bessah et al., 2019 ). 

To assess the consequences of climate change on different sectors,
lobal impact assessment studies have been carried out using the Gen-
ral Circulation Models (GCMs). The GCMs have been widely used to
ssess the future climate based on energy and mass balance equations
 Adhikari et al., 2015 , Chiew et al., 2009 ) and their ability to cap-
ure the physical processes occurring in the climate system, which in-
lude the atmosphere, ocean, and land ( Cooper et al., 2008 ). How-
ver, due to the coarse resolution of the available GCMs, local fea-
ures such as topography and the convective clouds cannot be resolved
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Fig. 1. Map of Africa (top left) indicating Tanzania (bottom left) and the Ngorongoro Conservation Area (NCA), and surroundings within 50km grid (right). The red 
dots on the NCA are the individual meteorological stations. 
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 Donat et al., 2016 ). Consequently, GCMs are not suitable for local-scale
ydrological studies in response to climate change ( Amirabadizadeh et
l., 2016 , Donat et al., 2016 ). To make use of the GCM for the hydrolog-
cal impact studies, downscaling techniques are usually applied. There
re two downscaling methods: 1) Dynamical and 2) Statistical. These
ethods are used for addressing the challenge of the GCM spatial resolu-

ion. This is achieved by connecting the large-scale atmospheric climate
ariables with the local-scale climate parameters. These downscaling
ethods convert the coarse-resolution GCM output into a finer resolu-

ion for a target geographical area ( Saraf and Regulwar, 2016 , Hashmi
t al., 2009 , Gebrechorkos et al., 2019 ). 

The dynamical method uses the GCM output as the boundary condi-
ion to produce regional/local information at a resolution ranging from
 to 50 km. This method provides information on the influence of oro-
raphic features on climatic variables ( Gebrechorkos et al., 2019 , Wilby
nd Dawson, 2013 ). On the other hand, statistical downscaling applies
he empirical relationship between local observations (predictands) and
he GCMs’ predictor variables. Using statistical downscaling is com-
utationally easy and transferable. The Statistical Downscaling System
odel (SDSM) is one of the most applied climate downscaling models for

egional and local climate impact studies. The SDSM is an open-access
oftware developed using a stochastic weather generator and transferred
tatistical function method. The model has been used in several studies
cross East Africa at the regional and local scales using the GCM out-
uts ( Estes et al., 2006 ). The usefulness of the SDSM is linked to its
bility to capture interannual climate variability ( Hashmi et al., 2009 ,
ebrechorkos et al., 2019 ). Furthermore, in the absence of the ground-
ased data, high-resolution satellite-based products and reanalysis prod-
cts may be used to generate high-resolution station-based rainfall and
emperature weather series ( Saraf and Regulwar, 2016 , Gebrechorkos
t al., 2018 ). 

Despite the significant progress in climate change impact assessment
tudies, a comprehensive basin-scale study attributable to national level
2 
ater availability is necessary for Tanzania. Also, little is known about
limate change impacts on hydrology and water resources in Tanzania,
articularly at the watershed level. Moreover, there are limited studies
arried out using statistical downscaling to assess the impacts of climate
hange at a local scale ( Gebrechorkos et al., 2019 , Gulacha and Mu-
ungu, 2017 ). As hydrological possesses are site-specific, studies at the
atershed level are needed to better manage the little available water

esources. 
The Ngorongoro Conservation Area (NCA) is one of the major

otspots of tourism and biodiversity on the African continent. The
CA is also an essential ecosystem for migrating wild ungulates from

he Serengeti National Park during the dry season ( Estes et al., 2006 ,
kiramweni et al., 2016 ). The area is at high risk of climate change

mpacts due to the increased frequency of drought conditions and lim-
ted availability of water resources for people and wildlife ( Tarver et
l., 2019 ). Considering the high vulnerability of this area to climate
hange, an in-depth local-scale climatic assessment is required. There-
ore, the focus of the present study was to analyze the future changes in
he local climate under RCP4.5 and RCP8.5 climate scenarios at the wa-
ersheds surrounding the NCA using ensemble mean of CORDEX-Africa
CMs data and statistically downscaled rainfall and temperature outputs
sing SDSM and LARS-WG statistical downscaling tools. 

. Materials and Methods 

.1. Study area 

The NCA is located in the northern part of Tanzania between lati-
udes 2.5° and 3.6° S and between longitudes 34.0° and 36.0° E with
n area coverage of 8,283 km 

2 . The area is surrounded by watersheds
overing an area of about 33,452 km 

2 from latitude 2.2° to 4.5° S and
ongitude 34.0° to 36.7° E ( Fig. 1 ). The NCA is characterized by moist
nd misty conditions, where temperatures in the semi-arid zone can fall
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Table 1 

NCEP predictors used during the screening process. 

S/N Predictors S/N Predictors 

1 Mean sea level pressure 14 500 hPa divergence 
2 1000 hPa wind speed 15 850 hPa wind speed 
3 1000 hPa zonal velocity 16 850 hPa zonal velocity 
4 1000 hPa meridional velocity 17 850 hPa meridional velocity 
5 1000 hPa vorticity 18 850 hPa vorticity 
6 1000 hPa wind direction 19 850 hPa geopotential height 
7 1000 hpa divergence 20 850 hPa wind direction 
8 500 hPa wind speed 21 850 hPa divergence 
9 500 hPa zonal velocity 22 Total precipitation 
10 500 hPa meridional velocity 23 500 hPa specific humidity 
11 500 hPa relative vorticity 24 850 hPa specific humidity 
12 500 hPa geopotential height 25 1000 hPa specific humidity 
13 500 hPa wind direction 26 Air temperature at 2 m 
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s low as 2°C in June/July, and often rises to 35°C in February ( Masao et
l., 2015 ). Rainfall in this area is seasonal and highly variable, ranging
rom 400 to 600 mm/year over the arid lowland plains in the west and
rom 1000 to1200 mm/year over the highland forested areas in the east
 Lawuo et al., 2014 ). The NCA is characterized by a bimodal seasonal
ariability with two wet and two dry seasons. The wet periods are ob-
erved from October to December and March to May. A short dry season
xpands from January to February and a long dry period between June
nd September ( Ż aba and Gaidzik, 2011a ). 

