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ABSTRACT 

Infection and Treatment Method (ITM) has been practiced in Tanzania for over 20 years 

now as a prevention method against East Coast Fever (ECF). However, there is less 

information regarding the persistence of the Theileria parva parasites after a long-time 

lapse after vaccination. Likewise, the implication of the potential exchange of genetic 

information is largely unknown as regards ECF vaccination outcomes. A total number of 

336 cattle samples were collected from Loiborsoit, Emboret, Esilalei, Manyara ranch, 

Mswakini, Tanga Mruazi farm and Tanga Leila farm in March of 2018. Samples were 

then screened for Theileria parva using nested PCR and the overall prevalence of carrier 

state was 34.5%, with a significant higher prevalence among the vaccinated cattle group 

43% (103/239) compared to the unvaccinated group 13.4% (13/97) (p<0.000). Similarly, 

higher prevalence emerged among the cattle grazing close to the wildlife 38.2% (107/280) 

compared to the ones grazing far from wildlife 16.1% (9/56) p<0.001. The carrier state 

persisted up to 132 months post vaccination. Minisatellite 7 (MS 7), microsatellite 2 and 5 

(ms 2, ms 5) markers were used to characterize genetic diversity. Whereby parasite diversity 

across cattle groups was determined by the mean number of alleles, and expected 

heterozygosity. Manyara ranch had the highest parasite diversity with all the markers. This 

study concludes that vaccination against ECF and the wildlife interface has an influence on 

the diversity of Theileria parva parasites, as the highest number of alleles and parasite 

diversity were shown in the vaccinated cattle and the ones in close proximity to wildlife 

interface. 

Key words: East Coast Fever, Infection and Treatment Method, Northern Tanzania, 

Theileria parva 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Background information 

Theileria parva (T. parva) is a tick-borne protozoan parasite belonging to the phylum 

Apicomplexa and causes a severe disease in cattle known as East Coast Fever (ECF) 

(Norval, Perry, & Young, 1992). This disease is endemic in eleven countries in eastern and 

central Africa where it results into serious economic losses to the livestock industry 

(Hayashida et al., 2012). The natural host of  T. parva, African buffalo (Syncerus caffer) 

does not experience any clinical signs of the disease. Theileria parva is a tick borne 

parasite, transmitted by the tick vector, Rhipicephalus appendiculatus, which feeds on the 

infected animal and spreads the infection (Olds, Mason, & Scoles, 2018). The high likely 

breeds to suffer high morbidity and mortality cattle are (Bos taurus) and their crosses which 

are mostly used for milk production (Nene & Morrison, 2016).  

The severity of ECF depends on the parasite dose and there are also differences in magnitude 

of infection in each cattle (Cunningham et al., 1974; Dolan, 1986; Nene et al., 2016). Poor 

small-holder farmers are the ones experiencing great impacts resulted from this disease as 

they often do not have enough resources and access to control measures. The mortality 

may reach 100%, in exotic cattle however for indigenous cattle (Bos indicus) breeds there 

is a development of resistance to the disease right after primary natural infection and 

recovery. Cattle that recover from ECF do not get rid of the infection, rather they remain 

as carriers of the parasite and a source of infections to ticks (Kariuki et al., 1995). This 

event plays a part in endemic stability of the disease in indigenous cattle especially in areas 

where there is continual challenges of the parasite (Norval et al., 1992) 

Theileria parva infects cattle and the African buffalo (Syncerus caffer), the parasite is 

known to progress with the buffalo in eastern Africa (Uilenberg, 1981). Despite this the 

infected buffalo do not normally display any clinical signs of the disease, whereas in cattle 

the parasite causes a severe fatal lympho proliferative disorder called ECF (Sitt et al., 

2015). Theiler (1912) was the first to recognize Theileria parva as the causative agent of 

ECF in South Africa. He differentiated ECF from Red water caused by Babesia specie, and 

recognized the principal tick vector that transmits T. parva as Rhipicephalus 

appendiculatus (Nene et al., 2016). The disease was associated with cattle imported from 
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East Africa, and caused high levels of morbidity and mortality (Norval et al., 1992). 

South Africa eradicated the disease by slaughtering of infected cattle, a control of cattle 

movement and fencing to avoid buffalo to game parks (Nene et al., 2016). There are still 

occasional outbreaks of buffalo-derived T. parva disease, but appear to be self-limiting in 

nature (Mbizeni et al., 2013; Thompson, Oosthuizen, Troskie, & Penzhorn, 2008). 

However, in other countries it has not been possible to implement such measures which 

resulted to ECF being an endemic acute and lethal disease in 12 countries in eastern, central 

and southern Africa, including Burundi, Democratic Republic of Congo, Kenya, Malawi, 

Mozambique, Rwanda, South Sudan, Tanzania, Uganda, Zambia and Zimbabwe (Malak et 

al., 2012; Norval et al., 1992), and in the Comoro Islands (De Deken et al., 2007). 

On a regional basis ECF kills approximately 1 million cattle/year with annual economic 

losses of approximately USD300 (Malak et al., 2012; McLeod et al., 1999). The impacts are 

likely to increase with time. In Tanzania, the disease accounts for the 43.7% of annual 

mortality of livestock and was estimated to have an overall annual cost of 43 million USD 

(McLeod & Kristjanson, 1999). East coast fever is responsible for annual mortality rates of 

40– 80% in unvaccinated Zebu (Bos indicus) calves (Di Giulio, Lynen, Morzaria, Oura, & 

Bishop, 2009; Homewood, Trench, Randall, Lynen, & Bishop 2006). On top of that ECF 

accounts for up to 70% of deaths in 6 – 8 months old calves in pastoral herds which renders 

serious threats to smallholder dairy farmers for whom the death of a single dairy cow can 

cause a measurable economic setback (Kazungu, Mwega, Kimera, & Gwakisa, 2015). East 

coast fever contributes to major constraint to improved productivity of cattle.  

Initially ECF control relied on intensive application of acaricides (Norval et al., 1992), 

however, this practice has been abandoned with time due to several factors mostly 

development of resistance by ticks, other factors include financial constraints, disruption of 

endemic stability and environmental impact (Di Giulio et al., 2009). An efficient way to 

succumb this disease is immunization of cattle by the Infection and Treatment Method (ITM)  

(Oura, Bishop, Wampande, Lubega, & Tait, 2004). The method works by the injection of 

known strain(s) of T. parva followed by a simultaneous administration of an antibiotic (30% 

tetracycline), which leads to an attenuate infection resulting in a long-lasting immune 

response (Di Giulio et al., 2009; McKeever, 2009). In order to offer broad protection against 

most field isolates the vaccine is made by the combination of different strains (McKeever, 

2009; Uilenberg, 1999), like with the trivalent vaccine known as the Muguga Cocktail (MC) 
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comprising of Muguga, Kiambu 5 and Serengeti-transformed stocks (McKeever, 2007; 

Ruheta, 1999). Muguga Cocktail is a live vaccine, therefore it requires cold chain system for 

its maintainance and eventually establishes a continous carrier status (Di Giulio et al., 2009; 

Uilenberg, 1999). There are worries that this may lead to introduction of specific vaccine 

parasite strains into the field, this would result in possible genetic recombinations with local 

circulating parasite strains (Oura et al., 2007) or the development of the disease in areas 

where it never existed before (McKeever, 2007; Uilenberg, 1999). There is therefore a need 

to address these concerns especially in Tanzania where ITM has been practiced for over 20 

years. 

1.2 Problem statement 

Control of ECF relying on prevention of tick infestation is not only expensive but difficult to 

sustain as it requires continuous application of acaricides. The frequent use of acaricides 

presents threats to the environment. Drugs can be used as an alternative but they are only 

efficient when animals are treated during early stages of the disease and they are very costful. 

Due to the shortcomings of these control measures and the fatal nature of the disease, there is 

a demand for effective vaccines to provide a sustainable means of controlling the disease. 

Vaccination against ECF is based on an Infection and Treatment Method (ITM) that involves 

inoculation of live sporozoite-stage parasites and simultaneous treatment with long-acting 

tetracycline (McKeever, 2007). The vaccine, also called the Muguga cocktail, consists of the 

three strains of T. parva, Muguga, Serengeti-transformed and Kiambu 5. However, there are 

still questions regarding the antigenic composition of the vaccine and its effectiveness in 

obtaining strong immunity in different geographical and ecological locations. Importantly, 

there are worries that the Muguga cocktail vaccine may introduce parasites with a new 

genetic background into local parasite populations. Since ticks do not choose on which cattle 

to feed on this may result in into recombination and existence of more diverse strains of T. 

parva. In spite of such worries, the infection and treatment method has found wide adoption 

in pastoral areas of northern Tanzania in the last 20 years. Infection and Treatment 

Method (ITM) has reduced calf mortality from 80 to less than two per cent, this enabled the 

cattle herders being able to sell more animals and increase their income. Despite the high 

cost of the vaccine up to US$10 per animal (Di Giulio et al., 2009), the ITM remains to be 

the most efficient cost-effective ECF control option available to farmers and livestock 

keepers in Tanzania (Martins, Di Giulio, Lynen, Peters,  & Rushton, 2010). 
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Vaccinated cattle and the ones that recover from natural infection develop immunity to re-

infection with similar strains which contributes to endemic stability of the disease in 

indigenous cattle in areas with continuous transmission of the parasites. Apart from being 

immune those cattle do not usually eliminate the infection; and they remain as carriers of 

the parasite which acts as a source of infections to ticks. A study done in northern Tanzania 

by Kazungu, Mwega, Kimera and Gwakisa (2015) on ECF-vaccinated herds demonstrated 

that continuous natural tick challenge provides an incremental effect on acquired immunity. 

Furthermore, ticks continuously feeding on the carrier animals they transmit infections to 

non-infected cattle which deploys some of the vaccine parasites to unvaccinated cattle 

leading into high seroprevalence (Kazungu et al., 2015). Although ITM has been shown to 

have a significant impact in reducing ECF incidences in pastoral herds, there are still 

several questions which require focused research. 

