Evaluation of proximate composition, selected minerals and physicochemical properties of fifteen local mchare cooking bananas

Dotto, Joachim

NM-AIST

https://doi.org/10.58694/20.500.12479/1018

Provided with love from The Nelson Mandela African Institution of Science and Technology
EVALUATION OF PROXIMATE COMPOSITION, SELECTED MINERALS AND PHYSICOCHEMICAL PROPERTIES OF FIFTEEN LOCAL MCHARE COOKING BANANAS

Joachim Dotto

A Dissertation Submitted in Partial Fulfilment of the Requirements for the Master’s in Life Sciences of the Nelson Mandela African Institution of Science and Technology

Arusha, Tanzania

November, 2019
ABSTRACT

This study investigated the proximate composition, selected minerals potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) and some physicochemical properties of fifteen *Mchare* cooking bananas mainly consumed in northern Tanzania. Analyses were conducted using the standard methods to ascertain their potential in food-based strategies in order to improve nutrition-sensitive agriculture, address hidden-hunger. Data were subjected to analysis of variance and means were compared. There were significant differences in all parameters assessed. Results further indicated that the moisture content ranged from 65.53 to 74.44 g/100 g; ash 0.66 to 1.45 g/100 g; fat 0.1 to 0.6 g/100 g; fibre 0.9 to 2.8 g/100 g; carbohydrate 21.6 to 30 g/100 g. Mineral content ranged from 306 to 469 mg/100 g; 2.6 to 6 mg/100 g; 0.4 to 0.8 mg/100 g and 0.1 to 0.2 mg/100 g for K, Ca, Fe and Zn, indicating potential nutritional significance. The total titratable acidity (TTA) ranged from 1.5 to 2.3%, total soluble solids (TSS) 1.0 to 2.0 °Brix while pH ranged from 5.4 to 6.0 suggesting a substantial contribution to the sensory attributes of bananas, which is an important sensory attribute to consumers. Cooking bananas could, therefore, play a key role in contributing to alleviating hidden-hunger and food insecurity through developing new food recipes.

**Keywords:** *Mchare* cultivars, nutritional composition, minerals, physicochemical parameters
DECLARATION

I, Joachim Dotto, do hereby declare to the Senate of the Nelson Mandela African Institution of Science and Technology that this dissertation is my own original work and that it has neither been submitted nor being concomitantly submitted for degree award in any other institution.

Signature ……………………………
Joachim Dotto

Date: ……………………………

The above declaration is confirmed by:

Signature: ……………………………
Dr. Athanasia Matemu (Supervisor 1)

Date: ……………………………

Signature: ……………………………
Prof. Patrick Ndakidemi (Supervisor 2)

Date: ……………………………
COPYRIGHT

This dissertation is copyright material protected under the Berne Convention, the Copyright Act of 1999 and other international and national enactments, in that behalf, on intellectual property. It must not be reproduced by any means, in full or in part, except for short extracts in fair dealing; for researcher private study, critical scholarly review or discourse with an acknowledgment, without the written permission of the office of Deputy Vice-Chancellor for Academic, Research and Innovation on behalf of both the author and Nelson Mandela African Institution of Science and Technology.
CERTIFICATION

The undersigned certify that they have read the dissertation titled, "Evaluation of Proximate Composition, Selected Minerals and Physicochemical Properties of Fifteen Local Mchare Cooking Bananas" and recommend for examination in fulfillment for the requirements for the award of Master’s in Life Sciences of the Nelson Mandela African Institution of Science and Technology.

Signature: …………………………………………
Date: 22/11/2019
Dr. Athanasia Matemu (Supervisor 1)

Signature: …………………………………………
Date: 22/11/2019
Prof. Patrick Ndakidemi (Supervisor 2)
ACKNOWLEDGMENTS

I would first and foremost like to thank my dissertation supervisors, Dr. Athanasia Matemu of the Department of Food Biotechnology and Nutritional Sciences (FBNS) and Professor Patrick Ndakidemi of Department of Sustainable Agriculture, Biodiversity and Ecosystems Management (SABEM) of the Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania. The doors to my supervisors’ offices were always open whenever I ran into a trouble spot or had a question about my research or writing. They consistently allowed this dissertation to be my own work but steered me in the right direction whenever they thought I needed it.

The authors acknowledge the scholarship and research financial support from the Centre for Research, Agricultural Advancement, Teaching Excellence and Sustainability in Food and Nutrition Security (CREATES-FNS) of the Nelson Mandela African Institution of Science and Technology.

I would also like to thank the International Institute of Tropical Agriculture (IITA) - Arusha for provision of study materials (15 Mchare cooking bananas). Special thanks to the IITA experts who were involved in the identification and collection of Mchare bananas in the field for this research project Dr. Allan Brown, Mr. Hassan Mduma and Mr. Noel Madalla. Without their passionate participation and input, the present study could not have been successfully conducted.

Finally, I must express my very profound gratitude to my uncle Daudi Sospeter, his wife Paulina Mwangwa and their family for instilling and providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this dissertation. This accomplishment would not have been possible without them. Thank you, may the Heavenly Father bless you all abundantly.
DEDICATION

This dissertation is dedicated to the Daudi S. M. Sospeter family members for their kindness, devotion and endless support. Thank you all for always being there for me, your generous heart will always be remembered.
# TABLE OF CONTENTS

ABSTRACT ........................................................................................................................................i
DECLARATION ....................................................................................................................................ii
COPYRIGHT .......................................................................................................................................iii
CERTIFICATION .............................................................................................................................iv
ACKNOWLEDGMENTS ...................................................................................................................v
DEDICATION .......................................................................................................................................vi
TABLE OF CONTENTS .....................................................................................................................vii
LIST OF TABLES .............................................................................................................................x
LIST OF FIGURES ............................................................................................................................xi
LIST OF APPENDICES ....................................................................................................................xii
LIST OF ABBREVIATIONS AND SYMBOLS ....................................................................................xiii
CHAPTER ONE ....................................................................................................................................1
INTRODUCTION .................................................................................................................................1
  1.1. Background of the Problem ....................................................................................................1
  1.2. Statement of the Problem .....................................................................................................3
  1.3. The Rationale of the Study ....................................................................................................4
  1.4. Objectives of the Study .........................................................................................................4
    1.4.1. General Objective ..........................................................................................................4
    1.4.2. Specific Objectives .........................................................................................................4
  1.5. Research Questions ..............................................................................................................5
  1.6. Significance of the Study .......................................................................................................5
  1.7. Delineation of the Study .......................................................................................................6
CHAPTER TWO .....................................................................................................................................7
LITERATURE REVIEW ......................................................................................................................7
  2.1. Impact of Banana on Food Security in East Africa .............................................................7
  2.2. An Overview of Banana Cultivars in East Africa ...............................................................9
2.3. Nutritional Value and Health Benefits of Cooking Bananas ........................................... 13
2.4. Physicochemical Characteristics of Cooking Banana Cultivars ........................................ 16
2.5. Sensory Characteristics and Consumers’ Preferences Banana Cultivars ............................. 17
2.6. The Role of Breeding in Improving the Quality of Cooking Bananas ................................. 19

CHAPTER THREE ....................................................................................................................... 22
MATERIALS AND METHODS ...................................................................................................... 22
3.1. Materials .......................................................................................................................... 22
  3.1.1. Chemicals and Reagents ............................................................................................ 22
  3.1.2. Laboratory Equipment .............................................................................................. 23
3.2. Experimental Materials and Study Site ............................................................................ 23
3.3. Sampling and Research Design ....................................................................................... 24
3.4. Proximate Composition, Mineral Analysis and Energy Estimation ................................. 26
  3.4.1. Determination of Moisture Content ............................................................................ 26
  3.4.2. Determination of Ash Content ................................................................................... 26
  3.4.3. Determination of Crude Protein ................................................................................ 26
  3.4.4. Determination of Crude Fat ...................................................................................... 27
  3.4.5. Determination of Total Dietary Fibre ......................................................................... 27
  3.4.6. Determination of Available Carbohydrate and Energy Value ................................... 28
  3.4.7. Determination of Selected Minerals’ Concentrations ................................................. 28
3.5. Analysis of Physicochemical Quality Parameters of the Selected Cooking Bananas ....... 29
  3.5.1. Determination of Total Soluble Solids ...................................................................... 29
  3.5.2. Determination of pH ................................................................................................ 29
  3.5.3. Determination of Total Titratable Acidity .................................................................. 29
3.6. Statistical Analysis .......................................................................................................... 30

CHAPTER FOUR ......................................................................................................................... 31
RESULTS AND DISCUSSION .................................................................................................... 31
  4.1. Proximate Composition of the Selected Cooking Bananas ............................................. 31
4.2. Mineral Content ........................................................................................................... 35
4.3. Physicochemical Quality Parameters........................................................................... 38

CHAPTER FIVE .................................................................................................................. 41

CONCLUSION AND RECOMMENDATIONS ................................................................... 41

5.1. Conclusion .................................................................................................................. 41
5.2. Recommendations .................................................................................................... 41

REFERENCES .................................................................................................................. 43

LIST OF APPENDICES .................................................................................................... 58

RESEARCH OUTPUTS ........................................................................................................ 72
LIST OF TABLES

Table 1: Comparative Nutrition Benefits of Spending USD 1 on Food Crops .........................8
Table 2: Some of the Clones of Cooking Bananas in East African Countries .......................10
Table 3: Estimate of Proximate Composition of Cooking Banana Genotypes .......................14
Table 4: Estimate of Mineral Contents of Cooking Banana Genotypes .............................15
Table 5: Ranges of Physicochemical Properties of Unripe Banana Genotypes .....................17
Table 6: Chemicals and Reagents Used in the Study ..........................................................22
Table 7: Laboratory Equipment Used in the Study ..............................................................23
Table 8: Proximate Composition and Energy Value of 15 Mchare Cooking Bananas ............32
LIST OF FIGURES

Figure 1: *Mchare* banana family depicting the diversity in fruit morphology.. .......................... 25
Figure 2: Potassium (K) contents of the studied *Mchare* family varieties ................................. 36
Figure 3: Calcium (Ca) contents of the studied *Mchare* family varieties ................................. 36
Figure 4: Iron (Fe) contents of the studied *Mchare* family varieties ..................................... 37
Figure 5: Zinc (Zn) contents of the studied *Mchare* family varieties ..................................... 37
Figure 6: Total soluble solids (TSS) contents for the studied *Mchare* family varieties .......... 39
Figure 7: Total titratable acidity (TTA) contents for the studied *Mchare* family varieties ..... 40
Figure 8: pH levels for the studied *Mchare* family varieties .................................................. 40
LIST OF APPENDICES

Appendix 1: ANOVA Table for Moisture Content .......................................................... 58
Appendix 2: Descriptive Statistics for Moisture Content .............................................. 58
Appendix 3: ANOVA Table for Ash Content ................................................................. 59
Appendix 4: Descriptive Statistics for Ash Content ....................................................... 59
Appendix 5: ANOVA Table for Protein Content ........................................................... 60
Appendix 6: Descriptive Statistics for Protein Content ............................................... 60
Appendix 7: ANOVA Table for Fat Content ................................................................. 61
Appendix 8: Descriptive Statistics for Fat Content ...................................................... 61
Appendix 9: ANOVA Table for Fibre Content ............................................................. 62
Appendix 10: Descriptive Statistics for Fibre Content ................................................. 62
Appendix 11: ANOVA Table for Carbohydrate Content ............................................. 63
Appendix 12: Descriptive Statistics for Carbohydrate Content .................................. 63
Appendix 13: ANOVA Table for Energy ...................................................................... 64
Appendix 14: Descriptive Statistics for Energy ............................................................ 64
Appendix 15: ANOVA Table for Potassium Content .................................................. 65
Appendix 16: Descriptive Statistics for Potassium Content ......................................... 65
Appendix 17: ANOVA Table for Calcium Content ..................................................... 66
Appendix 18: Descriptive Statistics for Calcium Content ........................................... 66
Appendix 19: ANOVA Table for Iron Content ............................................................. 67
Appendix 20: Descriptive Statistics for Iron Content ................................................... 67
Appendix 21: ANOVA Table for Zinc Content ............................................................. 68
Appendix 22: Descriptive Statistics for Zinc Content .................................................. 68
Appendix 23: ANOVA Table for Total Soluble Solids (TSS) ....................................... 69
Appendix 24: Descriptive Statistics for Total Soluble Solids (TSS) ............................. 69
Appendix 25: ANOVA Table for Total Titratable Acidity (TA) .................................. 70
Appendix 26: Descriptive Statistics for Total Titratable Acidity (TA) ......................... 70
Appendix 27: ANOVA Table for pH ............................................................................. 71
Appendix 28: Descriptive Statistics for pH ................................................................. 71
# LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA, AB</td>
<td>Diploid Banana Hybrids</td>
</tr>
<tr>
<td>AAA, AAB, ABB</td>
<td>Triploid Banana Hybrids</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectrophotometer</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>EA</td>
<td>East Africa</td>
</tr>
<tr>
<td>EAHB</td>
<td>East African Highland Cooking Banana</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FHIA</td>
<td>Honduran Foundation for Agricultural Research</td>
</tr>
<tr>
<td>Fig.</td>
<td>Figure</td>
</tr>
<tr>
<td>HSD</td>
<td>Honestly Significant Difference</td>
</tr>
<tr>
<td>IITA</td>
<td>International Institute of Tropical Agriculture</td>
</tr>
<tr>
<td>INIBAP</td>
<td>International Network for The Improvement of Banana and Plantain</td>
</tr>
<tr>
<td>M</td>
<td>Molarity</td>
</tr>
<tr>
<td>N</td>
<td>Normality</td>
</tr>
<tr>
<td>n</td>
<td>Number of Replications</td>
</tr>
<tr>
<td>NM-AIST</td>
<td>Nelson Mandela African Institution of Science and Technology</td>
</tr>
<tr>
<td>p</td>
<td>p - Value</td>
</tr>
<tr>
<td>PHQL</td>
<td>Postharvest Quality Losses</td>
</tr>
<tr>
<td>RDA</td>
<td>Recommended Daily Allowance</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>TDF</td>
<td>Total Dietary Fibre</td>
</tr>
<tr>
<td>TFCT</td>
<td>Tanzania Food Composition Tables</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Soluble Solids</td>
</tr>
<tr>
<td>TTA</td>
<td>Total Titratable Acidity</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
<tr>
<td>WVC</td>
<td>World Vegetable Centre</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

1.1. Background of the Problem

With a production of 145 million metric tons worth approximately USD 30.8 billion globally, banana (*Musa* spp.) is one of the world’s most important staple food and cash crops. Food and Agriculture Organization Statistics (2014) reports banana as the world’s most popular fruit in terms of international trade. In fact, it is one of the most produced and consumed fresh fruit worldwide (Affognon, Mutungi, Sanginga, & Borgemeister, 2015). Bartoshuk and Klee (2013) reported that different varieties grown in various parts of the world have markedly different sensory characteristics. The world main banana producers are India (27.6 mil. tons), China (12.1 mil. tons), Uganda (9 mil. tons), the Philippines (8.6 mil. tons), Brazil (6.9 mil. tons) and Ecuador (6.0 mil. tons), making banana a significant contributor to the world economy (Sheth, 2017; Statistica, 2016). While developed countries consider banana mainly as a dessert food, in many developing countries banana is a staple food cooked as an essential meal. Furthermore, it contributes notably to food security and income generation to more than 70 million Africans (Adeniji, Tenkouano, Ezurike, Ariyo, & Vroh-Bi, 2010).