The NCA is a highly diverse ecosystem and is broadly categorized
nto five different zones: the Crater Highlands, the Salei Plains, the Gol
ountains, the Serengeti Plains, and the Kakesio Mountain ( Masao et

l., 2015 ). The area is covered with a complex vegetation structure
anging from montane forest and tussock grassland in the highlands to
emi-arid woodlands and short grasslands in the lowlands ( Masao et al.,
015 ). The geology of the area is influenced by volcanism and tectonic
ovements, which are the active processes from the north-south of the
ast African Rift Valley system. The system is responsible for the forma-
ion of landscapes in the northern part and the Lake Manyara basin in
he southern part of the study area ( Ż aba and Gaidzik, 2011b ). 

.2. Data acquisition, quality control, and validation 

.2.1. Observation data and quality control 

Historical daily rainfall, maximum and minimum temperature, and
bserved station data from 1982 to 2011 for four climate stations of
rusha, Babati, Enduleni, and Ngorongoro were obtained from the Tan-
ania Meteorological Authority (TMA). Data quality control was per-
ormed on the four climate stations to select the meteorological station
ith data gaps not exceeding 10% of the study period ( Larbi et al., 2018 ,
kiaka et al., 2017 , Westberg et al., 2013 ). Only the Arusha station
assed this quality assurance test for rainfall and temperature data. 

Due to the historical data limitations and uneven spatial distribution
f climate stations at the catchment, satellite-based rainfall and temper-
ture data were also used. The satellite rainfall data was taken from the
limate Hazards Group InfraRed Precipitation with Station (CHIRPS).
he satellite temperature data was taken from the MERRA-2 of the Na-
ional Aeronautics and Space Administration of Worldwide Energy Re-
ource (NASA POWER) project. In all, fourteen gridded daily rainfall
oint data from CHIRPS and MERRA-2 maximum and minimum tem-
erature data from NASA POWER for the period of 1982-2011 were
xtracted. The CHIRPS rainfall data is a product of the United States
eological Survey (USGS); and the University of California Santa Bar-
ara (UCSB), with 0.05° spatial resolution ( Funk et al., 2015 ). For the
aximum and minimum temperature, 0.5° spatial resolution MERRA-2
ata obtained from the NASA POWER ( Westberg et al., 2013 ) project
ere used. 

.2.2. CHIRPS rainfall and MERRA data validation 

In order to validate the applicability of the satellite-based climate
roducts (i.e. CHIRPS rainfall and MERRA-2), a comparison was made
etween the satellite-based data extracted for Arusha with historical
aily rainfall and temperature data from the Arusha station. The Arusha
tation data was used for validation because Arusha was the only sta-
ion in the vicinity of the study area with less than 10% data gap. The
able 2 

escription of the Regional Climate Models used in this study. 

S/N Institute F

1 Swedish Meteorological and Hydrological Institute, Rossby Centre (SMHI) C
N

2 Max Planck Institute- Computational methods in systems and control theory 
(MPI-CSC), Germany 

I

3 Koninklijk Nederlands Meteorologisch Instituut (KNMI) I

3 
alidation for the CHIRPS rainfall and MERRA-2 maximum and mini-
um temperature was performed for the period of 1982-2011 on a daily,
onthly, and seasonal scale. Three standard valuation indices were used
amely: (1) Nash–Sutcliffe efficiency (NSE), which compares the mag-
itude of the residual variance relative to that of the measured data
ariance using normalized statistics; (2) Percent bias (PBIAS), which
easures the average tendency of the simulated data (larger or smaller)

han the observed; and (3) the RMSE observations’ standard deviation
atio (RSR), which standardizes the RMSE with regards to the observed
ecords ( Moriasi et al., 2015 ). 

.2.3. NCEP and CanESM predictors for statistical downscaling 

In the present study, twenty-six predictors ( Table 1 ) from the Na-
ional Centre for Environmental Prediction (NCEP) covering the histor-
cal period (1961-2005) were used ( Gebrechorkos et al., 2019 , Gulacha
nd Mulungu, 2017 ). The second-generation Canadian Earth System
odel (CanESM2) predictors for RCP4.5 and RCP8.5 scenarios for the

uture (2006- 2050) with a spatial resolution of 2.81° were used for
ownscaling of the future rainfall and temperature. The selected scenar-
os have been principally used to run different models for the analysis
ased on medium- and high-range emission scenarios. 

.2.4. Regional Climate Models (RCMs) dataset 

RCMs datasets ( Table 2 ) at 50 km resolution from the CORDEX-
frica experiment were used for this study. The four CORDEX-
frica RCMs (REMO2009, CanESM2-RCA4, NorESM1-RCA4 and KNMI-
ACMO22T) are downscaled dynamically from GCMs. The RCM
atasets used in this study at daily scale consist of rainfall, minimum and
aximum temperature for the RCM historical (1981–2005) and RCP4.5

nd 8.5 projected (2021–2050) period. These RCMs were chosen be-
ause they were found to perform well over the sub- region with accept-
ble range of biases ( López-Moreno et al., 2011 , Larbi et al., 2021 , Kim
t al., 2013 ). It is worth mentioning that the RCMs covers about 23 grid
oxes over the study area ( Fig. 1 c). 

.3. Statistical downscaling 

.3.1. Statistical downscaling of GCM outputs using SDSM 

The SDSM is designed to statistically downscale simulated climate
nformation from either coarse-resolution GCM output or large at-
orcing GCM. RCMs 

CCma-CanESM2 CNRM-CERFACS- CM5 
CC-NorESM1-M 

CanESM2-RCA4 and NorESM1-RCA4 

CHEC-ECEARTH REMO2009 

CHEC-ECEARTH KNMI-RACMO22T 
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1  
ospheric variables to high-resolution forms needed for local impact
tudies using predictors and predictands ( Gebrechorkos et al., 2019 ,
uhunga et al., 2018 ). The SDSM uses multivariate linear regression to
imulate future climate scenarios by combining stochastic weather gen-
rator and transfer function models ( Wilby et al., 2002 ). The stochastic
ata was included in the SDSM to improve the model’s performance
n reproducing the observed daily series by inflating the model output
ariance ( Wilby et al., 2002 ). In the present study, the SDSM was ap-
lied in the watersheds around the NCA to downscale the CanESM daily
ainfall and temperature to point-scale. Two datasets were involved in
his process: 1) the predictands of interest i.e., locally observed rain-
all and temperature and the corresponding large-scale predictors from
CEP and CanESM2 in the study area’s grid box ( Shukla et al., 2016 ).
odel calibration and respective downscaling were performed through

he following steps as suggested by Wilby et al. ( Wilby et al., 2002 ): 