1.3 Rationale of the study 

East Coast Fever is a significant economic burden for the small-holder pastoral livestock 

keepers in Tanzania. Vaccinated and non-vaccinated cattle populations in these areas co-

graze using same pastures and with close proximity to the wildlife interface. Given that 

Theileria parasites could recombine between divergent strains during the sexual stage in 

ticks, ‘vaccine-derived’ and ‘local’ strains could exchange genetic information, resulting in 

parasites with genetic mosaics and diversity. The implication of the potential exchange of 

genetic information is largely unknown as regards ECF vaccination outcomes. It is important 

therefore to determine the persistence and diversity of the ECF vaccine (Muguga) 

components in relation to vaccination status and proximity to wildlife interface areas and 

to distinguish cattle potentially responding to the ITM vaccine strains alone, from those 

whose immunity is due to natural infection. According to Oura, Bishop, Lubega, and Tait, 

(2004) sustained use of live vaccination is likely to modify transmission dynamics and 

parasite population genetics. Livestock keepers in northern Tanzania have been vaccinating 

their calves now for more than fifteen years. There is therefore a need to understand the 

long-term impact of the potential genetic recombination in ticks and interface with wildlife 

on outcomes of ECF vaccination in cattle populations vaccinated over different time points 

(1-15 years lapse). The long-term impact of this project is to assist poor smallholder and 

pastoralist livestock keepers in Tanzania through research that will improve the control of 

ECF through vaccination. 
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1.4 Objectives 

1.4.1 General objective 

To enhance understanding of the long term impact of ITM in vaccinated and unvaccinated 

cattle. 

 

1.4.2 Specific objectives 

 

(i) To determine the prevalence of T. parva carrier state in ECF vaccinated and 

unvaccinated cattle 

(ii) To determine the persistence and diversity of T. parva in vaccinated and unvaccinated 

cattle. 

1.5 Research questions 
 

(i) What is the prevalence and persistence of the different ECF vaccine (Muguga coctail) 

components (Muguga, Kiambu 5 and Serengeti-transformed strains) in relation to 

vaccination status, proximity to wildlife interface areas and duration since vaccination 

(1-15 years)? 

(ii) Are ECF vaccine strains detectable in the unvaccinated co grazing cattle? 

(iii) Is diversity of ECF vaccine strains modified due to presence of local T. parva strains?  

1.6 Significance of the research 

Outputs of this study will help to better understand long term impacts of the infection 

and treatment method for ECF control. Key expected outputs include the improvement 

of ECF vaccination regimes through, evidence for establishment of the three Muguga 

vaccine strains (Muguga, Kiambu 5 and Serengeti-transformed strains) in cattle vaccinated 

in the last 1-15 years. Such information will allow improvement of vaccine delivery in 

pastoral herds. Since available literature shows that, of the 3 strains present in the Muguga 

cocktail, only the Kiambu 5 stock establishes a long-term carrier state (up to 4 years) (Oura 

et al., 2007), this study will take advantage of the long term deployment of ECF vaccination 

for more than 15 years in Maasai communities of northern Tanzania to provide 

evidence on persistence of the three vaccine stocks (Kiambu 5, Muguga and Serengeti-

transformed) under natural field conditions. Proof on the vaccine strains transmission to 

unvaccinated co grazing cattle and if the long-term application of ITM contributes to the 

diversity of T. parva vaccine strains.  
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1.7 Delineanation of the study 
 

Infection and treatment method has been practiced as a method to control East Coast Fever 

disease among pastoral communities for more than 20 years. The method uses the vaccine 

known as Muguga Cocktail which consist of three different parasite strains of T. parva 

known as Muguga, Kiambu 5 and Serengeti transformed. Previous studies have been done on 

the vaccine and its persistence after administration however, the available information is 

limited for up to 4 years after vaccination.  

This dissertation deals with the persistence of the Muguga Cocktail vaccine after 15 years of 

administering it among the pastoral communities in northern Tanzania, this stand out as the 

available literature depicts this scenario for only up to four years and in different settings as 

the one used in this study. The dissertation looks into the genetic diversity of the parasites 

given the common practice of co grazing of vaccinated and unvaccinated cattle also sharing 

of pasture with the buffalo which is the main reservoir of the parasites. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Theileria Parva and East Coast Fever (ECF) 

2.1.1 Morphology of T. parva 

Theileria parva is a tick-borne parasitic protozoan with a small genome of 10-12 Mbp. The 

haploid T. parva nuclear genome is 8.3×10ˆ6 base pairs (Mbp) in length. The species 

has four chromosomes and a plastome which contains the genes for the apicoplast, 

consists of one extremely A+T-rich region (>97%) about 3kbp in length that maybe the 

centromere. The T. parva nuclear genome contains about 4035 protein-encoding genes, 

which exhibits higher gene density a greater proportion of genes with introns, and shorter 

intergenic regions (Gardner et al., 2005). 

2.2 Life cycle of T. parva 

The vector that transmits T. parva known as Rhipicephalus appendiculatus is a three stage 

host tick. Sporozoites are produced in the salivary gland of the ticks and when feeding in an 

animal are the ones being transmitted, this occurs within 48 to 72 hours of being attached to 

the host. The sporozoites once inside the host’s lymphocytes they develop into 

macroschizonts and then divide into two cells each containing schizonts, schizonts multiply 

and develop into merozoites/ microschizonts which invades the red blood cells and becomes 

piroplasms. Ticks ingest the red blood cells with the piroplasm and the sexual stage takes 

place inside the tick gut which results into formation of motile stage of T. parva which moves 

to the salivary glands of the ticks for the whole cycle to take place again. 
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Figure 1: Life cycle of T. parva (Fawcett et al., 1982a; Norval et al., 1992; von Schubert et 

al., 2010). 

 

2.3 Characterization of T. parva 

The T. parva genes coding for antigen proteins (PIM, p67, p104, p150), ribosomal rRNA 

gene [Internal Transcribed Spacer (ITS), small subunit rRNA (SSUrRNA) and Large 

Subunit rRNA (LSUrRNA)] sequences have been analyzed in search for discriminatory 

differences between T. parva isolates (Baylis, Allsopp, Hall, & Carrington, 1993; Toye, 

Nyanjui, Goddeeris, & Musoke, 1996). The surface proteins PIM, p104, p67 and p150 can 

induce sporozoite-neutralizing antibodies and can also be used in discriminatory assays for 

T. parva isolates (Shapiro et al., 1987; Skilton et al., 1998). These surface proteins are 
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usually encoded by single copy genes and contain a polymorphic central region of amino 

acid sequences flanked by a conserved amino and carboxyl terminus (Skilton et al., 1998; 

Toye et al., 1995) whereas PIM and p150 are expressed in both sporozoite and schizont 

stages of the parasite, p67 and p104 are only expressed in the sporozoite stage (Katende et 

al., 1998; Shapiro et al., 1987). 

Size polymorphisms displayed by T. parva antigen genes, PIM, p104, p150 and p67, have 

been used to develop several molecular tools for characterization of T. parva stocks, 

exploiting the variable regions of these genes (Bishop et al., 2001; Geysen, Bazarusanga, 

Brandt, & Dolan, 2004). Polymerase Chain Reaction and Restriction Fragment Length 

Polymorphism (PCR-RFLP) analysis using these antigen genes demonstrated polymorphism 

in field stocks of T. parva in Kenya, although the majority of field stocks isolated from two 

regions of Zambia were relatively homogeneous (Geysen, Bishop, Skilton, Dolan, & 

Morzaria, 1999). A semi-nested PCR is preferred for analysis of these genes to increase 

sensitivity since they are single copy genes. 

2.3.1 Characterization of T. parva using mini- and micro-satellite markers 

Minisatellite and microsatellite sequences show high levels of variation and therefore 

provide excellent tools for both the genotyping and population genetic analysis of 

parasites. Oura et al. (2003) used a panel of microsatellite and minisatellite markers to 

characterize field isolates of T. parva. A panel of 11 polymorphic microsatellites and 49 

polymorphic minisatellites of the T. parva haemoprotozoan parasite were identified (Oura 

et al., 2003). The PCR products were run on high resolution spreadex gels on which the 

alleles were identified and sized. The sequences of the mini- and microsatellites were 

found to be distributed across the four parasite chromosomes with 16 on chromosome 1, 12 

on chromosome 2, 14 on chromosome 3 and 18 on chromosome 4. The primers from the 60 

sequences were also proved to be specific for T. parva. 

When tissue culture isolates of T. parva isolated from cattle in widely separated African 

regions were characterized, the numbers of alleles per locus ranged from three to eight. This 

indicates a high level of diversity between these geographically distinct isolates. Analysis 

of isolates from cattle on a single farm identified a range of one to four alleles per locus 

which indicates a high level of diversity in a single population of T. parva. Cluster 

analysis of multilocus genotypes revealed that genetic similarity between isolates was not 

obviously related to their geographical origin (Oura et al., 2003). Mini- and microsatellite 
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sequences are frequently located in non coding regions, hence believed to be representative 

of population history (Odongo et al., 2006; Oura et al., 2003). Mini and microsatellites have 

been successfully used to determine population diversity of T. parva in different studies 

(Rukambile et al., 2016). Mini and microsatellite markers were used to characterize the 

three strains which are present as components of the Muguga T. parva vaccine cocktail, 

to determine the ability of each component to induce carrier state (Oura et al., 2004) and the 

possibility of being transmitted from vaccinated animals to other susceptible animals (Oura 

et al., 2007). Five mini and microsatellite markers were used to study diversity of the three 

stocks which are the components of the Muguga cocktail vaccine whereby 14 different 

genotypes were revealed (Patel et al., 2011). Furthermore, 9 minisatellites were used to study 

population genetics and substructure of T. parva population in the samples collected from 

two districts in Zambia with success (Muleya et al., 2012). However, the use of 

microsatellite markers is limited to parasite clones and cannot be directly used to 

characterize field samples, which usually contain complex mixtures of multiple T. parva 

strains. 

2.3.2 Characterization of T. parva using antigen genes 

 

(i) The T. parva p104 antigen gene 

To characterize T. parva parasites occurring in buffalo (Syncerus caffer) in South Africa, 

the gene coding for the p104 antigen was selected for PCR-RFLP analysis. There is limited 

polymorphism in the p104 gene especially amongst cattle-type alleles. This allows 

distinction of buffalo-type from cattle-type alleles (Geysen et al., 1999). Skilton, Bishop, 

Katende, Mwaura and  Morzaria (2002) identified four p104 alleles representing p104 amino 

acid sequences obtained from different T. parva stocks of cattle and buffalo in East Africa. 