The literature review shows that there are various types of banana unique to Africa and these can be eaten fresh, cooked, fried, processed as baby food, juice or beer (Chandler, 1995). Cooking bananas represent a major food source and a major income source for smallholder farmers (D. Karamura, Karamura, & Tinzaara, 2012). In fact, the East African Highland cooking Banana (EAHB) and plantain make up over 50% of all bananas grown in Africa (Kilimo-Trust, 2012). The people living in the Eastern and Central Highlands of Africa consume more bananas than anyone else in the world, deriving up to 12% of their daily calories from the crop (Karamura *et al.*, 2012). In the lowland of the Congo basin, farmers grow a greater diversity of banana plantains than any other place in the world (Lejju, Robertshaw, & Taylor, 2006). Moreover, these perennial plants are the backbone of many farming systems as they produce fruits all-year-round, protect the soil from erosion and survive floods, drought and civil conflicts (D. Karamura, Karamura, & Gold, 1996).

Perrier *et al.* (2011) reported that nearly all African countries produce substantial amounts of bananas, however only a few exports them. Despite the fact that East Africa is one of the
leading regions of banana production in Africa, most of the produced crop is for local consumption and sale rather than export (Price, 2006). In countries such as Uganda, Tanzania, Burundi and Rwanda, the per capita annual consumption is estimated to be over 100 kilograms and the highest in the world (Fungo & Pillay, 2011). Although Uganda is the largest banana producer in Africa (Ssonko & Muranga, 2017), the country consistently remains as one of many smaller exporters of banana in the continent, with the crop being used mostly for local consumption (Kilimo-Trust, 2012). West African countries, on the other hand, according to BananaLink (2015) they produce nearly all of Africa's banana exports, with Cameroon and Côte d'Ivoire being the two largest exporters of dessert and cooking bananas to European countries. Diop and Jaffee (2005) reported that banana production in these two countries has grown hastily over the past two decades and that they contribute to approximately 4.1% banana exports in the global market.

It has been documented that bananas are rich in carbohydrates, vitamins and dietary fibres. Although they contain 75% water, also contain alkali-forming minerals, lots of potassium and little protein and fat (Haslinda, Cheng, Chong, & Aziah, 2009). Additionally, the ripe bananas are easy to digest and the food of choice for many professional athletes because they provide quick energy and provide potassium lost during exercise (Kachru, Kotwaliwale, & Balasubramanian, 1995), it has also for long been considered as the best food for babies. Several studies have reported the nutritional and sensory attributes of local ripe bananas (Ohizua et al., 2017; Pareek, 2016; Suntharalingam, 1990) but published data on the same attributes of the unripe local banana varieties is few in Eastern Africa.

In the East Africa region, cooking bananas are an essential staple food and they are important in addressing the problem of food insecurity. Bananas provide a household income of about USD 1244 annually to more than 4 million smallholders, this is one of the maximum smallholder revenue-generating agricultural produce in the area (Mgenzi, Mshaghuley, Staver, & Nkuba, 2008). Nutritionally, bananas supply about ten percent of the energy intake and vital micronutrients to over 70 million people in Eastern Africa (Belayneh, Workneh, & Belew, 2014). For instance, banana consumption per person in Tanzania and Uganda is among the highest in the global rankings (Kilimo-Trust, 2012). The two countries collectively produce over 50% of all bananas grown in Africa (Jacobsen, 2014). Banana production in Tanzania is estimated to be about 3.7 million metric tons per annum on about 403 000 hectares. Kilimanjaro and Kagera regions alone contribute to over 60% of country annual banana production (Kilimo-
Trust, 2012). Other banana-producing regions in Tanzania are Mbeya (12%), Kigoma (7%), Arusha (7%) and Tanga (3%) (Larsen et al., 2009). The country positions fourth in banana production in Africa (Mbwika, 2009).

Hardisson et al. (2001) suggested the importance of evaluation of physicochemical and sensory analysis of local banana cultivars as a preliminary strategy for breeding. This information is warranted since it advises on fruit quality and which quality characteristics among cultivars are important and preferable to the consumers. Current studies show limited information regarding these important attributes of the local Mchare cooking bananas. Therefore, there is a need to investigate the proximate composition, mineral profile and physicochemical quality attributes of Mchare bananas.

1.2. Statement of the Problem

Humans are faced with several food choices each day and make decisions on what food to eat based on several criteria (Mela, 1999). Despite the recent applications of advanced agricultural technology in food production, low preferences given to some accessible and available food crops is still a challenge in many developing countries (Ouma & Jagwe, 2010). In sub-Saharan Africa, cooking bananas offer great potential as a staple food and of recently as a cash crop. It is largely consumed in the Great Lakes Region i.e., Uganda, Tanzania, Burundi and Kenya. Although, many existing varieties are still overlooked as sources of food (Kilimo-Trust, 2012). Of specific interest in this study, was Mchare banana family largely grown and consumed in the northern zone of Tanzania. Tens of preferred cooking bananas in this zone belong to this family, making it a popular choice among country-northern residents. Considerable studies have been done aiming at the improvement of these banana cultivars focusing on the desirable agronomic characters such as disease resistance and high-yielding traits (Bakry, Carreel, Jenny, & Horry, 2009; Buddenhagen, 1990; Osei, Asante, Agyeman, Adebayo, & Adu-Dapaah, 2014; Pillay & Tenkouano, 2011). However, there is a lack of consistent practical information about the nutritional and physicochemical quality parameters of this popular banana family. Furthermore, consumers’ preferences differ greatly in many varieties of a banana being produced. This ultimately leads to low economic value and substantial post-harvest losses. Unknown nutritional values of the local banana cultivars have been largely implicated. Additionally, a limited nutritional and quality information of local banana cultivars reduces the effectiveness of developing new improved banana cultivars with qualities that are acceptable
by the farmers and consumers. Evidently, the need to evaluate the nutritional values and associated physicochemical parameters of different banana varieties cannot be overemphasized. This study, therefore, seeks to analyse the proximate composition, selected mineral and physicochemical properties of the fifteen (15) banana cultivars of *Mchare* family.

1.3. The Rationale of the Study

Consumer quality traits, such as nutritional, sensory and physicochemical parameters of foods are becoming increasingly important in current plant breeding programs (Ferris, Ortiz, & Vuylsteke, 1999; Fonsah & Chidebelu, 2011). Sensory and physicochemical properties of any food have to be tailored in due course to meet the requirements of the end-users. Regardless how natural and nutritive a food is, if it does not appeal to its consumers, it is uncertain to do well in nowadays’ elastic market (Adeniji *et al.*, 2010; Belayneh *et al.*, 2014; Ferris *et al.*, 1999). Based on the importance of cooking bananas as a source of food to local communities especially in Tanzania, the need to evaluate food attributes that promote preferential consumption cannot be overlooked (De-Langhe, Karamura, & Mbwana, 2001). The purpose of the present study was, therefore, to analyze the proximate composition, selected minerals, that is potassium (K), calcium (Ca), zinc (Zn) and iron (Fe) and the selected physicochemical quality parameters of 15 banana cultivars of *Mchare* family. The *Mchare* cultivars included *Mlelembo Mchare*, *Huti white*, *Kahuti*, *Ijihu inkundu*, *Makyughu 1*, *Makyughu 2*, *Mchare laini*, *Huti* green, *Akondro mainty*, *Njuru*, *Muraru Mchare*, *Majimaji*, *Muraru*, *Muraru* white and *Muraru* red which predominantly consumed in northern Tanzania.

1.4. Objectives of the Study

1.4.1. General Objective

To determine the proximate composition, selected minerals and physicochemical quality attributes of fifteen cooking bananas of *Mchare* family (*Musa spp*.).

1.4.2. Specific Objectives

i. To determine and quantify proximate composition (moisture, ash, crude protein, crude fat, dietary fibre, carbohydrate and energy value) of fifteen cooking bananas of *Mchare* family.
ii. To determine and quantify concentrations of selected minerals (K, Ca, Zn and Fe) in the fifteen cooking bananas of Mchare family.

iii. To determine the selected physicochemical quality parameters of the fifteen cooking bananas of Mchare family [the total soluble solids (TSS), pH, total titratable acidity (TTA)].

1.5. Research Questions

i. What is the proximate composition of Mchare cooking bananas?

ii. What is the mineral profile of Mchare cooking bananas?

iii. What are the physicochemical properties of Mchare cooking bananas?

1.6. Significance of the Study

i. Information presented in this study may be vital to local farmers and food processors as a reliable selection tool for Mchare cooking bananas for development of banana-related food products, to breeders for developing new improved cultivars that can be readily adopted by local farmers and consumers. It also might be used to ascertain the potential of cooking bananas in food-based strategies in order to improve nutrition-sensitive agriculture, address hidden hunger and food security.

ii. The study carries the potential to maximize the use of underutilized local banana varieties by local communities. It might also stimulate researchers to pay attention to the underutilized varieties as an affordable and sustainable food source if identified to have potential nutritional and sensory properties. In other words, banana cultivars that contain genes specific for desirable characteristics may be considered for further studies in improving nutritional and sensory qualities in breeding programs/projects.
1.7. Delineation of the Study

This study focused on the evaluation of proximate composition, selected dietary minerals and physicochemical properties of fifteen (15) local bananas of Mchare family in Arusha. These bananas are Mlelembo Mchare, Huti white, Kahuti, Ijihu inkundu, Makyughu 1, Makyughu 2, Mchare laini, Huti green, Akondro mainty, Njuru, Muraru Mchare, Majimaji, Muraru, Muraru white and Muraru red. The samples for research materials were obtained at unripe green stage one of maturity in 2018 from two agricultural sites; (a) International Institute of Tropical Agriculture (IITA) and (b) World Vegetable Centre (WVC) both located in Arusha which represented the population. This study did not cover Mchare family members other than mentioned above. Similarly, the other non-Mchare banana varieties were not within the scope of this research. In this regard, the information reported in this document should not be used to refer all Mchare bananas and/or non-Mchare bananas.
CHAPTER TWO

LITERATURE REVIEW

2.1. Impact of Banana on Food Security in East Africa

Kilimo-Trust (2012) reported that banana (*Musa spp.*) is one of the most important staples and nutritional food in East Africa, it plays a central role in addressing food security to over 35 million people and reliable source of income for small-holder farmers in the local market. Bananas provide an annual income of about USD 1500 to about 4 million small-holder households. This is one of the major smallholder income-generating agricultural produce in the region (Mgenzi *et al.*, 2008). Banana is a practically non-seasonal crop that reliably grown in the region. Tanzania and Uganda alone produce over 50% of all bananas in Africa (Jacobsen, 2014). In fact, banana consumption per capita in Tanzania (100 Kg/year) and Uganda (350 Kg/year) are amongst the highest in the global rankings while banana production is estimated to be about 4 and 9 million metric tons per annum, respectively (Kilimo-Trust, 2012).

Banana is a climacteric fruit that is consumed in the ripe state. Affognon *et al.* (2015) observed that large quantities of fruit are lost during commercialization due to poor post-harvest practices. These bananas are produced primarily for local consumption and sale and rarely for export (BananaLink, 2015). A large number of unripe banana rejections or post-harvest losses are used as raw materials for domestic artisanal flour preparation (Aurore, Parfait Fahrasmane, 2009). They have the potential of being used as staple food in many developing countries and many researchers have studied applications of cooking banana flour as ingredients in various food products (Hoffmann *et al.*, 2016; Ohizua *et al.*, 2017; Salih *et al.*, 2017; Savlak, Türker, & Yeşilkanat, 2016; Wang, Zhang, & Mujumdar, 2012).

Aurore *et al.* (2009) figured out that cooking bananas denote an alternative source of carbohydrates due to the relatively high starch content of the pulp, hemicellulose and lignin levels, as well as the low cost of the fruit that may allow the preparation of cooked recipes with appealing sensory and functional features. Previous studies have shown that cooking banana remains, among other crops, the forerunner of food security in the highland regions of Tanzania, central and some other parts of Uganda, Rwanda and Eastern Democratic Republic of Congo, where the crop has been staple food for local residents consuming about 70% of harvested bananas in their households (De-Langhe *et al.*, 2001; Smale & Tushemereirwe,
Secondary banana products such as beer (Lubisi, Tonto, Waragi, Mulamba, Mbege), wine, banana crisps, chips, cooked dried bananas, juice, banana flour composites for making bread, chapattis and pastries) account for only about 30% (Carter et al., 2010). Furthermore, banana is a key commercial crop and/or a major source of raw materials for not only food, beverage and handicraft industries but also the crop has great cultural and social implication (Ndunguru, 2009).