1 Screening of the 26 large-scale NCEP predictors based on the cor-
relation matrix, partial correlation, and p -value indicators between
the predictors and local-scale predictands as practiced in previous
studies ( Gebrechorkos et al., 2019 , Gulacha and Mulungu, 2017 ).
Highly correlating predictors at a 95% confidence level ( p -value <
0.05) were selected. For regression analysis between the selected
NCEP predictors and predictands during model calibration for each
station, a minimum of three large-scale variables was recommended
for calibration at each station ( Gebrechorkos et al., 2019 , Huang et
al., 2011 ). 

2 The SDSM model calibration and validation were performed for the
periods of 1982-1996 and 1997-2005, respectively, under ’condi-
tional’ for the rainfall and ’unconditional’ for the temperature on
a monthly scale. Several studies have applied this method of split-
ting the data into two for SDSM calibration and validation, such as
( Gebrechorkos et al., 2019 , Gulacha and Mulungu, 2017 , Osman and
Abdellatif, 2016 ) with SDSM indicating satisfactory results. 

3 Generation of daily synthetic data series for rainfall, maximum and
minimum temperatures for the period of 1982-2005 was performed
by the weather generator (WG) using the calibrated SDSM. The
WG was applied to produce the weather series with similar statis-
tical properties to those of the observed location-based data ( Li and
Babovic, 2019 ). 

4 The SDSM performance was evaluated using statistical indicators
including Nash-Sutcliffe efficiency (NSE), Percent bias (Pbias), and
RMSE observation’s standard deviation ratio (RSR), which were also
used to evaluate the SDSM performance at a daily, monthly, and
seasonal timescale. 

The model scenario generator, which follows a similar process as
tep (3), was applied to downscale the CanESM2 daily rainfall and tem-
erature for the future period of 2006-2050 under RCP4.5 and RCP8.5
cenarios. 

.3.2. Statistical downscaling of GCM outputs using LARS-WG 

LARS-WG is a stochastic weather generator designed to simulate the
aily climate data at a station scale for climate change impact studies
 Semenov and Barrow, 2002 , Chen et al., 2013 ). The LARS-WG synthe-
izes daily series data through three processes; 

1 The LARS-WG use statistical properties of the station data on a
monthly scale to generate the probability distribution of the climate
parameters for a particular station on the ground. 

2 LARS-WG use the generated parameters files to synthesize data with
the same statistical properties as the station data. Furthermore, ob-
served and simulated average monthly weather statistical indices
calibrate LARS-WG using calculated relative change factors from the
GCMs outputs for each month. 

3 Finally, LARS-WG uses the calibrated parameters and relative change
factors to project daily time-series data ( Semenov and Barrow, 2002 ,

Chen et al., 2013 ). 0  

4 
This study applied LARS-WG6 to downscale rainfall and temperature
or each station individually by incorporating 20 years (1982-2001) to
enerate model calibration parameters. For model validation, a ten-year
xtended time series (2002-2011) was generated and examined using a
tatistical test at a 5% significance level to determine the significant dif-
erence between the simulated and observed data. After the calibration
nd validation process of LARS-WG, the model generated future weather
ata series by updating model output parameters with selected RCMs
nd RCPs. This study applied LARS-WG to downscale rainfall and tem-
erature data series for future 2021-2050 from four GCMs (CanESM2-
CA4, NorESM1-RCA4, CSIRO-CMS and HadGEM2-ES) under RCP 4.5
nd 8.5. 

.4. RCMs models performance evaluation and climate change analysis 

The performances of the raw CORDEX-Africa RCMs (REMO2009,
anESM2-RCA4, NorESM1-RCA4, and KNMI-RACMO22T) in simulating
he observed climatology over the study area were evaluated at monthly
nd annual scale for the period 1982-2005 using statistics such as Pear-
on correlation (r), Nash-Sutcliff Efficiency (NSE) and percentage bias
PBIAS). The r represents the temporal pattern of the models. The PBIAS
escribes the relative systematic error associated with the CMIP 6 mod-
ls’ data, where a positive and negative sign indicate overestimation and
nderestimation respectively. At the spatial scale, the biases between
he models and the observation were also estimated using the PBIAS
tatistical indicator. 

Temporal and spatial changes in rainfall and temperature at annual
nd seasonal scale for the observed historical period of 1982-2011, and
he future periods of 2021-2050 were analyzed using the ensemble mean
f four (4) RCMs and five (5) statistically downscaled GCMs outputs.
he percentage changes in rainfall at seasonal and annual scales and
he projected relative changes in the mean annual temperature were
stimated for each station and over the entire basin. The significance
f the projected changes was assessed at a 95% confidence level using
he t -test. For the spatial analysis, the Inverse Distance Weighted (IDW)
nterpolation method was used to generate the distribution of seasonal
nd mean annual change in rainfall and temperature between the future
nd historical period. 

. Results 

.1. Validation of CHIRPS and MERRA-2 data 

The statistical results of CHIRPS rainfall data showed NSE = 0.51,
bias = -16.10, and RSR = 0.68 at the daily timescale and NSE = 0.78,
bias = -8.2, and RSR = 0.46 at the monthly timescale. Therefore,
HIRPS rainfall data for the Arusha station compares very well with ob-
ervation data at monthly timescales. Also, validation for the MERRA-2
ata for the Arusha station showed a good agreement with the obser-
ation data at a daily and monthly timescale for both maximum and
inimum temperature. The statistics indicated that NSE = 0.82, Pbias = -
3.7, and RSR = 0.58 for the maximum temperature and NSE = 0.93,
bias = -12.7, and RSR = 0.39 for the minimum temperature for a
aily timescale. For the monthly timescale, the indices showed that
SE = 0.88, Pbias = -8.4, and RSR = 0.54 for the maximum temperature
nd NSE = 0.96, Pbias = -14.4, and RSR = 0.48 for the minimum temper-
ture. 