Allele 1 (accession number: M2954) represents the T. parva Muguga p104 amino acid 

sequence (Iams et al., 1990); allele 2 (accession number: AY034069) is found in the 

Marikebuni and Uganda T. parva stocks and alleles 3 (accession number: AY034070) 

and 4 (accession number: AY034071) represent the T. parva Boleni and 7014 p104 amino 

acid sequences, respectively. Muguga, Marikebuni, Uganda and Boleni are cattle-derived T. 

parva stocks whereas 7014 is a buffalo-derived T. parva stock. The Polymorphic 

Immunodominant Molecule (PIM) and p104 profiles from buffalo-derived T. parva stocks 

are more polymorphic than those from cattle-derived stocks (Geysen et al., 1999). 
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2.4 Methods for characterization of T. parva diversity 

2.4.1 Molecular techniques 

(i) Conventional p104 PCR 

This is a T. parva species-specific assay based on primers derived from conserved region 

of a 104-KDa antigen gene (p104) of T. parva. The assay was validated and showed a 

detection threshold (sensitivity) of 2 parasites/µl of infected blood (Skilton, Bishop, 

Katende, Mwaura, & Morzaria, 2002). However, just like the Reverse Line Blot technique, 

this assay is time-consuming due to the hybridization step. 

(ii) Nested PCR for the p104 gene 

Nested PCR involves use of two pairs of PCR primers for a single locus. The primers used in 

the first round of amplification are either both replaced (nested PCR) or only one is replaced 

(semi- nested PCR) for the second and subsequent cycles of amplification. The first pair 

amplifies the locus as in any conventional PCR experiment. The second pair of primers 

(nested primers) binds within the first PCR product and produces a second PCR product that 

is shorter than the first one. This strategy ensures that if the wrong locus were amplified 

during the first round PCR, the probability is very low that it would also be amplified a 

second time by a second pair of primers. Recent detection of T. parva infections has 

employed semi-nested PCR-RFLP assays based on the T. parva p104 and 18S rRNA genes 

(Bazarusanga, Vercruysse, Marcotty, & Geysen, 2007; De Deken et al., 2007). However, 

since p104 is a single copy gene, semi-nested PCR is less sensitive and not ideal for detection 

of T. parva infections in carrier animals. Oura et al. (2004) described a nested p104 PCR for 

detection of T. parva DNA in peripheral blood. The assay is based on amplification of a 277 

bp internal fragment of the p104 gene which is both T. parva-specific and widely conserved 

within T. parva stocks (Bishop, Musoke, Morzaria, Gardner, & Nene, 2004; Skilton et al., 

2002). The test exhibits enhanced sensitivity for detection of low levels of T. parva piroplasm 

infections in bovine carrier animals. Interpretation of the PCR result is based on visualization 

of a band on agarose gel. This study therefore employed nested PCR for the p104 gene for 

detection of T. parva in samples. 

2.5 Control of T. parva 

2.5.1 Acaricides and use of drugs 

The control of T. parva in Tanzania relies on the use of acaricides, commercially available 
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drugs and vaccination using the ITM (Elisa et al., 2015). Treatment with drugs only works 

during the early stages of the disease. Of all the available drugs buparvaquone is drug of 

choice for the treatment of T. parva (McHardy, Wekesa, Hudson, & Randall, 1985). 

Recently most pastoralist communities control ECF by limiting ticks using acaricides (Di 

Giulio et al., 2009). However, this method is not of great use due to many drawbacks along 

with being the development of resistance by ticks, food-safety concerns, disruption of 

endemic stability and environmental contamination due to the toxic residues. In addition, the 

use of acaricides involves dipping, and the facilities used for dipping are mostly not 

operating as they involve financial resources for the maintenance especially among 

pastoralists who can hardly not afford the cost (Di Giulio et al., 2009). The fatal nature of 

the disease demands for effective measures to provide a sustainable means of controlling the 

disease which is achieved through vaccination by ITM. 

2.5.2 Immunization using the Infection and Treatment Method (ITM) 

The cattle normally becomes solidly immune to re infection with similar strains after 

recovery (Norval et al., 1992). The ITM process involves simultaneous infection of the cattle 

with three vaccine strains and treatment with oxytetracycline (30%), which results in an 

attenuate infection but in a long-lasting efficient immune response (Di Giulio et al., 

2009; McKeever, 2009). The first attempt to vaccinate cattle against T. parva infection was 

done in a year 1911 in South Africa (Theiler, 1912). Whereby they injected the infected cells 

obtained from spleen and lymph nodes of sick cattle intravenously to the suscpectible cattle, 

which was not successful and resulted to a lot of death among cattle and consequently 

vaccination was discontinued (Mbizeni et al., 2013). 

The original ITM live vaccine technology was developed about 40 years ago (Nene & 

Morrison, 2016). Protection is mediated by parasite-specific major histocompatibility 

complex (MHC) class I-restricted cytotoxic T lymphocytes (CTLs), which target the 

schizont-infected lymphoblast. Because it does not take effect until the schizont parasitosis is 

established, the CTL response does not prevent infection. The CD8+ T lymphocyte is a 

response that mediate protection and recently, several parasite antigens recognized by CD8+ 

T cells have been identified (Pelle et al., 2011). In addition, recovered cattle and those 

immunized by infection and treatment are almost invariably long-term carriers of piroplasm 

forms. Because piroplasms of T. parva undergo only limited replication the carrier state 

probably arises from persistence of small numbers of schizont-infected lymphoblast’s 
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(McKeever, 2009). Protection is partially stock specific and combinations of stocks have 

been used to provide broad protection (Oura et al., 2007). The most widely used is the 

‘Muguga cocktail’ developed in the 1970s (Radley et al., 1975) as a trivalent formulation of 

T. parva strains Muguga, Kiambu 5 and Serengeti-transformed stocks. Over 15 million 

doses of MC have reportedly been administered in approximately eleven countries of 

eastern and southern Africa (Perry, 2016) including Uganda, Malawi, Tanzania and, Kenya 

(Oura et al., 2007). Parasite isolates placed in different cross-immunity groups usually 

exhibit 20–30% cross-protection between them (Morzaria, Spooner, Bishop, & Mwaura, 

1997). Sequential immunization by ITM with single isolates in different cross-immunity 

groups provides additive immunity (Taracha, Goddeeris, Morzaria, & Morrison, 1995). This 

suggests that some protective antigens are shared between different parasite isolates, and the 

breadth of the immune response can be expanded in response to new infections (Nene et al., 

2016). Novel genotypes can be found in cattle vaccinated with the Muguga cocktail 

(Hemmink et al., 2016; Oura et al., 2004). This may help to broaden the spectrum of 

immunity to strains of the parasite not present in the cocktail. 

The results of two current studies of the Muguga cocktail vaccine, one involving 

genomic sequencing of the three component parasites and the other based on high-

throughput sequencing of PCR amplicons of six genes encoding T. parva antigens 

(including Tp1 and Tp2), have indicated that the vaccine contains only a small component 

of the genetic and antigenic diversity detected in field populations of T. parva (Nene et al., 

2016). Each of the three parasite isolates in the Muguga cocktail showed a very limited 

diversity, and two of them (Muguga and Serengeti) exhibited a striking high level of 

sequence similarity, but differed significantly from the Kiambu isolate (Nene et al., 2016). 

Furthermore, amplicon sequencing and satellite DNA typing indicated that the vaccine 

components contained minor genotypic components present at <5% within the vaccine 

parasites. If these minor components contribute to the broad protective capacity of the 

vaccine, then the possibility that these components might not be present in all vaccine 

batches or indeed all vaccine doses is of concern regarding standardization of vaccine 

content (Nene et al., 2016). 

The greatest impact of the MC appears to have been in Tanzania, in part due to the 

commitment of the group championing its use in and around Arusha, and in part due to the 

unique demand in the pastoralist communities in northern Tanzania and southern Kenya 
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(Perry, 2016). As the Muguga Cocktail is a live vaccine there has been concerns about the 

use of it due to the risk of introducing exotic stocks of T. parva from the vaccine parasite 

strains (or specific alleles) into the field which maybe outside the immunological range of 

indigenous parasites (Oura et al., 2007) this may result in genetic recombinations with local 

parasite populations or introduction of the disease in previously free areas (Martins et al., 

2010). 

Moreover vaccination using the Muguga cocktail requires production of three large batches 

of T. parva sporozoites by feeding ticks on cattle infected with each parasite isolate, and 

each batch needs to be carefully titrated in cattle to determine a dose that will 

reproducibly infect and immunize all animals but will not break through the tetracycline 

treatment (Nene et al., 2016). This complex protocol coupled with the requirement for a 

liquid nitrogen cold chain to distribute the vaccine presents drawbacks for quality control 

and marketing. Nevertheless, recent initiatives have led to increased field uptake. This has 

included the establishment of a center for vaccine production and systems to facilitate 

distribution of the vaccine (Nene et al., 2016). Therefore, development of a subunit 

vaccine that is easier to produce and with minimal risks is important. Previous experiments 

with other versions of the ITM vaccine have shown that they do not always provide 

complete protection under field conditions (Cunningham et al., 1974). A number of cross-

immunity studies have been conducted using different cattle-derived T. parva stabilates, 

including locally derived parasites, which have shown mixed results in development of 

protective immunity (Latif, Hove, Kanhai, Masaka, & Pegram, 2001). 

2.6 Carrier state and persistence of Muguga Cocktail vaccine 

The carrier state of T. parva is the ability of an infected and recovered host to carry the 

parasites without getting sick but it can infect ticks which are then able to transmit the 

parasite to susceptible animals (Norval et al., 1992). The cattle which recover from the 

disease can remain infected with no clinical signs and serve as reservoirs for ticks (Olds et 

al., 2018). The phenomena of carrier state of T. parva among cattle contributes to continuous  

infection of cattle which plays a mojor role in maintenance of cattle immunity (Young, 

Leitch, Newson, & Cunningham, 1986). Carrier state is also said to result into endemic 

stability, in areas where natural transmission occurs and is described as “a climax 

relationship between host, agent, vector and environment in which all coexist with the 

virtual absence of clinical disease” Woolhouse et al. (2015). Calves are most susceptible to 
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acute infections under conditions of endemic stability and the developed carrier state may 

last for a number of years. Lately the concept of endemic stability for T. parva has been 

defined to include the concept that protection may be correlated with closely related 

virulent Theileria species which circulates naturally among the cattle population (Olds et 

al., 2018). It is therefore very important to understand the contribution to cattle immunity 

made by persistent T. parva infections both naturally acquired and artificially induced 

through vaccination with live sporozoites given the broade concept of endemic stability 

(Olds et al., 2018). 