Bananas remain to be one of the reliable staple foods in East Africa. The nutritional benefits of spending a dollar on banana are comparatively higher than other popular food crops such as maize, rice, cassava and wheat. Bananas are rich in antioxidants, potassium, energy and vitamin C (Caballero, 2012). The other nutrients found in the fruit are vitamin B₆, protein, dietary fibre, riboflavin and niacin (Haslinda, Cheng, Chong, & Aziah, 2009; Suntharalingam, 1990). Potassium in banana is important in controlling the blood pressure. Magnesium, among other health benefits, helps in treating depression as helps in the relaxation of muscles and vitamin B₆ helps to have a good sleep (Lescot, 2000). Other advantageous benefits of banana consumption include weight loss, vision improvement, improvement of digestion and stronger bones (Ohizua et al., 2017). Table 1 compares nutritional benefits one USD on various food crops in East Africa with reference to banana.

Table 1: Comparative Nutrition Benefits of Spending USD 1 on Food Crops in East Africa

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Unit</th>
<th>Banana</th>
<th>Rice</th>
<th>Sweet Potato</th>
<th>Cassava</th>
<th>Maize Grain</th>
<th>Sorghum Grain</th>
<th>Wheat</th>
<th>Beans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>kcal</td>
<td>2745</td>
<td>3066</td>
<td>3333</td>
<td>5312</td>
<td>7446</td>
<td>8068</td>
<td>3449</td>
<td>5851</td>
</tr>
<tr>
<td>Proteins</td>
<td>g</td>
<td>29</td>
<td>60</td>
<td>59</td>
<td>45</td>
<td>192</td>
<td>269</td>
<td>100</td>
<td>414</td>
</tr>
<tr>
<td>Total fibre</td>
<td>g</td>
<td>52</td>
<td>11</td>
<td>123</td>
<td>60</td>
<td>55</td>
<td>150</td>
<td>136</td>
<td>437</td>
</tr>
<tr>
<td>Iron</td>
<td>mg</td>
<td>13</td>
<td>7</td>
<td>23</td>
<td>9</td>
<td>55</td>
<td>105</td>
<td>39</td>
<td>144</td>
</tr>
<tr>
<td>Potassium</td>
<td>mg</td>
<td>11224</td>
<td>966</td>
<td>12668</td>
<td>8997</td>
<td>5855</td>
<td>8330</td>
<td>4094</td>
<td>24703</td>
</tr>
<tr>
<td>Zinc</td>
<td>mg</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>45</td>
<td>27</td>
<td>31</td>
<td>49</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>µg</td>
<td>1260</td>
<td>0</td>
<td>26651</td>
<td>33</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>mg</td>
<td>414</td>
<td>0</td>
<td>90</td>
<td>684</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>79</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>IU</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Modified table adopted from Kilimo-Trust Banana Analysis Survey, 2012

In their findings, De-Langhe et al. (2001) reported that some communities of banana farmers in East Africa such as Chagga, Haya and Nyakyusa in Tanzania and Buganda in central and some other parts of Uganda, Kisii, central and eastern regions of Kenya have consistently
categorised the banana as one of their most essential crops since they produce fruits all-year-long, a property that places it above others as a food and income security crop. However, not all local communities substantially grow and prefer cooking bananas as a staple food, for example, Sukuma, Kuria and Jita in Tanzania are among them. The banana plant is beneficial in several aspects, being a perennial crop with a root network and broad leaves they maintain soil structure and provides a soil cover throughout the year hence reducing land degradation (Mohapatra, Mishra, & Sutar, 2010). This feature makes the banana crop a central element in environmental conservation. Banana has multi-purpose usages such as food, snacks, feedstuff, industrial spirits, soft and alcoholic drinks and a number of crafts, medicinal and therapeutic potential (Neumann & Hildebrand, 2009; Nguthi, Onyango, Muniu, Muthamia, & Njuguna, 1999). Studies have shown that banana produces a relatively cheapest carbohydrate and they are able to grow in a wide environmental spectrum and farming systems such as pure-stand, livestock-crop, intercropping and farming systems (Ouma & Jagwe, 2010).

From the above description of the impact of cooking in the region, it can be noticed how much the crop is important for human nutrition and other uses. There is a need to prioritize banana crops in reluctant banana-growing areas in agriculture system in the region in order to feed the rapidly increasing population. This calls for a need to addressing the importance of banana in solving food security and hidden hunger. This might also raise political awareness in the integration, consolidation and rationalization of governments’ policies of banana-growing countries and regions.

2.2. An Overview of Banana Cultivars in East Africa

There are countless types of banana native to East Africa and these can be consumed fresh, fried, boiled and processed to be served as baby food, soft and/or alcoholic drinks (Bugaud, Alter, Daribo, & Brillouet, 2009; Salih et al., 2017). Banana cultivars have been given several names which is a depiction of both their morphological variations and of the socio-linguistic diversity of the people naming them in numerous vernacular tongues around the globe (Karamura, 1999). The commonly grown cultivars are the East Africa Highland bananas (Musa AAA-EA), Cavendish subgroup bananas, AAB banana cultivars, Musa AB banana cultivars and ABB cultivars with numerous vernacular names (Table 2).
Table 2: Some of the Clones of Cooking Bananas in East African Countries

<table>
<thead>
<tr>
<th>Tanzania</th>
<th>Uganda</th>
<th>Kenya</th>
<th>Rwanda</th>
<th>Burundi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engumba</td>
<td>Engumba</td>
<td>Ngongia</td>
<td>Ingumba</td>
<td>Ingumba</td>
</tr>
<tr>
<td>Kisubi</td>
<td>Ensiaka, Insika</td>
<td>Ngoromora</td>
<td>Inshika</td>
<td>Ishikazi</td>
</tr>
<tr>
<td>Entalibwambuza</td>
<td>Ensove,</td>
<td>Maffukha</td>
<td>Nakitembe</td>
<td>Makara</td>
</tr>
<tr>
<td>Mchare, or Mshare</td>
<td>Entukura, Emburasika</td>
<td>Munjua</td>
<td>Injumbura</td>
<td>Ingamatayiri</td>
</tr>
<tr>
<td>Illalyi</td>
<td>Kibiddebidde</td>
<td>Enjobo</td>
<td>Bakurura</td>
<td>Bakurura</td>
</tr>
<tr>
<td>Kipungara</td>
<td>Nakawere</td>
<td>Muraru</td>
<td>Inzirabu shera</td>
<td>Inzirabu</td>
</tr>
<tr>
<td>Ndizi Bukoba</td>
<td>Bogoya Omumyufu</td>
<td>Uganda Red</td>
<td>Indemera</td>
<td>Igitsiri</td>
</tr>
<tr>
<td>Kimalindi</td>
<td>Kizungu white</td>
<td>Kamunyilya</td>
<td>Ingote</td>
<td>Inyamaizi</td>
</tr>
<tr>
<td>Ndyali</td>
<td>Bofalo</td>
<td>Mjenga</td>
<td>Inyamaizi</td>
<td>Igihuna</td>
</tr>
<tr>
<td>Busilya</td>
<td>Ekijungu</td>
<td>Kamunyilya</td>
<td>Inzinga</td>
<td>Inzinga</td>
</tr>
<tr>
<td>Matoke</td>
<td>Matooke</td>
<td>Matoke</td>
<td>Matoke</td>
<td>Matoke</td>
</tr>
</tbody>
</table>

Modified Table adopted from Karamura et al. (2012).

East African Highland Bananas (EAHBs) are a subgroup of triploid (AAA-EA) bananas that considerably provide immediate nutrients and long run can address food security issues in Eastern Africa. Until recently, there has been no reliable evidence about their inherent variation, populace network and evolutionary account. They show some phenotypic variations, however, Kitavi et al. (2016) recently reported that all EAHB cultivars are genetically identical having descended from the first prototype brought to the African continent. East African Highland Bananas are by far the most widely distributed in the region stretching from the Eastern Democratic Republic of Congo to the Southern fringes of the Ethiopian highlands and down to Mbeya in Southern Tanzania (Karamura, 1999).

They are believed to be indigenous to this region with no clear similarity elsewhere in the world (Kitavi et al., 2016). Altitude is the leading key reason accountable for group distribution (Perrier et al., 2011). In Tanzania, mature green EAHB fruits are well known as Embirabire, Enzinga, Endeishya, Matoke, Ndizi za kupika and Ekitoke Kisamunyu. It is in this group to which Mchare banana family belongs (Karamura et al., 2012). In Uganda, the EAHBs are known as Kibiddebidde, Lwezinga, Nakawere, Nakhaki and Nakinyika; in Rwanda and Burundi green EAHB are famously known as Mbirabire, Bakurura, Ingumba Inyamunyu, Inzirabu shera and Insira are usually cooked, steamed or boiled before consumption (Karamura et al., 2012). The increasing population density and related land crumbling tied together with growing pest harms and destruction of available natural resources are all collectively limiting the
throughput of AAA-EA farming schemes (Onyango, Karamura, Keeley, Manshardt, & Haymer, 2009).

_Cavendish_ bananas fit the AAA genome group, i.e., the cultivars that possess three copies of each gene-bearing chromosome (Vézina, 2018). _Cavendish_ bananas are some of the fairly studied banana cultivars. This AAA typical group, which includes Lacatan, Red Banana, Gros Michel and _Cavendish_ bananas, is the most widely grown group of edible bananas. Unlike EAHBs, _Cavendish_ dessert bananas are sweet and grow better in lower altitudes below 1000 metres above sea level usually along coastal regions (Hippolyte et al., 2012). _Gros Michel_ exceptionally found around the Lake Victoria region at a marginally higher altitude range and now creates an important cooking banana in the area (Lejju et al., 2006). Bananas in this group being sweet fruits, some parts around the Great Lake region. Consumers mainly use the crushed ripe bananas usually mixed with millet flour or other cereal flour for fermentation. The hazy beer produced has long been distilled locally where residents use the beverage as a refreshment drink (Karamura et al., 2012). In East Africa, the clones in this group recognized as Enkundi, Ng’ombe, Kiguruwe, Kimalindi, Israeli, Omutsiri, Kiise, Ntutomya, Giant Cavendish and Malindi (Karamura, 1999). Most cultivars of this group are prone to black leaf streak and Panama disease, while they are usually relatively resistant to weevil plague (Perrier et al., 2011; Vézina, 2018). These banana cultivars serve as dessert food and they are also important for local sales but exports remain low (Kilimo-Trust, 2012).

AAB banana cultivars is a lowland cultivar growing best below 700 metres above sea level and grow scarcely above 1000 metres above sea level (De-Langhe, 1986b). Most of the clones of this group are identified, however, are yet to be investigated nutritionally (De-Langhe et al., 2001). The typical examples in this group are Nkonjwa, Prata, Gonja, Ndizi ya kuchoma, Mzuzu in Tanzania. Ngongia in Kenya. Makemba, Mzuzu or Misheba in Democratic Republic of Congo. Mzuzu in Burundi. Umushaba in Rwanda and Gonja, Gonje, Wette and Adeke in Uganda (Karamura et al., 2012). Cultivars in this group are also called plantains that are usually roasted and sometimes cooked. The AAB cultivars, however in Kagera region of Tanzania, it still does well where they are grown extensively but not intensively, plantain is a major food in the coastal regions and low plains of East Africa as well (De-Langhe et al., 2001). Plantains appear to be predominantly susceptible to weevil occurrence. Likewise, Pratas is grown widely in the identical ecological ranges, however in Burundi, yet perform better at high altitude (De-Langhe et al., 1986b). _Musa_ AAB “Apple” banana is another clone in this group that is popular
in the region. Apple bananas are widely grown in the traditionally known banana produced areas. In Tanzania for example, Apple bananas are known as Kisukari Kubwa are largely produced in Morogoro, Kagera, Kilimanjaro, Zanzibar and Usambara mountain ranges in the north-eastern region of the country while in Kenya, Apple bananas are grown in Western, Nyanza and Central Provinces. Other regions in East Africa are Rwanda and Wakiso, Masaka, Luweero and Bushenyi Mubende districts in Uganda. In Rwanda, they are well known as Kamaramasenge and in Uganda as Sukari or Sukari Ndiizi (De-Langhe, 1986a; Karamura et al., 2012). The AAB bananas are grown for sustenance reasons and local market.

ABB banana cultivars are a group of banana cultivars belonging to the three subgroups, namely Pisang Awak, Monathan and Bluggoe (Karamura, 1999). Furthermore, Karamura et al. (2012) reported that there are nearly 13 to 14 other cultivars belonging to this group. Very little is exposed about this group in terms of both nutritional value and agronomic potentials. The plants are moderately flexible regarding ecological conditions, even though they grow optimally in regions below 1000 metres above sea level (Price, 2006). In Southern Tanzania for example, the ABB cultivars like Ndyla, Busilya and Ndizi nyama have been accepted for use as cooking bananas. Again, it is very widely spread and often an important food crop. Furthermore, most cultivars in this group were later adopted as beer bananas in Uganda and Rwanda, generally because of their capability to increase production regardless of unfavouring growing conditions (Karamura et al., 1998). The cultivars are, therefore, the backbone for the local beer industries. The ABB bananas display good environmental tolerance, believed to be hardly affected by the soil nematodes, black Sigatoka and weevil attack (Karamura, 1999) may be advantageous to local beverage industry owners.