.2. Performance evaluation statistics of RCMs over the catchment 

The statistical tests for comparison between the observation and
he RCMs (REMO2009, CanESM2-RCA4, NorESM1-RCA4, and KNMI-
ACMO22T) in simulating the rainfall and temperature for the period
982 to 2005 is presented in Table 3 . High correlation (r) greater than
.9 was found for all the RCMs for rainfall and Temperature. Three of the



M. Mwabumba, B.K. Yadav, M.J. Rwiza et al. Environmental Challenges 7 (2022) 100446 

Table 3 

Statistical analysis between the raw RCMs and observation for the 
mean monthly rainfall and temperature of the catchment for the pe- 
riod 1981-2005. 

Models Rainfall Temperature 

r PBIAS NSE r BIAS NSE 

REMO2009 0.96 13.0 0.86 0.97 1.4 0.88 
CanESM2-RCA4 0.92 16.0 0.71 0.94 0.8 0.75 
NorESM1-RCA4 0.9 -2.5 0.95 0.92 0.2 0.91 
KNMI-RACMO22T 0.94 16.7 0.84 0.95 0.9 0.81 

Note: r indicates correlation; NSE indicates Nash-Sutcliffe Efficiency. 
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Table 4 

Selected predictor variables from NCEP. 

Parameter Predictors r p -value Partial- r 

Mean sea level pressure 0.38 0.0047 0.247 
Rainfall(mm) 850 hPa geopotential height 0.36 0.0047 0.144 

1000 hPa specific humidity 0.39 0.0081 0.281 
Mean sea level pressure 0.42 0.0000 0.180 

T max. ( 
0 C) 1000 hPa meridional velocity 0.40 0.0000 0.381 

850 hPa geopotential height 0.40 0.0000 0.325 
Air temperature at 2 m 0.50 0.0000 0.380 
Mean se level pressure -0.60 0.0000 -0.137 
1000 hPa meridional velocity -0.50 0.0008 -0.239 

T min. ( 
0 C) 850 hPa geopotential height 0.60 0.0000 0.503 

1000 hPa specific humidity 0.60 0.0000 0.469 
Air temperature at 2 m 0.40 0.0000 0.297 
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s  

r  
CMs (REMO2009, KNMI-RACMO22T and CanESM2-RCA4) show over-
stimation of rainfall in the area in the range of 13% to 16.7%, while
orESM1-RCA4 shows underestimation of rainfall with PBIAS of -2.5%.
 similar rainfall results of higher correlation between the RCMs and

he observation was found for temperature. Unlike rainfall, all the RCMs
how overestimation in the case of temperature with biases in the range
f 0.2 to 1.4°C. In addition, Fig. 3 and 4 , (a, b, c and d), respectively indi-
ate the spatial biases between observed data and RCMs for rainfall and
emperatures. The spatial PBIAS was found to range between + 20.3%
nd -28.9% for rainfall. In the case of temperature, all the RCMs show
verestimation with biases in the range of 0.01 to 1.98 °C. The biases
cross the basin found in NorESM1-RCA4 and KNMI-RACMO22T models
ere relatively low compared to REMO2009 and CanESM2-RCA4. 

.3. Screening of the predictors for statistical downscaling using the SDSM 

The screening of suitable predictor variables is an important process
n statistical downscaling. The power of each predictor is distinguishable
n space and time, making the choice of predictors to differ according to
he geographical location and the relationship between predictors and
redictands to be downscaled. With reference to the coefficient of cor-
elation ( r ) and partial correlation (partial- r ), among the individual best
5 
erformed NCEP predictors in the SDSM, the selected suitable predictors
or downscaling of rainfall and temperatures are listed in Table 4 . 

.4. Performance evaluation of the SDSM and LARS-WG outputs 

.4.1. Perfomance of SDSM 

The SDSM validation results for the simulated rainfall, maximum and
inimum temperatures for all stations are shown in Tables 5 , 6 and 7 ,

espectively. The SDSM indicated poor performance in simulating the
aily rainfall with Nash-Sutcliffe efficiency (NSE), Percent bias (Pbias),
nd RMSE observation’s standard deviation ratio (RSR) ranging from
.12 to 0.25, -56.30 to -26.10, and 0.63 to 0.87, respectively ( Table 5 ).
owever, the model performed relatively well in reproducing maximum
nd minimum temperatures at the daily timescale ( Tables 6 and 7 ). The
odel had NSE, Pbias, and RSR ranging from 0.70 to 0.89, -17.8 to 11.8

nd 0.39 to 0.58, for the maximum temperature; 0.67 to 0.97, -17.8 to
.8, and 0.35 to 0.59, for minimum temperature, respectively. 

At monthly and seasonal timescales, the model performed well in
imulating both rainfall and maximum and minimum temperatures. For
ainfall at a monthly timescale, the model had NSE, Pbias, and RSR that
Fig. 2. Spatial biases for rainfall data between 
observed and CORDEX RCMs ((a). REMO2009, 
(b). CanESM2-RCA4, (c). NorESM1-RCA4 and 
(d). KNMI-RACMO22T). 
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Fig. 3. Spatial biases (°C) for temperature 
data between observed and CORDEX RCMs 
((a). REMO2009, (b). CanESM2-RCA4, (c). 
NorESM1-RCA4, and (d). KNMI-RACMO22T). 

Fig. 4. Calibration of LARS-WG for mean monthly rainfall (mm) and temperatures for Manyara (a and b), and Ngorongoro (c and d), respectively. 

6 
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Table 5 

Model performance for the Rainfall (mm) simulation for daily, monthly, and seasonal timescales 
during the validation period of 1997- 2005. 