Undisrupted endemic stability helps to reduce the occurrence of acute disease and mortality 

(Norval et al., 1992). Movement of naive cattle from non endemic to endemic zones 

together with the breakdown of tick control may reduce transmission pressures, as this 

may limit the opportunity for early infection of calves and subsequent development of a 

broad immune response. Moreover, herd improvement programs that introduce more 

productive European cattle breeds which are highly susceptible to infection, or by the 

introduction of virulent T. parva strains directly from African buffalo reservoirs at the 

interface between domestic cattle and wildlife can also disrupt the endemic stability (Olds et 

al., 2018). Epidemiology of theileriosis is determined by the ability of the T. parva carrier 

animal to infect ticks during feeding. There are two main ways by which a mammalian 

host can become a T. parva carrier: spontaneous recovery from an infection without 

treatment or a recovery after treatment. The ITM method against T. parva infections has 

been very effective in conferring the cattle immunity but these cattle remain carriers 

(Mbizeni et al., 2013). 

It is possible for the animal that is infected with Theileria parasite to act as a carrier 

only initially, i.e. develop schizont parasitosis and piroplasm parasitaemia which are later 

cleared by the immune responses leaving the host immune but with no parasites producing 

the state of sterile immunity. Thus an animal can become an intermittently or sporadic 

carrier or become a persistent carrier (Norval et al., 1992). 

An infected mammalian host, either buffalo or cattle, should be capable of infecting 

ticks which then transmit the parasites to a new host this is a crucial stage in Theileria 

parva maintenance in cattle populations which results to a continuous circulation of the 

parasite between the mammalian host and the vector ticks (Norval et al., 1992; Mbizeni et al., 

2013). The above case can only be achieved if there is constant contact between infected 
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mammalian hosts and susceptible cattle (Mbizeni et al., 2013). Physical separation has been 

effective before as it limits contact between known infected cattle or buffalo and susceptible 

cattle which may also contribute to inability for buffalo-derived T. parva to establish carrier 

state in cattle populations which is not the case in northern Tanzania due to animals co 

grazing and pasture sharing at wildlife interface areas which may expose animals to buffalo 

derived strains. Moreover, all stages of R. appendiculatus occur throughout the year in 

tropical East Africa which makes continuous host-vector T. parva circulation possible 

(Mbizeni et al., 2013). 

The study done by Oura et al. (2007) revealed the persistence of one of the three strains 

known as kiambu 5 to be detected in the majority (70%) of vaccinated calves for up to 4 

years, but there was no evidence for the presence of the Muguga or Serengeti component 

of the vaccine which suggest that some components in Muguga stock does not cause a long 

term carrier state (Skilton et al., 2002). The use of a live vaccine means that vaccinated 

animals become “carriers” of the T. parva strains being used in the vaccine, and eventually 

they then provide a source of these strains to ticks in the field as a result they have the 

potential to infect co-grazing non-vaccinated animals with these strains, this raises many 

concerns on the MC vaccine (Hayashida et al., 2012).  

The study done by Oura et al. (2007) suggested that the Kiambu 5 stock can be detected in 

many but not all vaccinated cattle for up to 4 years and can be transmitted to unvaccinated 

cattle which share grazing, and that some of the vaccinated animals become infected with 

local genotypes without developing into a disease. This possibility was examined by 

collecting of blood samples from 13 unvaccinated adult cattle on the farm (over 2 years 

after the previous sampling) including 3 of the animals sampled in 2002. These cattle had 

shared grazing for over 4 years with 43 cattle, vaccinated between 2000 and 2003. Blood 

samples were genotyped, using the Muguga/Serengeti and Kiambu 5-derived primers that 

amplify regions of the PIM gene. Four of the unvaccinated cattle (numbers 3, 8, 10 and 12) 

amplified PCR products of the same size and pattern as the Kiambu 5-specific PCR products 

from the vaccine stabilates. 

2.7 Genotypic diversity of T. parva 

Like other parasites protozoan parasites are thought to have evolved in genetic diversity 

to survive the immunologically unfavorable environments of their hosts (Nene et al., 

2016). Genetic diversity allows the parasites to escape the immune responses of their hosts 
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due to antigenic variation in parasites (McKeever, 2007). Recombination which takes place 

in ticks during sexual reproduction is very crucial in the genetic diversity of Theileria 

species (Henson et al., 2012; Katzer, Ngugi, Schnier, Walker, & McKeever, 2007) although 

other mechanisms like genetic drift and mutations also accounts for this (Skilton et al., 

1998), Bioinformatics analyses have revealed this to be a possible mechanism generating 

genetic diversity in genes such as the polymorphic immunodominant molecule (PIM) of 

T. parva (Geysen et al., 2004; Sivakumar, Hayashida, Sugimoto, & Yokoyama, 2014). 

Besides genetic recombination and mutations within the epitopes of CD8+ cytotoxic T 

lymphocyte (CTL) antigens were found to facilitate immune evasion in T. parva 

(Connelley, MacHugh, Pelle, Weir, & Morrison, 2011). Whilst the evolutionary acquisition 

of genetic diversity favors the long-term survival of the parasites, it usually makes it difficult 

to adopt to efficient control measures against the diseases caused by them. Therefore, this 

calls for a deeper knowledge of genetic diversity in T. parva for gaining better 

understanding of these harmful parasites (Sivakumar et al., 2014). 

Studies influenced by the distribution, density, and type of markers across the genome by 

using a number of loci and variable number of tandem repeat (VNTR) markers (mini- 

and micro- satellites) derived from the T. parva genome sequence data have been used 

as markers to determine parasite diversity (Oura et al., 2003, 2004, 2005, 2011; Patel 

et al., 2011) the results indicated that there was no direct relationship between geographical 

origin and level of genetic similarity between parasite isolates, such that different parasite 

isolates from the same farm demonstrated distinct genotypes. Older cattle revealed larger 

number of different parasite genotypes than younger ones, which tended to have a 

predominating genotype (Oura, Asiimwe, Weir, Lubega, & Tait, 2005). Some geographical 

sites revealed a sub structure in parasite populations, others did not, and some exhibited an 

epidemic structure characteristic of recent predominating infections (Oura et al., 2005). 

Thus, it has been concluded that cattle movement, their co grazing with buffalo, and 

parasite transmission rates play a major role in determining T. parva parasite population 

structures (Oura et al., 2003). 

Analysis with 12 micro and minisatellites markers revealed 84 multilocus genotypes (MLGs) 

in blood samples from three geographical localities in Uganda (Oura et al., 2005), and a 

total of 183 alleles were observed at 30 micro and minisatellites loci from 20 Kenyan 

tissue culture isolates (Odongo et al., 2006). Some animals can be infected with a couple of 
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T. parva genotypes (Oura et al., 2007). Even so most recent analysis of 14 micro- and 

minisatellites markers revealed a low level of genetic diversity in T. parva from cattle 

populations in Tanzania (Elisa et al., 2015; Rukambile et al., 2016). Other findings of the 

study done in south Sudan using a panel of 11 mini- and three micro-satellite markers 

revealed high T. parva diversity in some parts (Salih et al., 2018). These observations are 

similar among T. parva populations in countries where ECF is endemic. 

2.7.1 Influence of wildlife interface areas in T. parva diversity 

Ticks plays a major role in transmission of T. parva parasites among the vaccinated and 

unvaccinated animals which co graze and with close proximity to wildlife interface where 

there is constant exposure with the buffalo which is the main host of the parasites, in spite 

the fact that wildlife harbors a great diversity of parasites in inactive forms they still have a 

potential to cause drastic effects on their hosts both directly and indirectly (Wamuyu et al., 

2015). Once the cattle are infected with buffalo-derived strains it develops a Corridor 

disease (CD), which is results to low levels of parasitized leukocytes in peripheral lymph 

nodes unlike the high parasitosis seen in ECF. Parasites derived from buffalo are more 

divergent compared to the ones from cattle this is evidenced by the monoclonal antibody 

profiles results and comparison of the sequences of known T. parva antigens (Pelle et al., 

2011). Moreover, previous studies in many parts of Africa, including Zimbabwe (Bishop et 

al., 1994), Uganda (Oura, Tait, Asiimwe, Lubega, & Weir, 2011) and South Africa 

(Sibeko et al., 2011), reported the same findings. Several genes have been investigated in 

search of discriminatory sequence differences between T. parva isolates. Among these are 

sporozoite antigen genes, p104, p67 and PIM (Bazarusanga et al., 2007; Iams et al., 1990; 

Nene, Musoke, Gobright, & Morzaria, 1996). The heterogeneity seen in T. parva is unclear 

whether it exert any advantage during the stages of the parasite lifecycle. Notwithstanding 

that, there is evidence that this diversity has an important influence on immunity (Sitt et 

al., 2015). Immunity resulting from Muguga cocktail is known to be strain-specific hence 

cattle immunized against one strain of the parasite are not necessarily protected against 

challenge with heterologous parasite strains in the field (Radley et al., 1975). 

The Muguga cocktail vaccine has been used successfully in some regions despite the 

evidence that it does not protect all animals against infections from buffalo derived strains 

(Radley et al., 1979). Two studies were conducted among vaccinated cattle grazing into 

areas where buffalo resides showed no or low levels of protection against disease (Bishop et 
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al., 2015; Sitt et al., 2015). The findings suggests that T. parva parasite populations in 

buffalo harbor a greater antigenic diversity than those in cattle (Hemmink et al., 2016). 