AB banana cultivars are another group of banana cultivars with a genome category comprising all the cultivars that possess a double set of chromosomes, one contributed by Musa acuminata and the other by Musa balbisiana (Kitavi et al., 2016; Simmonds & Shepherd, 1955). So far, however, little attention has been paid to this banana group. The most common cultivars include Ndizi Kisukari, Kipakapaka Ndogo, Ganda, Kipukucha, Subi, Gisubi kagogo, Kasubi, Kasukari, Barwokole and Kisubi. Some varieties like Ndizi Kisukari, Gisubi kagogo, Kasukari are primarily dessert bananas, not to mention its high juice-yielding property (Staver & Capra, 2017) while Kisubi/Kasubi is harsh in flavour, this restricts them to both beer and juice processing (Karamura et al., 1998). Currently, farming of the AB bananas remains dispersed across the East Africa region (Ndunguru, 2009).
A number of banana accessions other than those mentioned above have been imported into the region along with improved varieties such as Honduran Foundation for Agricultural Research (FHIA) hybrids that are optimistic indeed (Ndayitegeye et al., 2017; Rowe & Rosales, 1993). Other improved banana cultivars are being developed by the International Institute of Tropical Agriculture (IITA) in Tanzania and Uganda and Biodiversity International for evaluation and improvement purposes across East Africa. Another group of cultivars “endemic” to the area have yet to be characterised (Onyango et al., 2009), they comprise the acuminata species all over Kilimanjaro region and two acuminata wild sorts in Zanzibar assemblage (Karamura et al., 2012). These cultivars are believed to be peculiar from the EAHBs of the Great Lakes Zone but the key differences among them are not yet clearly understood. Apart from the acuminata spices of Zanzibar Islands in Tanzania, the characteristics of divergent materials in the region’s collections have yet to be studied (Karamura et al., 2012; Karamura, 1999).

From the above overview, it can be noticed that there is a huge and wide diversity of banana cultivars in East Africa but only a few of them have been studied. As indicated earlier, more work is necessary to characterise not only desirable agronomic characteristics but also the biochemical, sensory and physical quality parameters of under-privileged cultivars across the region for public nutrition welfare and food security stability. Some cultivars, as noted above, are resistant/tolerant to harsh environmental conditions, this advantage may be a breakthrough if used appropriately in fighting against agronomic threats yet addressing the food security even more effectively.

2.3. Nutritional Value and Health Benefits of Cooking Bananas

Bananas and plantains are available in most tropical domestic farmyards and are readily acceptable and preferable. In fact, bananas with sweet potatoes are often the first solid foods fed to infants in most East African families (Davies, 1995). There are numerous procedures for preparing cooking bananas, which differs across different ethnical groups (Onyango et al., 2009). Bananas have substantial quantities of carbohydrate content and have low-fat contents (Table 3) making them particularly useful in low-fat diets. Bananas, including plantains, are also a good source of many vitamins (A, B’s and C) and minerals (K, Ca, Mg, P and Mn) (Haslinda et al., 2009). The low sodium and high potassium contents of the fruit are of sound implication in dietary terms and are recommended for better cardiovascular health (Elmadfa,
However, as it is generally known, the protein level is relatively low to the major staple food crops such as maize, sorghum, wheat and in this case cooking bananas (Caballero, Trugo, & Finglas, 2003). Despite the nutrient density of banana; Reis, Viana, Jesus, Santos, and Oliveira (2016) reported that the method of preparation may affect the nutritional value of the banana recipe. For instance, if fried, the oil used considerably boosts its energy value. However, cooking may also destroy bioactivity and availability of vital heat-sensitive food components such as vitamins and the like (Pareek, 2016). Nevertheless, this is not the case with ripe bananas.

Other minerals such as calcium, iron, zinc and copper (Table 3) found in cooking bananas can help to optimize the metabolism by providing a stable, complex carbohydrate base for energy generation in the body (Elmadfa, 2005). Although fresh green bananas are a good source of vitamin C, almost 65% is lost during the preparation of banana products such as recipes, flour, drinks and snacks (Suntharalingam & Ravindran, 1993). Other less known advantages of banana consumption include vision improvement, bone strengthening and weight loss (Caballero, 2012). Biochemical characteristics of cooking banana suggest nutrients essential for human health.

**Table 3: Estimate of Proximate Composition of Cooking Banana Genotypes**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Quantity (g/100 g DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrate</td>
<td>16.1 – 80.0&lt;sup&gt;2,4,5&lt;/sup&gt;</td>
</tr>
<tr>
<td>Moisture content</td>
<td>1.0 – 27.7&lt;sup&gt;1,2&lt;/sup&gt;</td>
</tr>
<tr>
<td>Crude protein</td>
<td>0.4 – 4.2&lt;sup&gt;3,4,6&lt;/sup&gt;</td>
</tr>
<tr>
<td>Crude fat</td>
<td>1.1 – 4.7&lt;sup&gt;2,4,6&lt;/sup&gt;</td>
</tr>
<tr>
<td>Dietary fibre</td>
<td>6.0 – 7.5&lt;sup&gt;1,2,5&lt;/sup&gt;</td>
</tr>
<tr>
<td>Total ash</td>
<td>2.4 – 11.7&lt;sup&gt;1,2,5&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

<sup>1</sup>Anuonye et al. (2012); <sup>2</sup>Aurore et al. (2009); <sup>3</sup>Deshmukh et al. (2009); <sup>4</sup>Haslinda et al. (2009); <sup>5</sup>Savlak et al. (2016) and <sup>6</sup>Schmidt et al. (2015).

Tapsell et al. (2016) reported that one of the recent dietary trends in nutrition and health is to consume low-carbohydrate food products. Consumers are demanding foods showing two main properties: the first one deals with the traditional nutritional aspects of the food, whereas, as a second feature, additional health benefits are expected from its regular ingestion (American Diabetes Association, 2012). There has been a substantial discussion about the metabolic effects of limiting carbohydrate intake in weight and diabetes control (Anderson, Kendall, &
Jenkins, 2003; Franz et al., 2002). However, the American Diabetes Association (2012) has noted that weight and metabolic improvements can be achieved with low carbohydrate and low fat. Cooking bananas are rich in fibrous carbohydrates, which can offer the named benefits. In a rapidly changing world, with altered food habits, sedentary and stressful lifestyles, it is more and more recognized that a healthy digestive system is essential (Brouns, Kettlitz, & Arrigon, 2002). In the case of cooking bananas, the parenchymatous tissues and cell walls supply the dietary fibres. In the digestive tract, for example, fibre exercises a safeguarding effect that links excess of acid in the stomach and stimulates the intestinal evacuation (Slavin, 2013). Moreover, it provides a favourable environment for the growth of the beneficial intestinal flora (Drzikova, Dongowski, Gebhardt, & Habel, 2005). Fibre can also bind cholesterol and get rid of it. More importantly, fibre plays a central role in the preclusion and management of diabetes, obesity, atherosclerosis and cardiovascular diseases (Peters et al., 2003; Terry et al., 2001). Some carbohydrates in cooking bananas can speed up the calorie-burning process in the body, thanks to the short-chain fatty acids found in them (Hijova & Chmelarova, 2007). Researchers have found that this type of fatty acids can improve the body’s ability to absorb nutrients, particularly calcium (Jenkins et al., 1998).

Table 4 shows potassium as the principal mineral in banana. Some other essential minerals found in a banana are Fe, Zn, Ca, sodium (Na) and magnesium (Mg). Fresh green banana is a good source of vitamin C, but almost 65% is lost during the preparation of banana products such as recipes, flour, drinks and snacks (Suntharalingam & Ravindran, 1993).

Table 4: Estimate of Mineral Contents of Cooking Banana Genotypes

<table>
<thead>
<tr>
<th>Element</th>
<th>Quantity (mg/100g DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>259.0 – 733.9[^1,^4]</td>
</tr>
<tr>
<td>Magnesium</td>
<td>21.2 – 106.0[^2,^5,^6]</td>
</tr>
<tr>
<td>Calcium</td>
<td>10.1–132.4[^3,^4,^5]</td>
</tr>
<tr>
<td>Sodium</td>
<td>0.1 – 23.9[^2,^6]</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 – 12.2[^3,^4]</td>
</tr>
<tr>
<td>Zinc</td>
<td>0.7 – 2.8[^1,^6]</td>
</tr>
<tr>
<td>Copper</td>
<td>0.1 – 2.1[^2,^4,^5]</td>
</tr>
</tbody>
</table>

The carbohydrate, protein fractions, mineral concentration, vitamins and other functional potentials of the under-privileged cooking banana non-*Mchare* varieties like *Gonja, Kimalindi, Ekitoke, Ingumba, Insira, Ntontonya, Enkundi* and many more cultivars need further investigations. Such information might be a breakthrough in crop improvement and nutrition-sensitive agricultural activities leading to nutrients (such as vitamins, carbohydrate and minerals) increase in bananas that are greatly solicited currently in combating hidden hunger in developing countries. It is also noted that the biochemical composition of banana peels have not adequately studied as either human food, animal feed or medicinal extracts, this may be due to their limited usages.

### 2.4. Physicochemical Characteristics of Cooking Banana Cultivars

Systematized study of the physicochemical characteristics of foods and food products is a relatively new scientific arena (Salih *et al.*, 2017). Physicochemical properties are of great interest to food scientists and farmers because of their close connection with the quality of the produce or product, not to mention their influence on the sensory and processing characteristics of foods (Baiyeri, Aba, Otitoju, & Mbah, 2011; Belayneh *et al.*, 2014). Since cooking bananas are inherently perishable, it is expected that substantial-quality losses ranging from a slight loss of quality to total spoilage may occur at any point in the value chain (Affognon *et al.*, 2015). According to Prusky (2011), quality of cooking banana changes rapidly after harvest and thus substantially affects the acceptability by the consumers. Firstly, fruit selection is based on physical appearance, colour, gloss size and then by texture, pH, total soluble solids (TSS) content and total titratable acidity (TTA). These parameters supply important information to the consumers in recognizing fruits with appealing sensory quality and draw special attention to researchers (Drogoudi, Michailidis, & Pantelidis, 2008). The presence of various oxo-acids identified as malic and oxalic, contribute to the acidity and pH hence influence the taste of the cooked banana.

The TSS concentration of the fruit, on the other hand, is commonly obtained by measuring the °Brix of the fruit pulp. Table 5 shows the average ranges of TSS of cooking banana. Brix offers a clue of how much sugar is concentrated in the pulp (Alkarkhi, Bin-Ramli, Yong, & Easa, 2011) and it is influenced by minerals, fats, proteins, carbohydrates and organic acids present in the pulp (Jayasena & Cameron, 2008). It represents at least 10% of the unripe fresh banana weight and increases as fruit mature and ripen to produce less acidic and sweeter pulps.
(Hoffmann et al., 2016). While Zn, Mg and Fe all increase TSS substantially, nitrogen and K have a negligible effect on TSS (Hasani, Zamani, Savaghebi, & Fatahi, 2012). However, it is reported that Molybdenum (Mo) induces a decrease in TSS and may also help improve the ascorbic acid content of the fruit (Kazi, Ismail, & Joshi, 2012).

Fruit properties like pH, TSS and TTA among others are also of utmost interest for researchers in studying behaviours of fruits under different experimental settings (Belayneh et al., 2014). The presence of various oxo-acids identified as malic and oxalic, contribute to the acidity and pH hence influence the taste of the cooked bananas. Table 5 summarizes the average ranges of physicochemical properties of cooking banana varieties.

### Table 5: Ranges of Physicochemical Properties of Unripe Banana Genotypes

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4.7 – 6.5&lt;sup&gt;3,4,5&lt;/sup&gt;</td>
<td></td>
</tr>
<tr>
<td>TSS</td>
<td>0.5 – 2.7&lt;sup&gt;3,4,5&lt;/sup&gt;</td>
<td>%</td>
</tr>
<tr>
<td>Viscosity</td>
<td>35.7 – 47.5&lt;sup&gt;1&lt;/sup&gt;</td>
<td>mPa s</td>
</tr>
<tr>
<td>TTA</td>
<td>1.9 – 2.2&lt;sup&gt;3&lt;/sup&gt;</td>
<td>%</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>1.4 – 33.5&lt;sup&gt;1,3&lt;/sup&gt;</td>
<td>mg/100g</td>
</tr>
</tbody>
</table>

<sup>1</sup>Alkarkhi et al. (2011); <sup>2</sup>Arvanitoyannis & Mavromatis (2009); <sup>3</sup>Belayneh et al. (2014); <sup>4</sup>Bugaud et al. (2009);<sup>5</sup>Savlak et al. (2016).

Thorough understanding of the inherent properties of cooking banana is essential for the development of better hybrids and novel food products that meet consumers’ expectation. Important developments about these properties might include significant efforts in determining them as well as their prediction based on composition to meet dietary and sensory demands.

### 2.5. Sensory Characteristics and Consumers’ Preferences Banana Cultivars

Sensory quality is a superficially clear but elusive concept and sensory evaluation is necessary to acquire information on claimed facets of food quality to which no other objective technique can be employed (Lawless & Heymann, 2010; Meilgaard, Carr, & Civille 2006). Sensory attributes play an important part in how consumers discern the quality and preferences of a produce or food product (Green-Petersen, 2010). Certainly, colour and taste are some of the central parts of the human regular sensory practice. For example, a particular food should have a specific colour and taste feature to be appealing and palatable to the consumer (Caballero et
al., 2003). Like any other food, cooked banana stimulates biological and emotional responses accustomed to knowledge, environment, education and traditional practices (Lawless & Heymann, 2010). The impression of the dullness of food is related to habitually and involuntarily with sub-standard or inferiority. In contrast, natural and bright colours give the sensory feeling of nutritious, high-quality, beneficial foodstuff (Costell, Tárrega, & Bayarri, 2010). For this reason, banana consumers are not only concerned with the nutritional value of the food, but also the amount of inherent ingredients that improve the consumers’ sensory demand like colour and flavour (Callaghan, Weisbord, Dew, & Pyle, 2012), not to mention their ability to show outstanding health effects (Grashorn, 2005). The appearance and inherent flavours of cooked banana, therefore, serves as one of the leading criteria on which consumers base their choices while purchasing the produce. Caballero et al. (2003) noted that sensory attributes of food may cause a reduction in the contentment of the given food after it is consumed on regular basis and an increase to a substantial food intake if that property is changed by the successive presentation of different foods. In light of this, sensory evaluation plays a significant role in the quality control of not only developed banana hybrids but also banana food products (Wang, Sun, Pu, & Cheng, 2017).