Daily Monthly Seasonal 

S/N Station NSE Pbias RSR NSE Pbias RSR NSE Pbias RSR 

1 Arusha 0.24 -26.10 0.68 0.98 -4.40 0.10 0.78 -6.40 0.54 
2 Babati 0.18 -28.30 0.87 0.88 -13.80 0.57 0.97 -11.80 0.48 
3 Enduleni 0.22 -34.60 0.73 0.95 -1.60 0.05 0.95 -9.60 0.42 
4 Engaruka 0.25 -27.20 0.68 0.94 -0.70 0.06 0.79 -10.70 0.58 
5 Idulu 0.16 -29.50 0.72 0.97 -0.90 0.04 0.99 -5.90 0.34 
6 Kakesio 0.23 -32.70 0.86 0.76 0.80 0.04 0.91 1.80 0.51 
7 Manyara 0.18 -56.30 0.74 0.88 -12.30 0.45 0.94 -13.20 0.33 
8 Mbulu 0.21 -27.20 0.63 0.90 -13.30 0.96 0.64 -12.30 0.52 
9 Mto’Mbu 0.24 -35.60 0.67 0.83 1.70 0.06 0.91 1.90 0.57 
10 Nainokanoka 0.15 -44.20 0.72 0.76 -1.20 0.05 0.83 -4.20 0.39 
11 Ndutu 0.24 -32.40 0.77 0.86 -1.20 0.05 0.62 -7.20 0.51 
12 Ngorongoro 0.22 -47.30 0.81 0.91 -12.10 0.16 0.81 -11.10 0.56 
13 Olala 0.12 -28.20 0.70 0.86 -9.30 0.08 0.77 -8.30 0.44 
14 Olduvai 0.20 -31.60 0.68 0.82 -3.20 0.58 0.83 -2.70 0.36 

Table 6 

Model performance for the maximum temperature ( 0 C) simulation for daily, monthly, and sea- 
sonal timescales during the validation period of 1997- 2005. 

Daily Monthly Seasonal 

SN Station NSE Pbias RSR NSE Pbias RSR NSE Pbias RSR 

1 Arusha 0.82 -13.70 0.58 0.88 -8.40 0.54 0.81 -11.05 0.52 
2 Babati 0.87 -17.80 0.48 0.78 -14.60 0.53 0.83 -14.20 0.58 
3 Enduleni 0.75 -12.60 0.52 0.85 -11.60 0.49 0.84 -12.10 0.59 
4 Engaruka 0.89 -14.70 0.57 0.95 -6.70 0.52 0.86 -10.70 0.47 
5 Idulu 0.79 -15.90 0.44 0.93 -10.90 0.64 0.79 -13.40 0.58 
6 Kakesio 0.81 11.80 0.51 0.86 6.80 0.48 0.83 9.30 0.54 
7 Manyara 0.84 -14.20 0.39 0.78 -14.30 0.42 0.81 -14.25 0.56 
8 Mbulu 0.74 -10.30 0.55 0.82 -11.60 0.62 0.78 -10.95 0.50 
9 Mto’Mbu 0.81 7.90 0.47 0.81 11.30 0.57 0.79 9.60 0.51 
10 Nainokanoka 0.87 -6.20 0.49 0.78 -13.20 0.47 0.85 -9.70 0.54 
11 Ndutu 0.72 -5.20 0.56 0.96 -9.20 0.51 0.82 -7.20 0.54 
12 Ngorongoro 0.77 -12.10 0.51 0.94 -12.70 0.44 0.80 -12.40 0.49 
13 Olala 0.70 -6.30 0.54 0.88 -10.30 0.61 0.92 -8.30 0.41 
14 Olduvai 0.73 -12.70 0.47 0.84 -13.40 0.57 0.86 -13.05 0.58 

Table 7 

Model performance for the minimum temperature ( 0 C) simulation on the daily, monthly, and 
seasonal timescale during the validation period of 1997- 2005. 

Daily Monthly Seasonal 

SN Station NSE Pbias RSR NSE Pbias RSR NSE Pbias RSR 

1 Arusha 0.93 -12.70 0.39 0.96 -14.40 0.48 0.81 -13.55 0.44 
2 Babati 0.97 -15.80 0.57 0.94 -9.60 0.56 0.83 -12.70 0.56 
3 Enduleni 0.86 -11.60 0.45 0.88 -10.80 0.51 0.84 -11.20 0.48 
4 Engaruka 0.82 -12.70 0.59 0.84 -15.10 0.53 0.86 -13.90 0.56 
5 Idulu 0.89 -10.90 0.47 0.82 -8.90 0.56 0.79 -9.90 0.52 
6 Kakesio 0.91 7.80 0.43 0.81 9.60 0.48 0.83 8.70 0.46 
7 Manyara 0.88 -11.20 0.49 0.78 -9.70 0.49 0.81 -10.45 0.49 
8 Mbulu 0.76 -14.30 0.35 0.96 -7.20 0.49 0.78 -10.75 0.42 
9 Mto’Mbu 0.71 5.90 0.48 0.94 -12.40 0.52 0.79 -3.25 0.50 
10 Nainokanoka 0.77 -13.30 0.59 0.84 -10.70 0.53 0.85 -12.00 0.56 
11 Ndutu 0.82 -7.20 0.46 0.86 -13.40 0.50 0.82 -10.30 0.48 
12 Ngorongoro 0.67 -13.10 0.52 0.79 -12.30 0.48 0.80 -12.70 0.50 
13 Olala 0.90 -12.30 0.44 0.83 -11.25 0.49 0.92 -11.78 0.46 
14 Olduvai 0.78 -11.70 0.39 0.81 -10.40 0.51 0.86 -11.05 0.45 
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anged from 0.76 to 0.98, -13.8 to 1.70, and 0.04 to 0.58, respectively.
or the maximum and minimum temperatures at a monthly timescale,
he model performance showed NSE, Pbias and RSR ranging from 0.78
o 0.96, -14.60 to 11.30, and 0.42 to 0.64; and 0.78 to 0.96, -15.10
o 9.60, and 0.48 to 0.56, respectively. Besides, the model performed
ell in simulating rainfall, maximum and minimum temperatures at a

easonal scale. The model performance showed NSE, Pbias, and RSR
7 
anging from 0.62 to 0.99, -13.20 to 1.90, and 0.33 to 0.61; 0.78 to 0.92,
16.20 to 9.60, and 0.41 to 0.59; and 0.78 to 0.92, -13.90 to 8.70 and,
.42 to 0.58, respectively, for the rainfall, maximum temperature, and
inimum temperature. Therefore, for monthly and seasonal timescales

he SDSM could be used as tool to simulate rainfall data. Moreover,
he model simulated temperature data with good precision for daily,
onthly, seasonal timescales. 
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Table 8 

Model performance for the rainfall (mm) Maximum tempera- 
ture ( 0 C) and minimum temperature ( 0 C) at a daily and monthly 
timescale during the validation period of 2002 -2011 for the entire 
basin. 