To support these findings a study of the sequences of two genes (Tp1 and Tp2) which 

encode proteins recognized by CD8+T cells from immune cattle, in infected cell lines 

isolated primarily from eastern Africa (Pelle et al., 2011). Over 30 allelic variants of each 

antigen were identified, majority of the variants were found in isolates obtained from 

buffalo and from cattle that had co grazed with the buffalo, whereas only a small amount  

of the variants was detected in the isolates obtained from cattle grazed without the buffalo 

(Pelle et al., 2011).  

Recent studies done by Elisa et al. (2015) to investigate the genetic diversity of T. parva 

isolates existing in cattle and African buffalo in the Serengeti and Ngorongoro in Tanzania 

and whether T. parva genotypes are shared between buffalo and cattle that are grazing in 

same pasture or in close proximity, showed a higher incidence of T. parva and buffalo 

derived strains to have been transmitted to Ngorongoro cattle which are co-grazed in close 

contact with buffalo as compared to Serengeti cattle. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study areas 

The study was carried out in Maasai steppe of northern part and Tanga region in the eastern 

part of Tanzania (Fig. 2). The Maasai steppe is made of Simanjiro plains, Tarangire 

National Park and Lake Manyara National Park. It stretches over right districts of Arusha 

and Manyara regions of Tanzania. It lies between 3°52’ and 4°24’ south and 36°05 and 

36°39 east. This area has two rainfall seasons of spatial and temporal variation. It is 

comprised of dry season starting from October to December and wet season from February 

to May. The average temperature in the area is between 18°C and 30°C. The Maasai 

steppe is made up of natural ecosystem consisting of a variety of animal species, 

vegetation, conducive temperature variations and rainfall, all of which support a natural 

habitat for living organisms including vectors and various parasites. Such an ecosystem 

regulates the density of organisms found in the area. The area is semi-arid with the 

national parks providing a home for wildlife. The main source of livelihood in Maasai steppe 

is Livestock and crop production with cattle production being the major activity. This area 

also consists of a wildlife corridor which is bordered by Monduli district and Manyara ranch 

located in the north and Tarangire National park on the South-western side. Due to its 

proximity to wildlife the area has high interaction of domestic and wildlife which 

increases circulation of T. parva making East Coast Fever endemic in the area. 

Tanga Region is one of the 31 administrative regions of Tanzania. It is bordered by Kenya 

and Kilimanjaro Region to the north; Manyara Region to the west; and Morogoro and Pwani 

regions to the south. Its eastern border is formed by the Indian Ocean. It is situated at the 

North-East corner of Tanzania between 4◦ and 6◦ degrees below the Equator and 37◦ -39◦ 

10’ degrees East of the Greenwich Meridian. Tanga's climate is classified as tropical, 

with the average temperature of 26 °C. About 1290 mm of precipitation falls annually, 

with the greatest amount occurs in May at an average of 294 mm which supports the 

parasites survival including ticks Most of the land is used for crop production, livestock 

keeping, forestry, mining, and residency. Livestock keeping is the second important sector 

of the economy in the region. Over 94% of livestock kept in Tanga constitute 

traditional/local breeds which have very low potential in terms of production and 

productivity. According to the census of Agriculture survey in 2007-2008 the region has a 

https://en.wikipedia.org/wiki/Regions_of_Tanzania
https://en.wikipedia.org/wiki/Kenya
https://en.wikipedia.org/wiki/Kenya
https://en.wikipedia.org/wiki/Kilimanjaro_Region
https://en.wikipedia.org/wiki/Manyara_Region
https://en.wikipedia.org/wiki/Morogoro_Region
https://en.wikipedia.org/wiki/Pwani_Region
https://en.wikipedia.org/wiki/Pwani_Region
https://en.wikipedia.org/wiki/Indian_Ocean
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total of 732 130 cattle in 74 670 households. Most of the households keeps indigenous cattle 

(688 114), which accounts for 94% of the total cattle population. With beef cattle 

accounting for only 0.3% of the cattle while the remaining households raises a total of 41 

639 dairy cattle, which comprises 6% of the cattle population. Unlike the Maasai steppe 

the dairy farms in Tanga region are located far from the wildlife interface areas hence 

there is no interaction of the domestic animals with the wildlife. Furthermore, in Tanga 

region ITM practice has not been practiced for a longer time as compared to the Maasai 

steppes. 

 

 

Figure 2: The map of Tanzania showing key sampling sites 

 

3.2 Study design 

A cross sectional study design was used to obtain the required results in which sampling 

was conducted in five villages in the Maasai steppe of northern Tanzania and two farms 

in Tanga region in March 2018 which was the wet season characterized by the presence 

of many ticks. Bomas (traditional Maasai homesteads, usually consisting of a number of 

huts surrounding an enclosure for cattle) were the sampling unit. 
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3.3 Sample size determination 

Sample size was calculated using the following formula 

 

 

 

Where N is the sample size; Zα =1.96 at 95% confidence level; standard error of the mean, 

p= 37.1%, the previously reported T. parva prevalence in the area (Kazungu et al., 2015); 

q=1-p, d=0.05 at 5% absolute error (design effect).  

The calculated sample size was 358 

3.4 Sampling 

A multistage sampling technique was used from the district level to the bomas which were 

the sampling units. Five villages in Maasai steppe and two farms in Tanga were then 

selected purposively based on their cattle population size, location with reference to 

Tarangire and Manyara National park and whether ECF vaccination is being practiced. In 

these locations all of the sub-villages were listed down and 50% of them were selected 

randomly. In each of the sub- village the numbers of the bomas were listed down and 3 

bomas were selected systematically in each sub village. Cattle were then selected 

conveniently in the selected bomas. Vaccinated cattle were easily identified by ear-tag 

numbers, which indicated the year of vaccination what was also confirmed by farmers. 

Upon receipt of consent from local and village authorities as well as individual farmers, 

cattle were randomly selected from seven locations (Loiborsoit, Emboret, Esilalei, 

Mswakini, Manyara ranch, Tanga Leila farm and Tanga Mruazi Farm).  

Data on their vaccination status and duration since vaccination were retrospectively 

collected. Mruazi and Leila farms in Tanga were selected purposively due to their 

exclusiveness from the wildlife and the ITM practices. Mruazi farm had never practiced 

ITM whereas, Leila farm stopped vaccination in 2015. These farms become good candidates 

for comparison of impact of ITM from the Maasai steppe areas where it has been practiced 

for over 15 years and close to wildlife. A sample size of 336 cattle was enrolled in order to 

determine the carrier state persistence and diversity of T. Parva. Twenty two of the cattle 

dropped out during sample collection. 
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3.4.1 Blood samples collection 

 

Blood samples were collected from the jugular vein using 10 ml EDTA vacutainer tubes 

(Becton Dickson Vacutainer Systems, England). Blood samples were collected from 

villages and farms as detailed in Table 1. The blood samples were labeled and stored in a 

cool box with ice packs while in the field and later put into a refrigerator until when they 

were transported to NM-AIST laboratory. Blood samples for DNA extraction were kept 

frozen at -20°C before shipped to Sokoine University of Agriculture for analysis. 

 

Table 1: Total number of blood samples collected per location 

 
 
 

3.5 Laboratory analysis 

Laboratory analyses were conducted in the Genome Science Center at the Faculty of 

Veterinary Medicine at Sokoine Univesity of Agricuture, Morogoro. 

3.5.1 DNA extraction 

DNA was extracted from cattle blood using the, Quick-g DNA™ Blood miniprep (D 

3073, Zymo Research, USA). Prior extraction, blood samples were left to thaw at room 

temperature for three hours. 100 µl of blood was put in a 1.5 ml micro-centrifuge tube, 

followed by 400 µl of genomic lysis buffer (containing 0.5% beta-mercaptoethanol). The 

contents were mixed thoroughly at 20 Hertz for five seconds on a vortex (VELP 

scientifica) and incubated at room temperature for 10 minutes. The mixture was then 

transferred to a Zymo-spin column in a collection tube and centrifuged at 10 000 rpm 

for one minute (Eppendorf 541R, USA). The collection tube was then discarded with the 

Study site                            Number of animals sampled 

Loiborsoit 35 
 

Emboreet 

 
41 

 
Esilalei 

 
69 

 
Manyara Ranch 

 
72 

 
Mswakini 

 
63 

 
Leila Farm 

 
36 

 
Mruazi Farm 

 
20 

 
Total 

 
336 
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flow- through solution. The Zymo-spin column was then transferred to a new collection 

tube and 200 µl of DNA Wash Buffer was added to the spin column and centrifuged at 10 

000 rpm for one minute. The spin column was then transferred to a clean and sterile micro-

centrifuge tube where DNA was eluted by adding 50 µl of DNA Elution Buffer and 

incubated for five minutes at room temperature. Then the spin column was discarded and 

DNA collected in a micro-centrifuge tube. The eluted DNA was then run on gel to see 

whether it was successfully extracted. 

3.5.2 Nested PCR for screening T. parva positive samples using p104 gene 

All samples were screened for T. parva using a nested polymerase chain reaction (PCR) 

assay targeting the 104 kDa antigen (p104) gene (Skilton et al., 2002) The assay was run 

in two PCR rounds; the primary and secondary PCR; using outer primers for primary PCR 

(For1 ‘5-ATTTAA GGA ACC TGA CGT GAC TGC-3’) and (Rev1 ‘5-TAA GAT GCC 

GACTAT TAA TGA CACC-3’), and inner primers for secondary (nested) PCR (For2 ‘5-

GGC CAA GGT CTC CTT CAG AAT  ACG-3’)  and  (Rev2  ‘5-TGGGTG  TGT  TTC  

CTC  GTC  ATC  TGC-3’). Primers were designed based on p104 antigenic gene (Gene 

bank M29954). 

The primary PCR composed of 6.25 µl Master mix, 3.25 µl nuclease free water, 0.25 µl of 

each of the primers (For and Rev) and 2.5 µl of gDNA to have a final volume of 12.5 µl. The 

reaction was briefly vortexed and then centrifuged for 1 minute at 14 000 rpm to bring all the 

droplets down. The nuclease free water was used as negative control and the DNA sample 

known to be T. parva positive from BecA-ILRI Hub sample repository was used as positive 

control. The amplification conditions for primary PCR were 95℃ for 1 minute followed by 

30 cycles of 95℃ for 1 minute, 60℃ for 1 minute, 72℃ for 1 minute with additional 10 

minutes at 72℃ as final extension. The components of the secondary PCR remained the 

same as for the primary PCR except the template which was primary PCR products 

diluted at 1:10. The amplification conditions were the same except the annealing 

temperature and the number of cycles was reduced to 55℃ and 30 cycles, respectively. 