A range of factors, along with sensory attributes and beliefs about the nutritional and socio-economic value of the foods also influences food choice. Nevertheless, it is even more challenging to conclude the relative importance of beliefs about the sensory aspects of foods (Nestle et al., 1998). Consumer food preference is considered as a function of the interactive combination of the individual, person’s culture and beliefs, sensory characteristics of the food, previous exposure to it and subsequent expectations or the situation in which the food is consumed (Caballero et al., 2003; Vabø & Hansen, 2014). Furthermore, East African banana producers grow cultivars preferred by local communities in terms of sensory attributes, a phenomenon known as varietal compartmentalization (Kilimo-Trust, 2012). However, such compartmentalized varieties are not appropriate for sale to communities with different banana varietal alternatives. Kilimo-Trust (2012) reported that this has hindered the growth of the banana trade and with urbanization, not all types of bananas have won popularity in East Africa’s major urban centres. Cooking bananas gained their tremendous popularity in the East African region probably due to their appealing sensory properties (Onyango et al., 2009). These properties are attributed by several inherent compounds that have a significant effect on consumer sensory quality. Among other bioactive components in cooking banana, the most prominent ones are phenolic compounds which show numerous and notorious health benefits
such as high antioxidant activity and useful physiological functionalities (Bujor, Giniès, Popa, & Dufour, 2018; Carocho & Ferreira, 2013). However, these compounds may reduce the palatability of cooked bananas, largely due to the noticeable bitter and astringent taste (Pu et al., 2018). It is claimed that higher-molecular-weight (> 430) polymers appear to be astringent and phenolic polymers of lower molecular weight are more likely to be bitter (Drewnowski & Gomez-Carneros, 2000). As the molecular weight increases to approximately ten units, tannins gradually become more astringent and less bitter (Bravo, 1998). It has been reported that the sensation of astringency increases significantly with the increase of tannin concentration with a tendency to mask perceived bitterness (Villamor, 2012). These particular components are commonly linked to reduced preferences of unripe banana (Muñoz-González et al., 2018) and can influence the taste of cooked bananas hence lower eating quality (Suárez-Estrella, Torri, Pagani, & Marti, 2018).

Sensory properties, mainly colour, aroma and taste, are major factors affecting quality perception and consumer’s acceptance of any food. Appearance and colour form initial quality features attracting consumers. Nonetheless, the flavour (the overall blend of both nasal and oral stimulation) may have the largest impact on acceptability and desire to consume it again. As outlined above, cooking bananas contain compounds that are in some cases not appealing to consumers. Because of limited information resources available so far, this review emphasizes more palatability studies focusing on the analysis of flavour compounds and carrying out a sensory evaluation of under-utilized banana cultivars. This is necessary to identify inherent compounds responsible for unappealing flavours and reveal the consumer acceptability of cooked banana. In addition, sensory information on under-utilized bananas may be useful for the improvement of these cultivars to more palatable sensory attributes that may help in reducing the compartmentalized banana cultivars and diversify their usage. Further work is required to establish this.

2.6. The Role of Breeding in Improving the Quality of Cooking Bananas

Crop plants have been bio-engineered in order to have different but desired characteristics. Thanks to plant breeding technologies which developed from the artificial selection methods based on phenotypes over decades. To meet the needs of the fast-growing population in East Africa and elsewhere, yield improvement has been a key emphasis in breeding and some other genetic manipulation of food crops (Opara, Jacobson, & Al-Saady, 2010; Rowe & Rosales,
The demand for better quality crops and fruits that are rich in nutrients and which can endure the needs of the regional and global supply chain is growing quickly (Gordon et al., 2017). Although food production has expanded over the recent decades, nutrient deficiency poses a new challenge to people that lack physical and/or economical access to a balanced diet and rely on staple food crops with low levels of micronutrients and essential amino acids (Dwyer & Drewnowski, 2017). For examples, recently, considerable researches by International Institute of Tropical Agriculture (IITA) in Tanzania and Uganda and Biodiversity International across East Africa have focused their programs on improvement of banana cultivars with respect to agronomic traits e.g., high yielding and disease or pest-resistant traits through breeding and other biotechnological techniques (Karamura et al., 2012). These are some of the remarkable efforts in addressing food security and hunger in the region, however, due to public awareness to nutrition quality parameters, such as nutritional value, taste, colour, texture, to mention a few, are becoming increasingly important in current banana consumers in the region (Christinck & Weltzien, 2013; Fan & Pandya-Lorch, 2012).

From the short review above, this suggests that it is very important to include both nutritional and sensory quality aspects in future banana breeding programs. Advances in biotechnology make it possible to study these complex, multifactorial traits and come up with the possible solutions. The breeding for nutrition and sensory quality should aim to make more nutritious and appealing food, readily available and accessible and of course, the increase food production and diversity. Studies have shown the potential to exploit the genetic variation and breeding in fruit concentration of iron, zinc and other trace minerals without the general negative effect on yield of adding new desirable traits (Kumssa et al., 2017; Moreira, Moraes, & Dos-Reis, 2018). The use of biotechnological techniques, such as molecular marker-aided selection, will notably increase the speed and prospects of realization for breeding to improve not only the agronomic features but also the nutritional value and sensory quality of cooking bananas. Apart from the development of hybrids that are resistant to pests and diseases, fruit sensorial evaluations are imperative in the course of selecting new cultivars. Banana fruits must have flavour, shape, texture, colour, size and aroma that meet consumers’ requirements (Dadzie & Orchard, 1996). Evaluations provide valuable information that may help the future improvement of food crop through breeding or genetic programs.
Therefore, it is suggested that the future attention to banana breeding should be geared towards designing genetic strategies and developing breeding materials to meet the following requirements. Sustaining banana nutritional value and sensory quality throughout the post-harvest supply chain as a means to preclude or reduce nutrient deficiency and food loss. Maintaining quality at increased production and yield and achieving desirable quality banana under sub-optimal growing conditions. These are important issues for future research.

Banana cultivars for cooking are of great importance in food security affairs in Tanzania and in Africa at large, making this crop an object of common interest. Full characterisation of its nutrient value, physicochemical attributes and concentration of useful bioactive compounds especially from under-exploited cultivars is necessary. The banana family has a wide range, with many accessions and cultivars grown, nevertheless, in future the genetic engineering and breeding technologies has to help improve nutritional and sensory qualities from this banana diversity whenever possible. Thus, banana cultivars that contain genes specific for desirable and useful characteristics may be considered for developing targeted nutritional, sensory and agronomic qualities for bananas. It is therefore essential that researchers, donors, farmers, consumers and traders are made aware of the importance of this crop in the region, in order to ensure that a level of resources commensurate with its importance is directed towards its improvement in the future for public nutritional welfare.
CHAPTER THREE

MATERIALS AND METHODS

3.1. Materials

3.1.1. Chemicals and Reagents

Table 6: Chemicals and Reagents Used in the Study

<table>
<thead>
<tr>
<th>Chemical/Reagent</th>
<th>Manufacturers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphuric acid (H₂SO₄), 98%</td>
<td>Sigma-Aldrich, Co.3050 Spruce Street, St. Louis Mo 63103 USA.</td>
</tr>
<tr>
<td>Nitric acid (HNO₃), 68%</td>
<td>Sigma-Aldrich, Co.3050 Spruce Street, St. Louis Mo 63103 USA.</td>
</tr>
<tr>
<td>Hydrochloric acid (HCl), 36% and 0.02 N HCl solution</td>
<td>Sigma-Aldrich, Co.3050 Spruce Street, St. Louis Mo 63103 USA.</td>
</tr>
<tr>
<td>Perchloric acid (HClO₄), 70%</td>
<td>Sigma-Aldrich, Co.3050 Spruce Street, St. Louis Mo 63103 USA.</td>
</tr>
<tr>
<td>4% Boric acid (H₃BO₃)</td>
<td>Merck Chemicals (Pty) Ltd, 259 Davidson Road, Wadeville, Gauteng, RSA</td>
</tr>
<tr>
<td>Sodium hydroxide (NaOH), 40% and 0.1 N NaOH solution</td>
<td>Sigma-Aldrich, Co.3050 Spruce Street, St. Louis Mo 63103 USA.</td>
</tr>
<tr>
<td>pH buffers 4, 7 and 10</td>
<td>Loba Chemie Pvt. Ltd, 107, Wodehouse Road, Jehangir villa, Mumbai-400005, India</td>
</tr>
<tr>
<td>Kjeldahl Selenium tablets</td>
<td>Sigma-Aldrich, Co.3050 Spruce Street, St. Louis Mo 63103 USA.</td>
</tr>
<tr>
<td>Petroleum ether (C₆H₁₄)</td>
<td>Gato Perez, 33-P.I.Mas d’En Cisa. 08181 Sentimenat SPAIN. Made in Spain.</td>
</tr>
<tr>
<td>Filter paper</td>
<td>Thomas Scientific, Swedesboro, USA</td>
</tr>
<tr>
<td>Standard solutions for K, Ca, Fe and Zn</td>
<td>Merck Chemicals (Pty), 259 Davidson Road, Wadeville, Gauteng, RSA</td>
</tr>
<tr>
<td>Ultrapure water (Milli-Q Type 1)</td>
<td>UPW-PP1463, National Chemist Office, Headquarter Dar es Salaam, Tanzania</td>
</tr>
<tr>
<td>Phenolphthalein (POP) indicator</td>
<td>Loba Chemie Pvt. Ltd, 107 Wodehouse Road, Jehangir villa, Mumbai-400005, India</td>
</tr>
<tr>
<td>Ethyl alcohol/Ethanol (C₂H₅O), 95%</td>
<td>Merck Chemicals (Pty), 259 Davidson Road, Wadeville, Gauteng, RSA</td>
</tr>
</tbody>
</table>
3.1.2. Laboratory Equipment

**Table 7: Laboratory Equipment Used in the Study**

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Model and manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air oven</td>
<td>Memmert, Mode 023583i31, Germany</td>
</tr>
<tr>
<td>Centrifuge machine 5000 and 7000 rpm</td>
<td>Universal 320 Hettich-Zentrifugen, Germany and Eppendorf Centrifuge 5430 R, Germany</td>
</tr>
<tr>
<td>Water bath</td>
<td>S/N A114120801-64 Wagtech Project</td>
</tr>
<tr>
<td>pH meter</td>
<td>Greisinger Model GMH 3500, Regenstauf, Germany</td>
</tr>
<tr>
<td>Atomic absorption spectrometer (AAS)</td>
<td>Thermo Scientific® iCE 3500, Waltham, USA</td>
</tr>
<tr>
<td>Semi-auto titrator</td>
<td>Titronic Nr 00679531, Germany</td>
</tr>
<tr>
<td>Cool box</td>
<td>Cool box S/N 14728341 Made in China</td>
</tr>
<tr>
<td>Analytical balance</td>
<td>S/N 8332140269 Made in China</td>
</tr>
<tr>
<td>Freezer</td>
<td>Thermo Scientific® iCE i700, Waltham, USA</td>
</tr>
<tr>
<td>Kjeldahl system</td>
<td>Behrotest® InKjel System, Behr Labor-Technik, Dusseldorf, Germany</td>
</tr>
<tr>
<td>Muffle furnace</td>
<td>Thermo Fisher Scientific®, Waltham, USA</td>
</tr>
<tr>
<td>Soxhlet system</td>
<td>KIKA-WERKE Co. KS 501 Digital made in Germany</td>
</tr>
<tr>
<td>Total Dietary Fiber Assay Kit</td>
<td>Megazyme™</td>
</tr>
<tr>
<td>Hand-held Refractometer (0 – 32% Brix)</td>
<td>Erma™ Refractometer, Tokyo, Japan</td>
</tr>
<tr>
<td>Chopping knives and slicer</td>
<td>Gato Perez, 33-P.1.Mas d’En Cisa. 078341 Sentimenat, Spain</td>
</tr>
<tr>
<td>Gloves</td>
<td>Made in China</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>Thermo Scientific® iCE 2300, Waltham, USA</td>
</tr>
<tr>
<td>Plastic bags for waste collection</td>
<td>Loba Chemie Pvt, 107 Wodehouse Road, Jehangir villa, Mumbai-400005, India</td>
</tr>
<tr>
<td>Safety goggles</td>
<td>Merck Chemicals (Pty), 259 Davidson Road, Wadeville, Gauteng, RSA</td>
</tr>
<tr>
<td>Blender</td>
<td>Loba Chemie Pvt, 107 Wodehouse Road, Jehangir villa, Mumbai-400005, India</td>
</tr>
<tr>
<td>Grinder</td>
<td>Erma™ Grinder, Tokyo, Japan</td>
</tr>
</tbody>
</table>

3.2. Experimental Materials and Study Site

Fifteen local cooking bananas of *Mchare* family included *Mlelembo Mchare*, *Huti white*, *Kahuti*, *Ijihu inkundu*, *Makyuguhu* 1, *Makyuguhu* 2, *Mchare laini*, *Huti green*, *Akondro maintyi*, *Njuru*, *Muraru Mchare*, *Majimaji*, *Muraru*, *Muraru* white and *Muraru* red (Fig. 1) obtained at unripe green stage one of maturity (Aurore et al., 2009). This was achieved with the help from IITA field experts. Mentioned varieties were collected from two research centres, the
International Institute of Tropical Agriculture (IITA) and the World Vegetable Centre (WVC) in the Arusha region of Tanzania were used for the study. The cultivars were chosen based on the consumption popularity among consumers in the northern zone of the country and secondly, due to the demand of an ongoing IITA breeding program that currently is developing new Mchare cultivars with improved agronomic traits, also with similar or improved nutritional and physicochemical quality parameters.