Scale Parameter NSE RSR RMSE Pbias R 2 

Rainfall -0.80 1.34 7.94 -1.10 0.00 
Daily Tmax -0.70 1.30 10.05 14.90 0.52 

Tmin 0.89 1.38 8.05 26.20 0.47 
Rainfall 0.78 0.81 14.58 -8.50 0.53 

Monthly Tmax -0.80 1.29 9.15 15.10 0.64 
Tmin -1.15 1.41 7.43 26.5 0.91 
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Fig. 5. Percentage change in seasonal and annual mean rainfall for the future 
period (2021-2050) under RCP 4.5 and RCP 8.5, compared to the simulated 
historical period (1982-2011). 
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.4.2. Performance of LARS-WG in statistical downscaling of GCMs 

The LARS-WG performance are shown in Fig. 4 (calibration) and
able 8 (validation). Fig. 4 a and c indicate the monthly mean rainfall
nd standard deviations of the synthesized by LARS-WG data compared
o the observed data during calibration period (1982-2001). However,
ig. 4 (b and d) indicates the comparison between observed and synthe-
ized monthly mean maximum and minimum temperature. Results in-
icate good performance of the LARS-WG to synthesize data series with
imilar characteristics of the observed data. Furthermore, the statistical
est to validate the LARS-WG output was performed and indicated in
able 8 . 

.5. Projected climate change under RCP4.5 and RCP8.5 scenarios 

.5.1. Spatial-temporal changes in rainfall 

Percentage changes in the mean seasonal (JF, MAM, JJAS, and
ND), and annual rainfall for the future (2021-2050) period under RCP
.5 and RCP 8.5 scenarios compared to the historical (1982-2011) pe-
iod at the temporal scale are presented in Fig. 5 . The rainfall data shows
n increase in all seasons except the JJAS season that shows a decrease
f 13 and 16% under RCP 4.5 and RCP 8.5, respectively. The annual
ainfall indicates an increase with an average of 4% under RCP4.5 and

% under RCP 8.5. b  

ig. 6. Spatial distribution of changes in the mean annual rainfall under RCP4.5 (a)
f 1982-2011. 

8 
The spatial distribution of the changes in annual rainfall for 2021-
050 under RCP4.5 and RCP8.5 are depicted in Fig. 6 a-b. Spatially, the
ainfall would increase over the entire study area during the period of
021-2050 under both RCPs, with the highest increase over the Eastern,
outhern parts and some areas in the West. The central, western and
orthern parts of the study area would experience a low percentage
ncrease in rainfall with the lowest percentage of 2 % under both RCPs.
oth RCPs indicates similar patterns over the area for the future 2021-
050, however RCP 4.5 outputs show higher increases compared to the
CP 8.5. 

.5.2. Projected changes in temperature 

The annual maximum, minimum and mean temperature change un-
er RCPs 4.5 and 8.5 are presented in Table 9 . The results indicate an
ncrease in maximum, minimum, and mean temperature, respectively
y 0.4°C, 0.6°C, and 0.5°C under RCP 4.5 and 0.6°C for both maximum,
 and RCP8.5 (b) for the period of 2021-2050 compared to the historical period 
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Fig. 7. Spatial distribution for the annual 
maximum temperature anomalies (°C) under 
RCP4.5 (a) and RCP8.5 (c) for the period of 
2021-2050 compared to the historical period 
of 1982-2011. 

Table 9 

Temperature (°C) projections and change signal for the (2021-2050) future 
under RCP4.5 and RCP8.5 scenarios relative to the historical (1982-2011) 
period the ensemble mean. 

Temperature Historical (1982-2011) RCP4.5 scenario RCP8.5 scenario 

Maximum 26.9 27.3 ( + 0.4) ∗ 27.5 ( + 0.6) ∗ 

Minimum 14.3 14.8 ( + 0.6) ∗ 14.9 ( + 0.5) ∗ 

Mean 20.6 21.1 ( + 0.5) ∗ 21.1 ( + 0.6) ∗ 

Values in brackets indicate the projected changes. 
∗ Indicates the significance of the projected changes at a 95% confidence 

level. 
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inimum and mean temperature under RCP 8.5 during the future 2021-
050 as captured by the ensemble mean. 

.5.3. Spatial distribution of temperature change 

Spatial distribution for the maximum and minimum temperature
hange for the future periods of 2021-2050 under RCP4.5 and RCP8.5
mission scenarios as captured by the SDSM and RCMs ensembles are
resented in Fig. 7 a-b and Fig. 8 a-b, respectively. The results for the
aximum temperature change indicate warming over the study area
ith spatial variations. The maximum temperature increases during the
eriod of 2021-2050 is expected to be in the range of 0.1 to 0.8°C under
CP 4.5. The highest increase is at the central and southern parts and

he lowest increase over the western and northwestern areas and few
arts in the east of the study area. The maximum temperature rises for
he same period, under RCP8.5, would be between 0.1°C and 0.9°C, with
he highest value in the central and the southern parts, most of the ar-
as would be warmer by a range of 0.2°C to 0.8°C during the 2021-2050
eriod under both RCPs as captured in ( Fig. 7 (a-b). 

The results for the minimum temperature change (8 (a-b)) also show
 warming regime over the study area with variations in spatial distri-
ution. The minimum temperature rises during 2021-2050 is expected
o range from 0.1°C to 1.0°C, under RCP4.5. The highest increases are
n the central and south of the study area while northwestern areas and
art of the central area would experience the lowest rise as captured by
he ensemble mean of LARS-WG, SDSM and RCMs. The minimum tem-
erature rises for the same period, under RCP8.5, would be between 0.1
nd 0.9°C, with the highest value covering a large part of the central
9 
nd south, of the study area and the lowest found in the northwestern
reas and parts of central areas. Generally, most of the areas would be
nomalously warmer by 0.2°C to 0.8°C under both RCPs as shown in
ig. 8 (a-b). 