All amplifications were done using a programmable thermal cycler (MJ Research, 

Watertown, MA, USA). The secondary round PCR products were analyzed by 

electrophoresis and run at 100 V for 40 minutes in 1.5% agarose gel. 
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3.5.3 PCR amplification and analysis of mini and microsatellite loci 

The nested PCR deploying the outer and inner primers designed by Oura et al. (2003) and 

Salih et al. (2018) respectively (Table 2) was performed to amplify each of 1 mini and 2 

microsatellites used in the study for each sample that was positive by p104 nested PCR 

amplification. The primary PCR amplification was done in 10 µl comprising of 2 µl of 20 

ng/µl genomic DNA, 5 µl of Master mix, 0.4 µl of each outer primers at 10 pmole and 

2.2 µl of nuclease free water. The nuclease free water was used as negative control and the 

DNA sample known to be T. parva positive from BecA-ILRI Hub sample repository was 

used as positive control. The cycling conditions for the primary PCR were as follows; 

Initial denaturation at 95°C for 5 minutes followed by 35 cycles of denaturation at 94°C for 

30 seconds, annealing at 55°C for 1 minute, extension at 72°C for 1 minute plus a final 

extension at 72°C for 10 minutes. For the secondary PCR, all other reagents remained the 

same except that 0.5 µl of the primary PCR was used as the template and the volume of 

water was increased accordingly to give a total of 10µl reaction volume. The cycling 

conditions for the secondary PCR were as follows, Initial denaturation at 95℃ for 5 

minutes followed by 25 cycles of denaturation at 94°C for 30 seconds, annealing at 58°C for 

1 minute, extension at 72°C for 1 minute plus a final extension at 72°C for 20 minutes. 

Five microliter of the amplicons were analyzed on a 1.5% agarose gel to check for 

amplification success. 

Table 2: Panel of mini and microsatellite markers used to genotype T. parva samples used in 

this study 

Markers  Outer nested primers sequence Inner nested primers sequence 

 

MS 7 

 

For 

 

CTCCTCAGCATCCTGCTGCTCATTG 

 

GTTCAGTCCTATGGCAATTCAG 

   Rev GCGCATGACTGCTTTTACATTAACCC   CAAACCTCTTCAAATTCACTCTAGG 

 

ms 5 

 

For 

 

AACACAGTAACTAACCCAGGCC 

 

AATCTTCCAATCCCAACCACATAC 
  

Rev 

 

AACTCCAGCGGAATCCCGAAATA 

 

CCCGAAATAAAACCAAATTCCACC 

 

ms 2 

 

For 

 

AAGTTAGTATCACCACCAGGCTGG 

 

GCCCAATGTACCGAGAATCCTCAC 
  

Rev 

 

GGCTCATCTACCACTCCAACTCC 

 

ATTCTCCGCATTCTCCACCACCTC 
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3.5.4 Agarose gel electrophoresis 
 

PCR products were loaded in 1.5% agarose gels prepared in TAE buffer. The products 

were separated at 80 volts for 40 minutes before visualization and documentation on Gel Doc 

TM (Bio Rad, USA). 

3.5.5 Data analysis 

Data were entered and cleaned using Microsoft excel 2016. Vision capt software version 

15.0 was used for scoring of allele sizes from gel pictures. GenALEX software version 5 

was used to calculate genetic diversity parameters for the entire dataset. This included 

determining the number of alleles per locus (A), and expected heterozygosity (He). These 

parameters were used to assess the level of polymorphism at each locus and determine 

diversity overall and within the sub-populations. Expected heterozygosity was calculated 

using the formula for ‘unbiased heterozygosity’ also termed haploid genetic diversity, He 

= [n/ (n-1)] [1-∑p2] where n is the number of isolates and p the frequency of each 

different allele at a locus. Analysis of molecular variance was used to study the T. parva 

population in the study locations by giving the percentage variations between and within 

the parasite populations. Principal component analysis ( PCA) was used to investigate the 

genetic relationships between the T. parva isolates from different geographical locations 

used in the study. Descriptive statistics were computed at 95% Confidence Interval (CI). 

Chi-square test was used to determine association between outcome variables (T. parva 

carrier state) and categorical variable such as vaccination status and grazing close to the 

wildlife interface areas. Statistical significance was determined at p< 0.05. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Results 

4.1.1 Screening for T. parva carrier state in cattle by p104 nested PCR 

Three hundred and thirty six (336) cattle were screened for T. parva carrier state using 

p104 nested PCR (np104). A 277bp PCR product was observed for 116 (34.5%) cattle, 

which were henceforth considered as T. parva carriers. The proportion of carriers was 

significantly higher among vaccinated cattle (43%; 103/239) compared to the 

unvaccinated cattle (13.4%; 13/97) (p<0.000). Likewise, a higher frequency of T. parva 

positivity was documented among cattle grazing in closer proximity to wildlife 38% 

(107/280) than cohorts grazing farther from wildlife 16% (9/56) (P<0.001). The 

proportions of cattle, categorized based on p104 PCR results are shown in Table 3. 

Table 3: Proportions of cattle categories based on T. parva carrier status 

Category Sub-category T. parva infection status Total P value 

  Positive, n 

(%) 

Negative, n 

(%) 

  

 

Vaccination Status 

 

Vaccinated 

 

103 (43.1) 

 

136 (56.9) 

 

239 

 

P<0.000 

  

Unvaccinated 

 

13 (13.4) 

 

84 (86.6) 

 

97 

 

Proximity 

Wildlife 

 

Close 

 

107 (38.2) 

 

173 (61.8) 

 

280 

 

P<0.001 

 Far 9 (16.1) 47 (83.9) 56  

 

Overall 

  

116 (34.5) 

 

220 (65.5) 

 

336 

 

 

Vaccinated cattle are more likely to be T. parva carriers 5 times than the unvaccinated 

cattle (Odds Ratio= 4.89) and the cattle grazing near to the wildlife interface are 3 times 

more likely to be T. parva carriers than the ones grazing far from the interface (Odds Ratio= 

3.18). 

Table 4 shows the prevalence of T. parva between cattle groups split by their vaccination 

status. Although sampling of cattle was random, but the proportion of vaccinated and 

unvaccinated cattle varied between the populations. Thus, the sampling emerged with 

approximately equal proportions of vaccinated and unvaccinated cattle in two 
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populations, Tanga Leila farm and Loiborsoit, but in some populations, Manyara ranch and 

Mswakini all cattle were ECF- vaccinated, while none of the cattle were ECF-vaccinated 

in Mruazi group. Accordingly, the overall prevalence of carrier state varied between the 

cattle groups and was highest in Manyara ranch (82%) and lowest in Mruazi farm (0%). 

While majority of the carriers were vaccinated animals, 13 of the carriers were not ECF-

vaccinated and were sampled from different groups (Leila farm, Loiborsoit and Esilalei 

groups each with 4, 2 and 7 cattle. 

Table 4: Prevalence of T. parva among the six groups used in this study 

Locations Vaccination 

Status 

N T.parva 

positive 

Prevalence, 

 % 

Overall 

prevalence, 

% 
Leila farm Vaccinated 17 5 29 25 

  
Unvaccinated 

 
19 

 
4 

 
21 

 

 
Loiborsoit 

 
Vaccinated 

 
16 

 
3 

 
18.75 

 
14.3 

  
Unvaccinated 

 
19 

 
2 

 
10.5 

 

 
Emboreet 

 
Vaccinated 

 
35 

 
9 

 
25.7 

 
13 

  
Unvaccinated 

 
6 

 
0 

 
0 

 

 
Manyara Ranch 

 
Vaccinated 

 
72 

 
59 

 
82 

 
82 

  
Unvaccinated 

 
0 

 
0 

 
0 

 

 
Esilalei 

 
Vaccinated 

 
29 

 
14 

 
48.3 

 
30.4 

  
Unvaccinated 

 
40 

 
7 

 
17.5 

 

 
Mswakini 

 
Vaccinated 

 
63 

 
14 

 
22.2 

 
22.2 

  
Unvaccinated 

 
0 

 
0 

 
0 

 

 
Mruazi farm 

 
Vaccinated 

 
0 

 
0 

 
0 

 
0 

  
Unvaccinated 

 
20 

 
0 

 
0 

 

 
Overall 

 
Vaccinated 

 
239 

 
103 

 
43 

 
28.2 

  
Unvaccinated 

 
97 

 
13 

 
13.4 

 

 
 

4.1.2 Persistence of carrier state following ECF vaccination 

The p104 PCR successfully detected T. parva carrier state in 103 (43%) out of 239 cattle, 

that had been immunized at variable time points between 4 months and 13 years earlier 

before blood sampling was done for present study. Although carrier state was detected in 
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cattle early after vaccination, but highest abundance of carrier cattle was documented 

between 8 and 12 months post vaccination. The carrier state persisted in vaccinated cattle 

and was detectable by the nested PCR as long as 11 years post ECF vaccination (Fig. 3). 

 

Figure 3: Scatter plot showing the persistence of carrier state over time since ECF 

vaccination 

4.1.3 Detection, prevalence and distribution of mini- and micro-satellite markers in 

cattle 

Three VNTR (Variable nucleotide tandem repeats) Minisatellite 7 (MS7), microsatellite 5 

(ms5) and microsatellite 2 (ms2) markers were selected to monitor the prevalence and 

persistence of the ECF (Muguga) vaccine in cattle. Only the 116 cattle, previously 

confirmed by PCR to be T. parva carriers were subjected to this analysis. Cattle blood 

samples positive for these markers revealed different band sizes after running them on 

agarose gels for documentation as shown in (Fig. 4). 

 
Figure 4: Agarose gels (1.5%) showing some of PCR products generated using three VNTR 

markers and a p104 gene to amplify T. parva 
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All three markers were polymorphic in the set of samples as evidenced by the 

observation of more than one allele at either locus. Distribution and prevalence of the three 

markers in the study population is summarized in (Fig. 5) in the subpopulation of 116 T. 

parva carriers ms 5 marker was predominant (42%) followed by MS 7 (41%) and ms 2 

(15%) respectively, ms 2 was not detected in the unvaccinated group. 