3.3. Sampling and Research Design

Banana samples of healthy, clean fingers at the matured green stage, from the banana orchard at NM-AIST and Tengeru research units, were randomly collected/harvested early in the morning from a farm of about two hectares. Then from the middle part of banana bunches of every single variety, fingers were collected as experimental samples. Newly collected banana samples were then used to carry out the entire analytical test and evaluation. From each sample set, a laboratory sample was prepared (peeling, chopping and grinding) and frozen at -20 °C (Dadzie & Orchard, 1997) for subsequent nutritional analyses. The analyses were done in triplicate for each variety, also the blank for each parameter was simultaneously run.
3.4. Proximate Composition, Mineral Analysis and Energy Estimation

3.4.1. Determination of Moisture Content

The moisture content of banana samples was analysed by the oven method according to Association of Official Analytical Chemists (AOAC), (2012), where 1 g of sample was heated at 105 °C for 24 h in a forced-air oven (Memmert, Germany). The difference in weight before and after drying was recorded as moisture content and used to estimate the water percentage of a given mass of the sample by using equation (i).

\[
\% \text{Moisture} = \frac{\text{weight of water in the sample} \ (g)}{\text{initial weight of the sample} \ (g)} \times 100\% \quad \text{Eqn. i}
\]

3.4.2. Determination of Ash Content

Ash content was determined by the change in weight as described by AOAC (2012), which involved burning off moisture and all organic components of 1 g sample at 500°C in a Muffle Furnace (Thermo Fisher Scientific, Waltham, USA) overnight. The ash content obtained by weighing the incinerated sample and estimated using equation (ii).

\[
\% \text{Ash} = \frac{\text{weight of ashed sample} \ (g)}{\text{initial weight of the sample} \ (g)} \times 100\% \quad \text{Eqn. ii}
\]

3.4.3. Determination of Crude Protein

Crude protein content was measured by the Kjeldahl method using Behrotest® InKjel System (Behr Labor-Technik, Dusseldorf, Germany) according to AOAC (2000) standard method. The method involved digestion of 0.5 g ground dried sample in 10 mL of conc. Sulphuric acid (H₂SO₄) catalyzed by Kjeldahl Selenium tablets at 400 °C for 1 h to liberate the organically bound nitrogen (N) in the form of ammonium sulphate ([NH₄]₂SO₄). The ammonia gas (NH₃) in the digest was then diluted with 40 mL of 40% Sodium hydroxide (NaOH) then distilled off into a 20 mL of 4% Boric acid (H₃BO₃) receiver solution and then titrated with standard 0.02 N Hydrochloric acid (HCl). Sample protein per cent was estimated using equations (iii) and (iv), respectively. A conversion factor of 6.25 was used to convert total nitrogen to percentage crude protein.
\[
\% N = HCl \left( \frac{\text{mol}}{\text{ml}} \right) \times \frac{\text{corrected acid vol used (mL)}}{\text{initial weight of the sample (g)}} \times 14 \left( \frac{\text{g}_N}{\text{mol}} \right) \times 100\% \quad \text{\textit{Eqn. iii}}
\]

\[
\% \text{Protein} = \% N \times 6.25^{*} \quad \text{\textit{Eqn. iv}}
\]

*6.25 is the protein conversion factor

### 3.4.4. Determination of Crude Fat

Crude fat was determined by Soxhlet extraction method according to AOAC (2012). Crude fat was extracted from the sample powder with 40% petroleum ether (C₆H₁₄) as the solvent, soon after extraction, the solvent was evaporated off to get the fat extract. The difference between the initial and final weight of the extraction flask was recorded as the crude fat content. At time intervals of 20 – 30 min, the extracting solution was tapped to the boiler, to begin the cycle for the second time. Ether extract (fat) was obtained by calculating the mass of oil removed using equation (v).

\[
\% \text{Crude fat} = \frac{\text{weight of fat extract (g)}}{\text{initial weight of the sample (g)}} \times 100\% \quad \text{\textit{Eqn. v}}
\]

### 3.4.5. Determination of Total Dietary Fibre

Dietary fibre was determined by an enzymatic-gravimetric technique using AOAC Method 2009.01, where soluble and insoluble fibres were both quantified in the assessment. Three test portions of 10 g of each homogenized and dried sample set were defatted with petroleum ether. Defatted samples were subjected to enzymatic digestion (α-amylase, protease, amylglucosidase) to breakdown simple sugars, protein units and starch molecules. Phosphate buffer, containing an α-amylase enzyme (pH 6.0 ± 0.2, 50 mL) was added to the sample and incubated at 95 - 100 °C to achieve gelatinization in a water bath for 30 min. The sample mixture was then cooled to room temperature and pH was adjusted to 7.5 ± 0.2, this was followed by adding protease enzyme to remove prote material from the sample and incubated at 60 °C for 30 min. The sample mixture was again cooled and the pH adjusted to 4.0 – 4.6. Digestion ended up by adding amylglucosidase enzyme to remove starch molecules from the sample mixture and incubated at 60 °C for 30 min. At 60 °C 280 mL 95% ethyl alcohol (C₂H₅OH) was added to the mixture to allow the precipitation process for 60 min. The residues (soluble and insoluble fibres) were collected in pre-weighed crucibles before they were filtered,
solvent-washed, dried and weighed. One remained test portion was analyzed for protein content, using 6.25 as the conversion factor while the second test portion was incinerated in a Muffle Furnace at 525 °C for 5 h to quantify ash content. The amount of residue, protein and ash was recorded for each sample set. The total dietary fibre (TDF) content was calculated using the equation (vi) below.

\[
\% \text{ TDF} = \frac{\text{weight of residual} – \text{protein} – \text{ash} – \text{blank} (g)}{\text{initial weight of the sample} (g)} \times 100\% \quad \text{Eqn. vi}
\]

### 3.4.6. Determination of Available Carbohydrate and Energy Value

Available carbohydrate concentration was calculated as the difference between 100% and the sum of the percentages of moisture, crude protein, crude fat, ash and dietary fibre contents. The energy value was calculated using the Atwater’s conversion factors whereby the total grams of protein concentration and carbohydrate content multiplied by a factor of 4 kilocalories per gram of the sample and total lipid content was multiplied by a factor of 9 kilocalories per gram (AOAC, 2012).

### 3.4.7. Determination of Selected Minerals’ Concentrations

The mineral concentrations of the sample materials were evaluated using the technique described by Onwuka (2005). Potassium (K), calcium (Ca), iron (Fe) and zinc (Zn) element concentrations were measured by Atomic Absorption Spectrophotometer (AAS) (Thermo Scientific iCE 3500, Waltham, USA). One gram of each sample was weighed into a 150 mL Erlenmeyer flask and 20 mL of the acid mixture [containing 325 mL conc. Nitric acid (HNO₃), 40 mL Perchloric acid (HClO₄) and 10 mL of conc. Sulphuric acid (H₂SO₄)] was added. The content was mixed and heated gently in a digester at a medium heat under a fume hood and heating continued until dense white fume appeared. Heating continued for 40 seconds and then allowed to cool followed by the addition of 50 mL of distilled water. The solutions were filtered using filter paper (Thomas Scientific, Swedesboro, USA) into a 100 mL volumetric flask and made up to mark with distilled water. The resultant solutions were read on the AAS. The instrument was adjusted with commonly used standards (K 2, 6, 10 ppm; Ca 5, 15, 30 ppm; Fe 2, 4, 10 ppm; Zn 2, 4, 6 ppm) and samples were analysed at corresponding wavelength. The required hollow cathode lamp corresponding to the required mineral and holders in the lamp
compartment was installed to determine the concentration of each mineral. The dilution factor for potassium and calcium was 50 and 20, respectively while for iron and zinc was 1.

3.5. Analysis of Physicochemical Quality Parameters of the Selected Cooking Bananas

3.5.1. Determination of Total Soluble Solids

Total Soluble Solids (TSS) was assessed by grinding 50 g of flesh matter of banana samples, which was taken from the cross-sectional part of the banana fruit, into 70 mL ultra-pure water for about 5 min in a blending machine. The slurry sample was then centrifuged to get 50 mL of clear liquid, which was used for analysis. Using a pipette, a single droplet of the filtrate was carefully positioned on a prism of a well-calibrated hand-held refractometer (Erma Refractometer 0 – 32% Brix, Tokyo, Japan) equipped with automatic temperature compensation system at 25 °C, according to Dadzie and Orchard (1997) and reported as °Brix.

3.5.2. Determination of pH

The clear liquid obtained from procedures in section 3.5.1 above was used to measure the pH values of the fruits. The pH values of the fresh fruits were determined by the potentiometric method using a digital pH Meter at 25 °C (Greisinger Model GMH 3500, Regenstauf, Germany).

3.5.3. Determination of Total Titratable Acidity

For each sample, 6 g of clear fruit supernatant prepared in section 3.5.1 above was weighed into a 100 mL beaker. Total acidity of the filtrate for each sample was estimated by titrating it against a standard solution of sodium hydroxide 0.1 N NaOH to an endpoint of 8.2 (measured with the potentiometer) and the millilitres (mLs) of NaOH used was recorded. The total titratable acidity (TTA) was calculated and reported as per cent malic acid (predominant acid) using the following formula.

\[
% \text{ Acidity} = \left( \frac{\text{mL of NaOH used} \times (0.1M \text{ NaOH}) \times (0.067)}{\text{initial weight of the sample (g)}} \right) \times 100\% \text{.........................Eqn. vii}
\]

0.067 is the milliequivalent factor for Malic acid.
3.6. Statistical Analysis

Data collected from analyses and experimental runs were subjected to Analysis of Variance (ANOVA) and reported as a mean ± standard error (SE) of the three replicates. A Tukey’s Honestly Significant Difference (HSD) test at $p = 0.05$ was employed to test statistical differences between means using Statistica 10 for Windows (TIBCO Software Inc., 3307 Hillview Avenue Palo Alto, CA 94304 USA). For more details, kindly look at the appendices.
CHAPTER FOUR

RESULTS AND DISCUSSION

4.1. Proximate Composition of the Selected Cooking Bananas

The results of the proximate composition are summarized in Table 8. There were significant varietal differences in all parameters analysed. Moisture content for Majimaji was notably highest of all varieties while Huti green had the lowest moisture content. The mean moisture content for the studied bananas ranged from 65.53 to 74.44 g/100 g. These findings were in line with previous results reported by Aurore et al. (2009) for unripe bananas (63.00 – 74.00 g/100 g). In contrary, the moisture content, in the current study, was lower than the findings of Grand Naine cultivars grown with bio-fertilizer reported by Vazquezshy et al. (2012) which ranged from 77.77 to 78.86 g/100 g. The moisture level of foods or food products provides a clue of its freshness and shelf life (Annor, Asamoah-Bonti, & Sakyi-Dawson, 2016). Food stuffs with more moisture level are susceptible to increased microbial damage and reduced shelf life, which may result in its decomposition (Baiyeri et al., 2011). The level of moisture content in any raw food crop is greatly dependent on the genetic factors of individual variety and the site factors (e.g., soil) (Thompson, 2011). This explains why there may have been differences in the moisture content observed between the studied banana cultivars. For more statistical details look at Appendices 1 and 2.