. Discussion 

The present study applied the CORDEX RCMs, SDSM and LARS-WG
nsembles to analyze the change in climate around the NCA by compar-
ng the future projection for the periods of 2021-2050 with historical
ata from the period of 1982-2011. Using the obtained information, the
tudy determined the potential climatic impacts and adaptation mea-
ures. The validation of CHIRPS rainfall and MERRA-2 maximum and
inimum temperature at the point-scale performed very well compared
ith the observation data from the Arusha station. Although as shown

n previous studies ( Larbi et al., 2018 , Molua, 2009 ), there is a relatively
eaker agreement between CHIRPS rainfall and surface measurements
t a daily timescale. However, for areas with no observed data, the high
ccuracy data acquired from remote sensing, followed by reanalysis,
an be used in place of the observation data ( Gebrechorkos et al., 2019 ,
ebrechorkos et al., 2018 ). Therefore, for this analysis, CHIRPS rainfall
nd MERRA-2 maximum and minimum temperature data at point-scale
ere used. 

The results of the SDSM model evaluation showed a high capability
n downscaling the CanESM2 global climate model datasets (i.e., rainfall
nd temperature) for climate projections in the watersheds surrounding
he NCA of Northern Tanzania at the monthly and annual scales. The
eak correlation between NCEP and CanESM2 data for the daily rain-

all can be attributed to the fact that the SDSM model calibration and
alidation were performed under ’conditional’ for the rainfall and ’un-
onditional’ for the temperature on a monthly scale. In the SDSM, the
odel type used for SDSM calibration is at monthly, seasonal or annual

cales but not at daily scale. As a result of this, the predictand and pre-
ictors relationships are established at the monthly scale but not at the
aily scale. Hence the reason why the SDSM model performs poorly at
he daily scale for rainfall but performs well at monthly scale. Addition-
lly, different studies have recognized the high performance of SDSM
t the monthly or annual scale, and also as a tool for filling data gaps
ver data-scarce regions of Africa ( Gebrechorkos et al., 2018 , Moriasi
t al., 2015 ). For Example, ( Bessah et al., 2021 ) obtained a good model
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Fig. 8. Spatial distribution for the annual 
minimum temperature anomalies (°C) under 
RCP4.5 (a) and RCP8.5 (c) for the period of 
2021-2050 compared to the historical period 
of 1982-2011. 
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ccuracy with Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS) and
MSE observations standard deviation ratio (RSR) in the range of 0.80–
.98, (-21.7) – ( + 0.26) and 0.11–0.45, respectively. This is also in line
ith the findings from this study which has demonstrated the useful-
ess of SDSM in modelling at monthly and seasonal scales with high ac-
uracy. Furthermore, considering the difficulties in modelling climate
ariables, especially precipitation, due to factors such as the complex
ocal topography, and also unavailability of climate data at the study
egion, the model results of the present study can be useful for climate
mpact assessment studies. 

The evaluation results of CORDEX RCMs (REMO2009, CanESM2-
CA4, NorESM1-RCA4, and KNMI-RACMO22T) indicate good perfor-
ance of the RCMs in simulating monthly rainfall and temperatures

s shown in Table 2 . Similarly, the Four GCMs (i.e. CanESM2-RCA4,
orESM1-RCA4, CSIRO-CMS and HadGEM2-ES) used to generate daily

ainfall and temperature data for RCP 4.5 and 8.5 using the LARS-WG
odel shows good performance in synthesizing data series at a daily and
onthly time scale for the entire basin during validation period as indi-

ated in Table 8 and Fig. 7 . These results are in consistence with other
tudies [e.g., 36, 37] which indicated a good performance of LARS-WG
n generating daily and monthly rainfall and temperature data. 

The comparison between future projections and the historical data
howed increasing rainfall for all seasons except JJAS, which showed
 decreasing trend for both RCPs. However, the annual rainfall showed
 significantly increasing pattern for the periods of 2021-2050 for both
CPs. Likewise, for the maximum and minimum temperatures, the an-
ual increase in temperature would occur during the future periods,
ith a higher rise predicted under RCP8.5. The results agree with other

tudies in Tanzania ( Cooper et al., 2008 , Luhunga et al., 2018 , Mtongori
t al., 2016 , Wambura et al., 2014b ), which predicted an increase in
ainfall over the northeastern highlands of Tanzania. The results are also
onsistent with other previous studies ( Luhunga et al., 2018 , Wambura
t al., 2014b ), that showed an increase in maximum and minimum tem-
erature for all future periods and RCPs but with the highest rise under
CP8.5. Spatially, the highest increase in rainfall would generally occur

rom the central to the southern parts of the study area for all future
eriods under both RCPs. For the maximum temperature, the highest
ise would occur over the central and southern parts of the study area
nder RCP4.5 and extended to the northeastern parts under RCP8.5 for
10 
oth future periods. For the minimum temperature, almost all the study
reas would feature increases with a high rise from the center towards
he western and eastern parts for both RCPs. 

As previously reported, the projected rise in rainfall and tempera-
ure can affect water resources, their services, and the prevalent enviro-
ocial-economic activities in the study area ( IPCC 2007 , IPCC 2012 ,
PCC 2014 , Obuobie et al., 2012 ). The Government of Tanzania has re-
orted climate change impacts in several places, including in the pro-
ected areas of conservation importance ( United Republic of Tanzania
008 ). The Government has shown concerns about the increase in the
requency of drought and flood events in its protected areas. The severity
f climatic events has led to encroachment problems to local commu-
ities where communities are increasingly forced to expand their ac-
ivities into conserved areas. The present study’s projected increase in
ainfall and temperature raises further concerns for the NCA and its sur-
ounding ecosystems. The projected increase in rainfall in the present
tudy agrees with the findings of ( Donat et al., 2016 ) who projected that
he world’s dry places like the tropics would experience more extreme
recipitation. The projected increase in rainfall has the advantage of a
onstant water supply to the biodiversity and ensuring food security to
he expanding human population in the Ngorongoro Conservation Area
nd its surroundings. 