 

 
 

Figure 5: The distribution of the three markers in vaccinated and unvaccinated cattle 

4.1.4 Analysis of genetic diversity of T. parva using 3 VNTR markers 

Genetic diversity among the previously identified T. parva carrier cattle was characterized 

using 3 VNTR markers shown in Table 5. Of the three markers ms 5 had the highest 

number of alleles (n=10) whereas MS 7 had the least number of alleles (6). Generally, allele 

sizes across the three markers ranged from 100 bp to 450 bp and percentage polymorphism 

ranged from 75 to 100. 

Table 5: The number of alleles and percentage polymorphism of vaccine markers 

Variables MS 7 ms 5 ms 2 

Total analyzed, n 53 56 16 

 
Number of alleles 

 
6 

 
10 

 
8 

 
Size range, bp 

 
150-450 

 
100-220 

 
100-260 

 
% polymorphic loci 

 
100 

 
83.3±16.7 

 
75±25 
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The distribution of alleles of the three markers (MS 7, ms 5 and ms 2) were observed in all 

cattle groups with variable magnitudes. Microsatellite 5 was detected across all six cattle 

groups while ms 2 detected in four groups. Alleles with highest frequency were those with 

200bp (ms 5) in Loibosoit, 300bp (MS 7) in Leila, Manyara ranch and Esilalei while 450bp 

(MS 7) was detected in Emboret (Fig. 6a, 6b and 6c). 

 

Figure 6a: Distribution of ms 5 alleles across the study locations 

 

 
Figure 6b: Distribution of ms 2 alleles across the study locations 

 

Figure 6c: Distribution of MS 7 allele across the study locations 
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Analysis of the haploid allelic frequencies further revealed presence of private alleles in 

all markers (Table 6) with four ms 2 private alleles observed in Esilalei. 

Table 6: Private alleles observed in different cattle groups 

 
 

Although the total number alleles detected in each marker ranged between six and ten but 

when the cattle were split based on vaccination status, only four alleles were detected in 

unvaccinated cattle two each for ms 5 (200bp and 220bp) and MS 7 (150bp and 300bp) 

markers and none for ms 2. Out of 116 T parva cattle carriers, 12 had all the three 

markers with 300bp MS 7 allele depicted high frequency (9/12) Fig. 7. Moreover, all the 

12 cattle were from the vaccinated category and were sampled from Emboret, Esilalei and 

Manyara ranch, which are all close to wildlife. 

 

Figure 7: Distribution of all three vaccine markers across cattle groups 

Markers Private alleles (n) Size range (bp) Groups 

ms 5 1 120 Esilalei 

 
ms 2 

 
4 

 
130, 160, 170, 260 

 
Manyara ranch 

 
MS 7 

 
2 

 
400, 450 

 
Manyara ranch, Emboret 
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4.1.5 Theileria parva diversity in different cattle groups 
 

Comparison of the allelic polymorphisms at the 3 satellite loci typed in the present 

study is shown in fig 8a, 8b and 8c. Parasite diversity across cattle populations was 

derived by GenAlex where it was determined by the mean number of alleles, and expected 

heterozygosity. The average expected heterozygosity for MS 7 marker within each of the 

five populations was highest in Manyara ranch (0.694) and lowest in Esilalei (0.375) with 

the number of different alleles ranging from 5 (Manyara Ranch) to 2 (Tanga Leila farm, 

Esilalei and Mswakini) similarly Manyara ranch had the highest number of effective alleles 

(3.269) and least number of effective alleles was documented in Esilalei (1.6). Likewise, for 

the ms 5 marker, Manyara ranch revealed the highest parameters, with the mean number 

of different alleles ranging from 7 in Mswakini to 1 in Loiborsoit. Mean number of 

effective alleles ranged from 6.321 (Manyara ranch) to 1 (Loiborsoit). Expected 

heterozygosity was highest in Manyara ranch (0.842) and was least (0.0) in Loiborsoit. 

Results of the ms 2 marker were not different from those obtained with the 2 other markers; 

the mean number of ms 2 alleles ranged from to 7 (Manyara ranch) to 1 (Leila Farm), 

mean number of effective alleles ranged from 5.556 (Manyara ranch) to 1 (Leila Farm). 

Manyara ranch group had the highest expected heterozygosity (0.82). 

 

 
Figure 8a: The mean allelic patterns for MS 7 across the study locations 
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Figure 8b: The mean allelic patterns for ms 5 across study locations 

 

 

Figure 8c: The mean allelic patterns for ms 2 across the study locations 

 
 
 

Na = No. of Different Alleles 
 

Ne = No. of Effective Alleles 

1 / (Sum pi^2) 

I = Shannon's Information Index  

h = Diversity = 1 - Sum pi^2 

 

4.1.6 Principal component analysis and analysis of molecular variance 

The Principle Component Analysis (PCA) was constructed to show the relationship 

between T. parva populations from the six cattle groups as shown in (Fig. 9) the results 

showed patterns of clustering such that most of the parasite alleles (genotypes) were 

clustered throughout the four quadrants. Most of the Manyara ranch alleles clustered at 

the top left quadrant together with Esilalei, Emboret and Leila farm alleles. Alleles from 
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Mswakini were clustered at the top right quadrant together with Esilalei, Manyara Ranch 

and Loiborsoit alleles. Mswakini alleles were also found at the bottom left quadrant 

with Emboret and Manyara ranch. The bottom right quadrant contained genotypes from 

Esilalei, Emboret and Manyara ranch. 

 

Figure 9: Principal Component Analysis (PCA) of T. parva as generated from 6 populations 

 

Analysis of molecular variance (AMOVA) was used to assess the population structure of 

Theileria parva in the six cattle groups by partitioning variation among and within parasite 

populations. Most of the genetic variation (93%) was contained within populations with 

only 7% variation between populations. 

 

Table 7: The summary of AMOVA table of the cattle groups 

Source Df SS MS Est. Var % 

 

Among pops 

 

4 1.587 0.397 0.009 7 

Within pops 

 

39 13.299 0.341 0.341 93 

Total 43 14.886  0.350 100 

 

4.2 Discussion 

The present study revealed an overall prevalence of T. parva carrier state to be 34.5%. This 

value was close to a 37.1% prevalence found by Kazungu et al. (2015). While this study 

sampled cattle from Simanjiro and Manyara districts in the Maasai steppe and farms in 

eastern Tanzania the study by Kazungu et al. (2015) sampled cattle from Simanjiro district 

of the Maasai steppe and farms in Mwanza, Lake Zone of Tanzania. Hence the difference 
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in T. parva prevalence between the two studies is likely due to different tick control regimes 

in the different areas. The prevalence of T. parva established in cattle in this study was 

higher than a 31.6% prevalence found by Kimaro, Mor, Gwakisa and Toribio (2017) which 

was done in Monduli district in the Maasai steppe ecosystem during the dry season. These 

differences in prevalence may be explained by the ecological and other associated 

conditions which may favor ticks in different areas where cattle were sampled. The study 

done by Kimaro et al. (2017) sampled cattle during the dry season which is 

characterized with low tick intensity compared to the wet season during which the 

present study was conducted. The prevalence values reported in these studies point to a 

high possibility that most of the animals sampled were in a T. parva carrier state, which is a 

common phenomenon following natural infection or ITM in cattle (Oura et al., 2007; Oura et 

al., 2011). 

The cattle groups in this study were sampled from divergent ecological conditions and 

management regimes for controlling ticks and tick-borne diseases. It was of interest 

therefore to compare the cattle groups not only in terms of prevalence of T. parva but also 

how the prevalence varies within and between groups, when the cattle are categorized 

with respect to whether they were ECF vaccinated or not, longevity of T. parva carrier 

state following ECF vaccination and proximity of cattle grazing areas to wildlife interface 

areas. Overall a higher T. parva prevalence was clearly shown among cattle that were ECF-

vaccinated (43%) compared to unvaccinated cattle (13.4%). This finding is in full 

agreement with the expected norm that ECF vaccination using the live trivalent Muguga 

cocktail increases the carrier state of T. parva among cattle. Likewise, a higher T. parva 

prevalence was found among cattle which grazed in close proximity to the wildlife 

interface. The higher prevalence (38%) of T. parva infection among cattle grazing close to 

the wildlife interface areas may be explained by the fact cattle that share grazing areas with 

wildlife reservoirs are likely to be under higher exposure to disease vectors and hence 

higher T. parva positivity. 

In order to get a better understanding of longevity or persistence of carrier state 

following ITM under prevailing conditions in the study areas, this study classified all 

ECF vaccinated cattle based on their T. parva positivity. All the 43% (103/239) T. parva 

positive ECF-vaccinated cattle were further clustered into categories of longevity 

(duration) since ECF vaccination. The data showed that carrier state was detected in cattle 
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vaccinated as far as 11 years ago. Comparison of categories of longevity since vaccination 

revealed that highest frequency of carriers was at 12 months post vaccination these 

results further confirm previous reports by Oura et al. (2007) who detected the carrier state 

of T. parva only up to 4 years. The results reported here have taken advantage of 

deployment of ITM in the Maasai steppe for at least two decades, and therefore the 

availability of older cattle vaccinated up to 14 years earlier has provided a useful resource to 

investigate ITM outcomes in ECF endemic areas. 

An interesting question arising from this study was whether the carrier state can be 

differentiated between ECF vaccinated cattle and those that may have recovered from 

natural ECF infection. Three VNTR markers, which are constituent components of the 

Muguga cocktail, were used to monitor carrier state in T. parva positive ECF unvaccinated 

(n=13) cattle. It emerged that 76.9% of this group carried the Muguga vaccine markers (MS 

7 and ms 5) indicating that vaccine strains are transmissible to the unvaccinated cattle. Since 

majority of these cattle belonged to one farm (Leila farm) it may likely be that this is a 

result of management conditions supporting the transmission of vaccine strains from 

vaccinated to unvaccinated cattle. This study showed that two of the three vaccine markers 

(MS 7 and ms 5) were detected in unvaccinated cattle. Although the ms 2 marker was not 

detected it is uncertain whether this was due to small sample size used in the present work or 

rather, this study further supports previous findings by Oura et al. (2007) where he 

showed evidence of transmission of some and not all Muguga vaccine components. 