A significant varietal difference in the total ash content of the assessed varieties was also observed (Table 8). The ash content ranged from 0.66 to 1.45 g/100 g. The lowest ash content was 0.66 g/100 g for Makyughu 2 which may indicate lower mineral concentration (Kumssa et al., 2017). In contrast, Ijihu inkundu exhibited the highest ash content value signifying high mineral levels of cooking bananas (Table 8). The present results tie well with the previous conclusion reached by Obizua et al. (2017) who found the ash content of the unripe banana flour to be 1.09 g/100 g, which is in line with average ash content for the Mchare bananas. According to Vazquezshy, Karina, Adriano-Anaya, Salvador-Figueroa, and Ov (2012) and Pragati, Genitha, and Ravish (2014), it was revealed that ash content values for cooking bananas range from 2.89 to 2.93 g/100 g and 3.52 to 3.75 g/100 g, respectively, which were higher than the present findings. This varietal variation might be attributed to the different varietal ability to absorb minerals. For more statistical details look at Appendices 3 and 4.
<table>
<thead>
<tr>
<th>Variety</th>
<th>Moisture</th>
<th>Total Ash</th>
<th>Protein</th>
<th>Fat</th>
<th>Total fibre</th>
<th>Carbohydrate</th>
<th>Energy value (kcal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mlelembo M.</td>
<td>66.62±0.17</td>
<td>1.12±0.01</td>
<td>0.61±0.01</td>
<td>0.14±0.01</td>
<td>2.30±0.10</td>
<td>29.19±3.46</td>
<td>120.77±0.32</td>
</tr>
<tr>
<td>Huti White</td>
<td>71.69±0.13</td>
<td>0.91±0.01</td>
<td>0.73±0.01</td>
<td>0.39±0.03</td>
<td>2.29±0.08</td>
<td>23.99±0.45</td>
<td>102.76±0.34</td>
</tr>
<tr>
<td>Kahuti</td>
<td>72.00±1.56</td>
<td>1.17±0.01</td>
<td>0.69±0.01</td>
<td>0.44±0.02</td>
<td>2.29±0.76</td>
<td>25.55±1.91</td>
<td>96.47±0.47</td>
</tr>
<tr>
<td>Ijihu Inkundu</td>
<td>67.72±0.28</td>
<td>1.45±0.02</td>
<td>0.91±0.05</td>
<td>0.22±0.01</td>
<td>1.65±0.15</td>
<td>28.05±0.70</td>
<td>117.21±0.45</td>
</tr>
<tr>
<td>Makyughu I</td>
<td>69.64±0.43</td>
<td>0.87±0.04</td>
<td>0.80±0.06</td>
<td>0.15±0.03</td>
<td>2.70±0.10</td>
<td>25.84±1.08</td>
<td>108.68±0.57</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>65.97±0.22</td>
<td>0.66±0.01</td>
<td>1.75±0.01</td>
<td>0.53±0.03</td>
<td>2.47±0.20</td>
<td>28.75±0.75</td>
<td>128.62±0.09</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>66.52±0.37</td>
<td>1.32±0.01</td>
<td>1.29±0.04</td>
<td>0.38±0.05</td>
<td>0.92±0.01</td>
<td>29.57±1.19</td>
<td>127.18±0.90</td>
</tr>
<tr>
<td>Huti Green</td>
<td>65.53±0.48</td>
<td>1.28±0.02</td>
<td>0.90±0.06</td>
<td>0.30±0.06</td>
<td>2.03±0.05</td>
<td>29.96±2.22</td>
<td>126.63±0.62</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>70.59±0.04</td>
<td>1.30±0.05</td>
<td>1.34±0.05</td>
<td>0.12±0.01</td>
<td>2.48±0.06</td>
<td>24.17±0.99</td>
<td>102.52±0.48</td>
</tr>
<tr>
<td>Njuru</td>
<td>73.43±0.14</td>
<td>0.85±0.01</td>
<td>0.66±0.04</td>
<td>0.60±0.15</td>
<td>2.13±0.03</td>
<td>22.33±0.90</td>
<td>96.97±0.42</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>71.37±0.42</td>
<td>0.86±0.02</td>
<td>1.03±0.03</td>
<td>0.30±0.06</td>
<td>1.89±0.07</td>
<td>24.55±1.06</td>
<td>105.96±0.54</td>
</tr>
<tr>
<td>Majimaji</td>
<td>74.44±0.25</td>
<td>0.92±0.01</td>
<td>0.76±0.03</td>
<td>0.09±0.01</td>
<td>1.86±0.12</td>
<td>21.59±1.69</td>
<td>90.22±0.26</td>
</tr>
<tr>
<td>Muraru</td>
<td>68.76±0.59</td>
<td>0.89±0.03</td>
<td>1.51±0.04</td>
<td>0.42±0.03</td>
<td>1.64±0.07</td>
<td>26.78±0.71</td>
<td>116.71±0.60</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>69.34±0.59</td>
<td>0.90±0.02</td>
<td>0.84±0.04</td>
<td>0.48±0.03</td>
<td>2.16±0.03</td>
<td>26.28±0.60</td>
<td>112.99±0.28</td>
</tr>
<tr>
<td>Muraru Red</td>
<td>70.78±0.89</td>
<td>0.94±0.05</td>
<td>0.94±0.03</td>
<td>0.18±0.01</td>
<td>2.79±0.07</td>
<td>24.37±0.55</td>
<td>102.61±0.56</td>
</tr>
<tr>
<td>F statistics</td>
<td>23.30***</td>
<td>78.55**</td>
<td>47.71***</td>
<td>10.79***</td>
<td>4.81***</td>
<td>4.03***</td>
<td>446.8**</td>
</tr>
</tbody>
</table>

Values are mean ± SE. Number of replications = 3. Values are on a dry weight basis except for moisture content whose values are on a wet basis. **, *** = significant at p ≤ 0.01 and at p ≤ 0.001, respectively. Mlelembo M. – Mlelembo Mchare, Muraru M. – Muraru Mchare, Muraru Wh. - Muraru White. *Carbohydrate content was calculated by difference. Means with different superscript letters within columns are significantly different from each other by Tukey’s test at p = 0.05.
Table 8 summarizes results of the protein content of Mchare banana varieties. The protein content of the varieties varied significantly and ranged from 0.61 to 1.75 g/100 g. Likewise, Ashokkumar, Elayabalan, Shobana, Sivakumar, and Pandiyan (2018) and Ohizua et al. (2017) recorded that the dried and dehydrated unripe banana flour contained 0.80 – 3.10 g/100 g, which was actually higher than 0.8 – 1.06 g/ 100 g reported by Vazquezshy et al. (2012). The value of crude protein content was highest for the Makyughu 2 (1.75 g/100 g) and lowest for Mlelembo Mchare (0.61 g/100 g). The mean value of crude protein for the studied bananas (0.98 g/100 g) is lower than other starchy staples. One hundred grams of the cooking banana supply roughly 6% of the Recommended Daily Allowance (RDA) for protein, see Appendices 5 and 6 for more detailed information. Protein is required for the human body to supply an adequate amount of required amino acids (Ashokkumar et al., 2018). The crude protein level of the studied samples was also relatively lower when compared with other sources of protein-rich foods such as, beans, gourd seeds and soybeans which ranges between 22.8 – 34.0% (Carocho & Ferreira, 2013). This suggests that consumers should consume protein-rich foods to supplement the protein deficit in bananas.

The fat content of the studied bananas ranged from 0.09 to 0.60 g/100 g with significant variation between Mchare bananas (Table 8). The present values are lower than of the previous studies (2.34 g/100 g and 1.03 – 1.44 g/100 g) reported by several studies (Ohizua et al., 2017; Pragati et al., 2014; Vazquezshy et al., 2012). Similar values for unripe banana (0.20 g/ 100 g) was reported by Lukmanji et al. (2008). Njuru had the highest value of fat content followed by Makyughu 2, Muraru white, Kahuti and Muraru. These may be good sources of fat-soluble vitamins and might also contribute substantially to the caloric level of cooked banana recipes. Majimaji, on the other hand, had the lowest value. The variation in the crude fat content of the cooking bananas may be due to the genetic differences in varieties and ecological reasons (Annor et al., 2016). Despite the fact that the amounts of fat were generally low, variations among the varieties were statistically significant. For more statistical details look at Appendices 7 and 8. One hundred grams of the evaluated bananas can provide not more than 4% of the RDA for fat. Banana-based foods and other low-fat diets can help lose weight and reduce the risk of serious medical conditions, including heart disease and diabetes.

The dietary fibre results of the varieties studied were significantly different. The fibre content of the studied bananas ranged from 0.92 to 2.79 g/100 g (Table 8). Findings from this study are
in sparing agreement with the dietary fibre content of unripe Cavendish banana flour which ranged from 2.34 g/100 g and 2.75 g/100 g and 2.96 g/100 g (Anggraeni & Saputra, 2018; Ohizua et al., 2017). Muraru red was found to have the highest fibre content (2.79 g/100 g) followed by Makyughu 1 (2.70 g/100 g), Akondro mainty (2.48 g/100 g) and Makyughu 2 (2.47 g/100 g) while Mchare laini had the lowest fibre content of 0.92 g/100 g (Appendices 9 and 10). In addition, there was no significant different between Majimaji, Muraru Mchare and Huti Green. Dietary fibre plays a central role in human nutrition. It has been associated with increased removal of impending mutagens. Also helps control blood sugar levels. Maintains bowel health, not to mention lowering of the cholesterol levels (Drzikova et al., 2005). A hundred grams of the studied banana might deliver 12% of the recommended allowance for dietary fibres. Tapsell et al. (2016) reported that one of the recent dietary trends in nutrition and health is to consume low-fat and high-in-fibre food products. Consumers demand foods which show two main properties: (a) traditional nutritional aspects of the food and (b) additional health benefits expected from the regular ingestion (American Diabetes Association, 2012). Some of the studied bananas are rich in fibrous carbohydrates, which offers the named benefits.

Table 8 also presents the carbohydrate contents of the evaluated banana varieties. Results revealed a significant varietal difference ($p < 0.001$) in the mean values of both carbohydrate and energy value. The carbohydrate content ranged from 21.59 to 29.96 g/100 g. The content of carbohydrate was the second most abundant among all proximate parameters analysed, preceded by moisture content. While Huti green had highest values of carbohydrate tailed by Mchare laini and Mlelembo Mchare; Huti White, Ijihu inkundu, Akondro mainty, Muraru red, Muraru white, Muraru Mchare, Muraru and Makyughu 1 and 2 were not statistically different. Majimaji had the lowest value. A similar pattern of results was obtained by Aurore et al. (2009) for the unripe bananas in a range from 21.80 to 32.00 g/100 g. One hundred grams of the assessed bananas can provide roughly 17% of the RDA for carbohydrate. This suggests that studied bananas may be used to fight against food security in banana-growing regions. Moreover, some carbohydrates in cooking bananas are reportedly able to speed up the calorie-burning process in the body due to the available inherent short-chain fatty acids (Hijova & Chmelarova, 2007). Additionally, this type of fatty acids can improve the body’s ability to absorb nutrients, particularly calcium (Jenkins et al., 1998). For more statistical review look at Appendices 11, 12, 13 and 14.
4.2. Mineral Content

Results for K, Ca, Fe and Zn concentration is presented in Figs. 2 – 5. Significant variations (p < 0.001) in mineral concentrations were observed. Potassium was found to be the most abundant element in all the varieties studied with the mean value of 410 mg/100 g (Fig. 2). On the other hand, Akondro mainty had the highest Ca and Fe concentrations (Figs. 3 and 5), whereas Makyuugu 1, Majimaji, Njuru and Akondro mainty had the highest non-significant K content (Fig. 2) while Ijihu inkundu had the highest Zn content followed by Akondro Mainy, Makyuugu 1 and Huti green (Fig. 4). The high levels of K obtained in this study make these cultivars useful to people with cardiovascular compromised conditions (Daniells, 2003).

There was wide variability in Ca content between Akondro mainty (6.07 mg/100 g) and the rest of the bananas which ranged from 2.59 to 4.55 mg/100 g (Fig. 3 and Appendices 15 - 22). The exceptional physiological ability of Akondro mainty to absorb the mineral may explain the observed variation (Zhang et al., 2010). Calcium is very important in the formation of strong bones and teeth, for blood clotting, growth, cell metabolism and heart function. Similar values for K, Ca, Zn and Fe of unripe bananas was 465 mg/100 g, 2.00 mg/100 g, 0.10 mg/100 g and 0.60 mg/100 g, respectively (Lukmanji et al., 2008). The average value obtained for Zn was rather the lowest of all the elements of interest in this study. The levels of K, Zn and Fe show a similar pattern with the findings from other studies on unripe Cavendish bananas (Ashokkumar et al., 2018; Aurore et al., 2009). Furthermore, Ohizua et al. (2017) reported Fe content value of 1.26 mg/100 g for unripe Burro bananas, higher than the values from the present study. Generally, Fe serves as a carrier of oxygen to the tissues from the lungs by thrombocyte’s haemoglobin and as an integrated part of important enzyme systems in various tissues. Zinc, on the other hand, is present in all body tissues and fluids and is also an essential component of a large number of enzymes and it plays a central role in the immune system. Several studies reported comparatively higher Ca levels in other unripe varieties as well as in plantains as opposed to the present study (Ashokkumar et al., 2018; Aurore et al., 2009). Of specific importance, while focusing on the nutritional significance from staple food crops is the contribution of micronutrients, which are widely reported to be deficient and causing severe public health concerns in low-income communities in Tanzania and Africa in general (Tanzania Demographic Health Survey - Malaria Indicator Survey (TDHS-MIS), 2016). Deficiencies of Fe and Zn are core public health concerns, especially for child and maternal health (Black et al., 2013).
Figure 2: Potassium (K) contents of the studied *Mchare* family varieties

Figure 3: Calcium (Ca) contents of the studied *Mchare* family varieties
Figure 4: Zinc (Zn) contents of the studied *Mchare* family varieties

Figure 5: Iron (Fe) contents of the studied *Mchare* family varieties
Cooking bananas generally contain little amount Zn and Fe (Figs. 4, 5 and Appendices 15 - 22). Moreover, Frossard et al. (2000) and Njoumi et al. (2018) suggested that bioavailability of these minerals and other nutrients like protein from other sources such as beans, legumes, edible insects, poultry and meat is likely to be higher than from the cooking bananas. Therefore, banana-based diets could receive a boost with the addition of the mentioned sources to the diets to make them nutrient balanced.

4.3. Physicochemical Quality Parameters

Total soluble solids (TSS), total titratable acidity (TTA) and pH were the physicochemical parameters of interest in this study and results are summarized in Figs. 6 – 8 and detailed in Appendices 23 and 24. A significant varietal difference ($p < 0.001$) in the mean values of TSS was observed. The TSS values for the *Mchare* bananas were observed in a range from 1.3 to 1.9 °Brix (Fig. 6). A similar finding (1.14 to 2.38 °Brix) was reported by Chandler (1995) for unripe *Musa acuminate* spp. The TSS values of the present study were significantly lower than for the unripe *Cavendish* bananas (2.00 – 6.00 °Brix and 3.66 – 6.30 °Brix) as recorded by Liew and Lau (2012) and Aquino et al. (2017), respectively. While *Mlelembo Mchare* and *Majimaji* had equal highest TSS value, there was no observed significant difference between *Ijihu Inkundu*, *Akondro mainty*, *Kahuti*, *Njuru*, *Makyughu 1 and 2*, *Muraru Mchare*, *Mchare laini*, *Muraru White*, *Huti Green*, *Muraru red* and *Huti White* (Fig. 6 and Appendix 24). In principle, TSS indicates soluble solid content of the fruits. High TSS has been linked with high sucrose concentration in fruit pulp, also together with dry matter and some other factors, TSS influences the taste of cooked bananas (Ohizua et al., 2017). Contrary to the present study, Ferris et al. (1999) and Muchui et al. (2010) established that the TSS genotypic variation in banana fruit at the unripe mature stage is not significant, however, it became more apparent as the fruit ripened. Therefore, for tastier bananas, consumers are advised to cook semi-ripen or consume ripen bananas. Dadzie and Orjeda (1998), suggested that any variation in TSS values in banana pulp might be due to differences in textural and chemical contents which could influence the TSS values of banana at unripe green stage one of maturity.