( Tarver et al., 2019 ) have recounted that the NCA is one of the es-
ential conservation areas for wildlife tourism and ecotourism in Tan-
ania, where a harmonious relationship between wildlife, people, and
ivestock exists. Regrettably, the projected increase in rainfall and the
orresponding increase in temperature would significantly impact the
ydrological patterns of this UNESCO world heritage site, resulting in
atural hazards such as frequent flooding and droughts ( Sayasane et al.,
016 , Serdeczny et al., 2016 , Shemsanga et al., 2010 ). Furthermore, an
ncrease in temperatures enhances evapotranspiration, which reduces
urface water and dries out soils and vegetation. This condition makes
eriods with low rainfall drier than they would be in normal conditions,
hus resulting in extreme droughts. The extreme drought conditions are
ore likely to occur in the study area in view of the rising tempera-

ures and the likelihood of low rainfalls and drier months. The resulting
ffects of the expected, extreme drought conditions are that, residents
n the NCA and surrounding areas may have limited access to water
or household purposes such as drinking, cooking, cleaning, agriculture,
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nd livestock keeping, as well as wildlife and tourist activities. Droughts
an also raise water prices, force rationing, and even devastate vital wa-
er sources like wells during drought years, which necessitates increased
ater storage during the rainfall period. Previous studies ( Estes et al.,
006 , Tarver et al., 2019 ) have reported recurrence of drought condi-
ions, which have led to water shortages in many parts of the NCA. This
tudy indicates the decrease in rainfall with an increase in temperature
uring JJAS seasons, which anticipate severe droughts conditions dur-
ng JJAS seasons. 

Likewise, the projected increase in rainfall could increase some
ector-borne diseases including malaria that would negatively affect the
ommunity health of the area ( Shukla et al., 2016 , Sigdel and Ma, 2016 ,
itheko et al., 2000 , Martin et al., 2008 ). Outbreaks of diseases such as

he Rift Valley fever (RVF), which are common all-over East Africa, are
ssociated with extreme precipitation and floods ( Huang et al., 2011 ,
artin et al., 2008 ). Already livestock disease outbreaks related to in-

ense droughts have been reported in the study area, killing more than
0% of the calves in the year 2007/2008 ( Tarver et al., 2019 , Martin
t al., 2008 ). This indicates that the projected temperature rise poses
erious threats to the key resources of the NCA and could severely af-
ect the area’s tourism business ( Tarver et al., 2019 ). Besides, the In-
ergovernmental Panel on Climate Change (IPCC) has stipulated those
esources such as wildlife, archaeological sites, natural landscapes, and
ifestyles/cultures of the local communities surrounding areas such as
he NCA are sensitive to climate change impacts ( Mkiramweni et al.,
016 , IPCC 2007 , Martin et al., 2008 ) further emphasized that this
ulnerability to climate change may be high in areas where human-
nvironment interactions exist. 

Several studies, e.g., ( Serdeczny et al., 2016 , Galvin et al., 2004 ,
uan et al., 2015 , Thornton et al., 2011 ) have argued that, in different
arts of Africa, the projected change in climate, warming in tempera-
ure, and the expected variability and change in precipitation will pose
 significant threat to agriculture and livestock production as well as
frica’s hydrological systems. As an important economic sector, agri-
ulture contributes around 25.8% of Tanzania’s GDP and comprises up
o 40% of the export earnings ( Shemsanga et al., 2010 , Thornton et al.,
011 ). Therefore, any significant changes in rainfall and temperature
esulting from the changing climate will undoubtedly impact not only
he NCA but also the countries earnings. The impacts will go as far as
nterfering with food security for the growing population ( Shemsanga
t al., 2010 ). 

Consequently, any proposed adaptation measures must empower lo-
al communities in and around the NCA and the relevant sectors to ef-
ectively cope with short-term climate changes and reduce the long-term
egative impacts of climate change ( United Republic of Tanzania 2007 ,
umbo et al., 2010 , Quenum et al., 2020 , Lobell, 2014 ). These adapta-
ion measures should cut across the various sectors, and most impor-
antly, overlapping sectors like agriculture and tourism. Some adap-
ation measures that could help may include the following: improv-
ng rainwater storage facilities for safe and clean drinking and irriga-
ion water during the dry periods; reducing the anthropogenic impacts
n the NCA – tourism and other control over local human activities
 Ż aba and Gaidzik, 2011b , Kilungu et al., 2017 , Orinda and Murray,
005 ); growing drought-resistant crops; and changing the planting sea-
ons ( Sayasane et al., 2016 , Kang et al., 2009 , Saba et al., 2013 , Smit
nd Wandel, 2006 ). Therefore, to cope with the projected changes in
ainfall and temperature in the NCA, and better manage the impacts on
he fringing communities, these adaptation strategies are crucial. 

. Conclusions 

In the present study, the CanESM2 global climate model datasets
ere downscaled and used to project the climate of watersheds sur-

ounding the NCA in Northern Tanzania. During calibration and valida-
ion, the model showed high capability in reproducing station rainfall
nd temperature data. Although the simulated NCEP and CanESM2 data
11 
or the daily rainfall showed a weak correlation, the model simulated
he monthly and seasonal rainfall, minimum and maximum tempera-
ure fairly well. It can be concluded that the model performed better
n simulating the temperature data compared to the rainfall data for
he daily series and performed well for all parameters for monthly and
easonal simulations. The SDSM output, CORDEX RCMs and LARS-WG
ownscaled results for rainfall and temperature data were integrated to
etermine the ensemble mean at a point scale that was applied for cli-
ate change analysis by comparing them with historical (1982-2011)
ata. A comparison between future projections and the historical data
howed an increase in rainfall for all seasons except the JJAS season,
hich shows a decreasing trend for both RCP4.5 and RCP8.5. However,

he annual rainfall showed an increase for 2021-2050 period for both
CPs. Likewise, for the maximum and minimum temperatures, the an-
ual increase in temperature would occur in the future for both RCPs,
ith a higher rise predicted under RCP8.5. Spatially, the highest in-

rease in rainfall would generally occur from central to the southern
arts of the study area for all future periods under both RCP4.5 and
CP8.5. For the maximum and minimum temperature, the highest rise
ould occur over the central and southern parts of the study area for all

uture periods and RCPs. 
The projected increase in rainfall and temperature, both maximum

nd minimum, over the study area, call for development of adaptation
easures and strategic plan for the ecosystem management of the NCA

nd surrounding areas. The obtained results can be used for performing
mpact assessment studies which will be useful in addressing the climate
hange risks and vulnerability in and around the NCA. 
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