The implication of long-term deployment of the ITM, as is the case in northern Tanzania, has not 

been investigated. Prior to this study, it was hypothesized that long term application of ITM may 

influence parasite biology, alter genetic diversity of local strains and hence impact on disease 

dynamics in endemic areas. Although ITM has been employed to protect cattle against ECF in the 

Maasai herds since 1990s (Di Giulio et al., 2009) no study has preceded this one to investigate T. 

parva genetic diversity in Tanzania. Genotyping of the T. parva positive samples using the three 

VNTR markers allowed to unravel the genetic diversity of T.  parva in cattle from different 

locations. The extent of polymorphism varied between the three markers, whereas ms 5 was most 

polymorphic and MS 7 was least.  

Higher genetic diversity was observed among ECF vaccinated cattle compared to 

unvaccinated cattle. Thus, the 24 alleles across the three markers were all detected with 

varying frequencies among vaccinated cattle, but only 4 of these were found in 
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unvaccinated cattle. It is probable that vaccinated cattle would harbor more alleles due to 

recombination of the local strains with vaccine strains; another explanation for this 

finding may be due to the ability of the carrier cattle acquiring infection with additional 

parasite genotypes following tick challenge, thus resulting in carriage of mixed genotypes. 

This can be used to support the finding that the Manyara ranch group, found at the 

ecological epicenter of the wildlife interface within the Maasai steppe had the highest 

mean number of different alleles, effective alleles, expected heterozygosity and private 

alleles. 

While majority of the alleles were shared by individuals from different groups, this study 

found seven private alleles, each of which was found only in one or the other group. 

Interestingly all of the private alleles were detected only in vaccinated cattle grazing close to 

the wildlife interface. The actual mechanisms supporting existence of private alleles are not 

fully understood but these findings may be ascribed to the notion that the Muguga vaccine is 

tri-valent, with a multitude of parasite genotypes (Oura et al., 2007; Patel et al., 2011). 

In order to gain insight in the population diversity of T. parva circulating in the different 

cattle groups the principle component analysis (PCA) was used. Results revealed different 

clustering patterns, with most of the alleles clustering together throughout all the four 

quadrants. The PCA findings strongly suggest the T. parva parasites homogeneity among 

the cattle groups and the absence of a clear association between population genetic 

structure and the geographical origin of the isolates. Furthermore, analysis of molecular 

variance revealed higher genetic variations within individual isolates (97%) compared to 

within T. parva populations (3%). One possible explanation to this finding is the 

occurrence of a high rate of crossing between different T. parva isolates and recombination 

within the parasite population hence the lower diversity within the T. parva populations. 

This was somehow surprising considering that cattle groups sampled from Tanga (eastern 

Tanzania) were expected to carry distinct satellite alleles, separate from thosefound in 

cattle from the Maasai steppe (northern Tanzania). It is possible that uncontrolled cattle 

movements between the different regions in Tanzania may have contributed to the similarity 

of the parasite genotypes. 

The use of ITM in Tanzania has been increasing gradually since 1998 (Di Giulio et al., 

2009; Martins et al., 2010). This served as one of the motives for the present study 

in order to understand implications of the long term deployment of ITM for over 20 
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years in the Maasai areas, Thus the study has brought forth clear findings showing that the 

carrier state induced by Muguga cocktail vaccine is effective and it induces a long lasting 

immunity detectable up to 11 years post vaccination something which hitherto has not been 

reported. Furthermore, results of this study have allowed to deduce the questionable 

viewpoint on the spreading of the vaccine strains to the unvaccinated cattle via tick 

vectors. In this study, no ticks were investigated, notwithstanding it was clearly 

demonstrated that two of the three vaccine markers were detected in several co-grazing 

unvaccinated cattle. These findings corroborate previous reports by Olds et al. (2018). 

A significant finding emanating from this study is that vaccination against ECF has an 

influence on the diversity of T. parva parasites, whereby greater number of alleles were 

shown in the vaccinated cattle compared to the unvaccinated cattle. It was speculated that 

the enhancement of diversity is a direct outcome of the live vaccination process in the 

field, whereby the vaccine strains may potentially recombine with local strains to 

generate more genotypes. It may be speculated that wider T. parva diversity plays a 

significant role to restrict breakthrough infections in the vaccinated cattle, as was observed 

during the conduct of this study, whereby no clinical ECF cases were encountered among 

sampled cattle. The study took into consideration separate ecological and geographical 

locations from where the samples were collected. Interestingly, analysis of T. parva 

populations revealed that geographical separation did not necessarily imply differences in the 

genetic structure of T. parva populations. 

Summing up, majority of the cattle investigated in this study were sampled from wildlife 

interface areas. Such areas support constant interaction between cattle, wildlife reservoirs, 

tick vectors and the parasites. Ecological pressure in such an interface presumably drive 

the establishment of a carrier state in cattle differently as it would happen in cattle 

populations grazed far from wildlife. Therefore, the role of the wildlife interface on the 

diversity of T. parva may not be negated, as highest parasite diversity shown in this study 

was among ECF vaccinated cattle found in close proximity to wildlife interface. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

This study was conducted in seven different locations to study the prevalence, persistence 

and diversity of T. parva in cattle vaccinated against East Coast Fever using the p104 gene 

and three different VNTR markers (Minisatellite 7, microsatellite 2 and 5). The results 

suggest that ITM can indeed provide a lifelong immunity since there was vaccine markers 

detection in the vaccinated cattle up to 11 years post vaccination. Vaccinated cattle and the 

ones grazing close to the wildlife interface had higher prevalence of the carrier state. There 

was detection of vaccine markers in the unvaccinated cattle which shows the role of ticks 

in transmission of T. parva parasites among the co grazing animals. Vaccination against 

ECF has an influence of T. parva diversity as a greater number of alleles was detected in 

the vaccinated cattle compared to the co grazing unvaccinated cattle. Wildlife interface areas 

and uncontrolled cattle movement increases the T. parva diversity as the highest diversity 

was from areas close to the wildlife. Moreover, there was a similarity in the circulating T. 

parva strains among the different geographical locations used in this study, as there was 

sharing of some alleles among the different cattle populations. The carrier state was 

observed in only 43% of the vaccinated cattle and it decreases with time due to clearance of 

the parasites by the cattle adaptive immunity. However no breakthrough infections were 

observed throughout the study therefore it cannot be concluded whether the ITM vaccination 

should be done routinely or just once. 

5.2 Recommendations 

Basing on the finding that ITM causes a long life immunity detected up to 11 years post 

vaccination and evidence of recombination between vaccine strains and local T. parva strains 

and the higher parasite diversity established in the cattle grazing close to the wildlife interface 

areas and in vaccinate cattle I strongly recommend the following; 

(i) Pastoralists to focus more on the use of ITM to prevent ECF due to the protective 

nature of the carrier state induced by it and the long-lasting immunity provided. 

(ii) Pastoralists should vaccinate all of their cattle not just a portion of them as it is a 

common practice among them, this contributed to the lower prevalence of carrier 

state in the unvaccinated cattle. The cause of this maybe be due to the costly nature 

of the Muguga cocktail vaccine costing from 6 dollars to 10 dollars per animal 
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depending on the animal’s size making it hard for them to afford it. Although 

natural infection can also cause the carrier state but it may not be as effective and 

long lasting as the one caused by ITM. Vaccination of a larger proportion or all of 

their herds would increase the protective effect resulted from the carrier state. 

(iii) Co-grazing of the vaccinated and unvaccinated cattle should also be avoided as 

this contributes to the diversity of the T. parva strains due to the recombination of the 

vaccine derived and local strains. Therefore, pastoralists should separate their 

vaccinated cattle from the unvaccinated ones 

(iv) Pastoralists should control the cattle movement and avoid grazing of cattle near to 

the wildlife interface areas as these areas have shown to increases the diversity of 

the T. parva. Therefore, they should avoid the interaction of the cattle with the 

buffalos which are the main reservoirs of T. parva harboring more divergent strains of 

T. parva. 

Further studies should be done on ticks to identify whether the T. parva strains circulating in 

them are similar to the ones found in the cattle  
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APPENDIX 

 
Appendix: showing some of the data used to generate the results of this study 

ID no ECF vaccination status Proximity to wildlife p104 MS 7 ms 5 ms 2 

EMB1 1 1 1 0 0 0 

EMB28 1 1 1 300 220 150 

EMB32 1 1 1 450 0 180 

EMB33 1 1 1 450 190 190 

EMB35 1 1 1 350 100 0 

LB18 2 1 1 0 200 0 

LB22 1 1 1 0 0 0 

LB24 1 1 1 0 0 0 

LB34 1 1 1 0 0 0 

LB8 2 1 1 0 200 0 

MNYR1 1 1 1 150 150 0 

MNYR10 1 1 1 0 0 0 

MNYR11 1 1 1 300 170 180 

MNYR12 1 1 1 0 0 0 

MNYR13 1 1 1 400 170 0 

MNYR14 1 1 1 0 0 0 

MNYR15 1 1 1 0 160 0 

MNYR16 1 1 1 300 0 0 

MNYR17 1 1 1 300 150 0 

MNYR18 1 1 1 250 180 260 

MNYR19 1 1 1 150 0 0 

MNYR2 1 1 1 300 100 0 

MNYR20 1 1 1 0 130 0 

MNYR21 1 1 1 300 170 0 

MNYR23 1 1 1 150 0 0 

MNYR24 1 1 1 150 0 0 

MNYR25 1 1 1 0 180 0 

MNYR26 1 1 1 0 0 0 

MNYR27 1 1 1 0 130 0 

MNYR28 1 1 1 0 0 0 

MNYR3 1 1 1 0 200 0 

MNYR30 1 1 1 250 0 0 

MNYR32 1 1 1 250 150 130 

MNYR33 1 1 1 0 0 0 

MNYR34 1 1 1 0 0 0 

MNYR35 1 1 1 250 130 150 

MNYR36 1 1 1 250 130 0 

MNYR37 1 1 1 250 170 0 

MNYR38 1 1 1 0 0 0 

MNYR4 1 1 1 300 100 0 

 

 