On the other hand, the TTA values for the *Mchare* bananas under study were statistically different (Fig. 7 and Appendix 26). *Akondro mainty* had the highest value of TTA, followed by *Muraru Mchare*, *Ijihu inkundu* and *Kahuti* while *Muraru* white had the lowest value. However, no statistically notable difference between *Mchare laini*, *Njuru*, *Mlelembo Mchare*,
Makyughu 2, Majimaji, Muraru and Muraru white was observed (Fig. 7 and Appendix 25). High level of acidity indicates that the varieties contain a high amount of malic acid in its pulp and vice versa. The pulp TTA values are consistent with Dadzie and Orjeda (1998) with malic acid content ranging from 1.5 to 2.5% at harvest for plantain hybrids and Honduran Foundation for Agricultural Research bananas (or FHIA bananas). Furthermore, the TTA parameter is essential for sensory attributes in cooked banana recipes. The TTA measures the total hydrogen ion concentration (both dissociated and undissociated), which is more relevant to the flavour than pH (Friesen, 2017). Similarly, banana varieties had a significant difference in pulp pH values in a range of 5.4 to 5.8 (Fig. 8 and Appendix 28). Mchare laini and Huti green both had equal highest pH values, succeeded by Makyughu 2 whereas Mararu white had the lowest pH value. Meanwhile, no significant difference was found between Muraru red, Makyughu 1, Mlelembo Mchare, Njuru, Muraru, Ijihu inkundu and Huti white (Fig. 8). According to Dadzie and Orjeda (1998), the pH paralleled the values for banana fruits at a maturity stage. This further proves the nature of the fruit samples used in the current study. The pH may, therefore, be used as a maturity indicator for banana harvesting (Dadzie & Orchard, 1997). Furthermore, both pH and titratable acid parameters are indicators for the number of organic acids and inherent salts contained in a fruit (Pareek, 2016), the higher the value of the parameter, the higher the number of acids and salts. Adding to that, Daniells (2003) reported that both parameters affect gel formation during the cooking process, hence they determine the final texture and mouthfeel of the cooked bananas. See Appendices 27 and 28 for more statistical description.

**Figure 4:** Total soluble solids (TSS) contents for the studied Mchare banana varieties
Figure 5: Total titratable acidity (TTA) contents for the studied Mchare family varieties

Figure 6: pH levels for the studied Mchare family varieties
CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1. Conclusion

The main goal of the current study was to determine the proximate composition and selected minerals and physicochemical quality parameters of 15 cooking bananas of Mchare family mainly consumed in northern Tanzania. Generally, these findings indicated that Akondro mainty had superior values for nutritional and physicochemical characteristics tailed by Njuru, Makyughu 2, Mchare laini, Majimaji, Ijihu inkundu, Huti green, Muraru red and Makyughu 1 in that order. Likewise, Makyughu 1 had the highest proportion of K concentration while Akondro mainty had the highest content of Ca and Fe. The highest fat content was observed in Njuru, Makyughu 2 contained the highest level of protein whereas the water content highest in Majimaji. The highest carbohydrate content was observed in Huti green while the highest dietary fibre content was found in Muraru red. In terms of green matured fruit, the physicochemical quality was found to be significant amongst the tested varieties. Akondro mainty had the highest TTA content, Mlelembo Mchare, Makyughu 2 and Mchare laini had the highest pH and Ijihu inkundu had the highest TSS values. This study has provided a deeper insight into understanding the important attributes of Mchare bananas. It may act as a reliable selection tool of Mchare cooking bananas as food commodity and cash crop for banana producers and businessmen in northern Tanzania for the development of banana-related food products. Moreover, these findings might be important to breeders for developing new improved cultivars that could be readily adopted by local farmers and consumers. Findings from the present study could also be crucial to be considered in the national food composition database of Tanzania for enhancing its value.

5.2. Recommendations

Cooking bananas have been one of the potential commodities which serve as both food and cash crop to the local farmers in the northern zone of Tanzania. As a cash crop, bananas provide reliable revenue to the farmers, which in turn improve their livelihood. Despite banana production being increased as of late due to the nutritional and economic reasons for the crop in the region, a number of possible future studies are apparent. It would be interesting to explore the consumer preferences and sensory evaluation of the Mchare family. This would provide
important information necessary for breeding programs for nutritional, organoleptic and agronomic improvements of the banana varieties, which actually meet consumers’ requirements. Following the findings of the present study, it is advised that the banana varieties listed down might be considered in the ongoing or future breeding programs for a balanced improvement of both desirable nutritional and physicochemical attributes. Akondro mainty, Njuru, Makyughu 2, Mchare laini, Majimaji, Ijihu inkundu, Muraru red, Kakyughu 1, Huti white, Muraru Mchare and Kahuti.

In addition, further work could also assess the postharvest quality losses (PHQL) of the cooking bananas. Banana value chain actors have relished good harvests in recent times, though the good harvests from banana-growing regions have not been translated into projected profit, due to quality loss of the fruits and puzzling consumers’ preferences, thus leading to significant nutritional and economic losses. Besides reducing the total amount of available food, PHQL reduces quality and represent an unacceptable waste of scarce resources. The postharvest quality losses might also exaggerate farmers’ poverty by eroding income generation along the food value chain. Evidently, the need to assess the postharvest quality losses of local cooking bananas cannot be overemphasized.
REFERENCES


Green-Petersen, D. M. (2010). *Sensory Quality of Seafood: In the Chain from Catch to Consumption*: Division of Seafood Research, Technical University of Denmark.


uniform arising from a single ancestral clone that underwent population expansion by vegetative propagation. *Theoretical and Applied Genetics, 129*(3), 547-561.


LIST OF APPENDICES

Appendix 1: ANOVA Table for Moisture Content

Univariate Tests of Significance for Moisture level (Spreadsheet 1). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>218158.4</td>
<td>1</td>
<td>218158.4</td>
<td>223332.8</td>
<td>0.000000</td>
</tr>
<tr>
<td>Variety</td>
<td>318.5</td>
<td>14</td>
<td>22.8</td>
<td>23.3</td>
<td>0.000000</td>
</tr>
<tr>
<td>Error</td>
<td>29.3</td>
<td>30</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 2: Descriptive Statistics for Moisture Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Moisture level Mean</th>
<th>Moisture level Std. Dev.</th>
<th>Moisture level Std. Err</th>
<th>Moisture level -95.00%</th>
<th>Moisture level +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>69.62733</td>
<td>2.811676</td>
<td>0.41940</td>
<td>68.78261</td>
<td>70.47205</td>
</tr>
<tr>
<td>Mlelemba M.</td>
<td>3</td>
<td>66.62333</td>
<td>0.290230</td>
<td>0.167564</td>
<td>65.90236</td>
<td>67.34430</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>71.69000</td>
<td>0.216564</td>
<td>0.125033</td>
<td>71.15203</td>
<td>72.22797</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>72.00000</td>
<td>2.695125</td>
<td>1.556031</td>
<td>65.30494</td>
<td>78.69506</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>67.72000</td>
<td>0.480416</td>
<td>0.277369</td>
<td>66.52658</td>
<td>68.91342</td>
</tr>
<tr>
<td>Makyughu 1</td>
<td>3</td>
<td>69.64000</td>
<td>0.745050</td>
<td>0.430155</td>
<td>67.78919</td>
<td>71.49081</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>3</td>
<td>65.97000</td>
<td>0.380000</td>
<td>0.219393</td>
<td>65.02603</td>
<td>66.91397</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>66.52000</td>
<td>0.640234</td>
<td>0.369639</td>
<td>64.92957</td>
<td>68.11043</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>65.53000</td>
<td>0.832106</td>
<td>0.480416</td>
<td>63.46293</td>
<td>67.59707</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>70.59000</td>
<td>0.070000</td>
<td>0.040415</td>
<td>70.41611</td>
<td>70.76389</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>73.43000</td>
<td>0.236432</td>
<td>0.136504</td>
<td>72.42627</td>
<td>74.01733</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>71.37000</td>
<td>0.735459</td>
<td>0.424617</td>
<td>69.54302</td>
<td>73.19698</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>74.44667</td>
<td>0.440038</td>
<td>0.254056</td>
<td>73.35355</td>
<td>75.53978</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>68.76000</td>
<td>1.017988</td>
<td>0.587736</td>
<td>66.23118</td>
<td>71.28882</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>69.34000</td>
<td>1.017988</td>
<td>0.587736</td>
<td>66.81118</td>
<td>71.86882</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>70.78000</td>
<td>1.535285</td>
<td>0.886397</td>
<td>66.96614</td>
<td>74.59386</td>
</tr>
</tbody>
</table>
Appendix 3: ANOVA Table for Ash Content

Univariate Tests of Significance for Ash level (Spreadsheet 2). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>47.67872</td>
<td>1</td>
<td>47.67872</td>
<td>24325.88</td>
<td>0.00</td>
</tr>
<tr>
<td>Variety</td>
<td>2.15548</td>
<td>14</td>
<td>0.15396</td>
<td>78.55</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>0.05880</td>
<td>30</td>
<td>0.00196</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 4: Descriptive Statistics for Ash Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Ash level Mean</th>
<th>Ash level Std. Dev.</th>
<th>Ash level Std. Err.</th>
<th>Ash level -95.00%</th>
<th>Ash level +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>1.029333</td>
<td>0.224331</td>
<td>0.033441</td>
<td>0.961937</td>
<td>1.096730</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>1.120000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>1.076973</td>
<td>1.163027</td>
</tr>
<tr>
<td>Huti White</td>
<td>3</td>
<td>0.910000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.885159</td>
<td>0.934841</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>1.170000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>1.126973</td>
<td>1.213027</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>1.450000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>1.384276</td>
<td>1.515724</td>
</tr>
<tr>
<td>Makyughu 1</td>
<td>3</td>
<td>0.870000</td>
<td>0.070000</td>
<td>0.040415</td>
<td>0.696110</td>
<td>1.043890</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>3</td>
<td>0.660000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.616973</td>
<td>0.703027</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>1.320000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>1.276973</td>
<td>1.363027</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>1.280000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>1.214276</td>
<td>1.345724</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>1.300000</td>
<td>0.091652</td>
<td>0.052915</td>
<td>1.072325</td>
<td>1.527675</td>
</tr>
<tr>
<td>Njaru</td>
<td>3</td>
<td>0.850000</td>
<td>0.020000</td>
<td>0.011547</td>
<td>0.800317</td>
<td>0.899683</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>0.860000</td>
<td>0.036056</td>
<td>0.020817</td>
<td>0.770433</td>
<td>0.949567</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>0.920000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.876973</td>
<td>0.963027</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>0.890000</td>
<td>0.052915</td>
<td>0.030551</td>
<td>0.758552</td>
<td>1.021448</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>0.900000</td>
<td>0.036056</td>
<td>0.020817</td>
<td>0.810433</td>
<td>0.989567</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>0.940000</td>
<td>0.085440</td>
<td>0.049329</td>
<td>0.727755</td>
<td>1.152245</td>
</tr>
</tbody>
</table>

59
Appendix 5: ANOVA Table for Protein Content

Univariate Tests of Significance for Protein content (Spreadsheet 3). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>43.57152</td>
<td>1</td>
<td>43.57152</td>
<td>5678.304</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>4.80288</td>
<td>14</td>
<td>0.34306</td>
<td>44.708</td>
<td>0.000000</td>
</tr>
<tr>
<td>Error</td>
<td>0.23020</td>
<td>30</td>
<td>0.00767</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 6: Descriptive Statistics for Protein Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Protein level Mean</th>
<th>Protein level Std. Dev.</th>
<th>Protein level Std. Err.</th>
<th>Protein level -95.00%</th>
<th>Protein level +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>0.984000</td>
<td>0.338213</td>
<td>0.050418</td>
<td>0.882389</td>
<td>1.085611</td>
</tr>
<tr>
<td><em>Mlelembomo M.</em></td>
<td>3</td>
<td>0.610000</td>
<td>0.020000</td>
<td>0.011547</td>
<td>0.560317</td>
<td>0.659683</td>
</tr>
<tr>
<td><em>Huti white</em></td>
<td>3</td>
<td>0.730000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.686973</td>
<td>0.773027</td>
</tr>
<tr>
<td><em>Kahuti</em></td>
<td>3</td>
<td>0.690000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>0.624276</td>
<td>0.755724</td>
</tr>
<tr>
<td><em>Ijihu inkandi</em></td>
<td>3</td>
<td>0.910000</td>
<td>0.253574</td>
<td>0.146401</td>
<td>0.280086</td>
<td>1.539914</td>
</tr>
<tr>
<td><em>Makyughu</em> 1</td>
<td>3</td>
<td>0.800000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>0.551586</td>
<td>1.048414</td>
</tr>
<tr>
<td><em>Makyughu</em> 2</td>
<td>3</td>
<td>1.750000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>1.706973</td>
<td>1.793027</td>
</tr>
<tr>
<td><em>Mchare laini</em></td>
<td>3</td>
<td>1.290000</td>
<td>0.065574</td>
<td>0.037859</td>
<td>1.127104</td>
<td>1.452896</td>
</tr>
<tr>
<td><em>Huti green</em></td>
<td>3</td>
<td>0.900000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>0.651586</td>
<td>1.148414</td>
</tr>
<tr>
<td><em>Akondro M.</em></td>
<td>3</td>
<td>1.340000</td>
<td>0.079373</td>
<td>0.045826</td>
<td>1.142828</td>
<td>1.537172</td>
</tr>
<tr>
<td><em>Njuru</em></td>
<td>3</td>
<td>0.660000</td>
<td>0.062450</td>
<td>0.036056</td>
<td>0.504866</td>
<td>0.815134</td>
</tr>
<tr>
<td><em>Muraru M.</em></td>
<td>3</td>
<td>1.030000</td>
<td>0.043589</td>
<td>0.025166</td>
<td>0.921719</td>
<td>1.138281</td>
</tr>
<tr>
<td><em>Majimaji</em></td>
<td>3</td>
<td>0.760000</td>
<td>0.052915</td>
<td>0.030551</td>
<td>0.628552</td>
<td>0.891448</td>
</tr>
<tr>
<td><em>Muraru</em></td>
<td>3</td>
<td>1.510000</td>
<td>0.065574</td>
<td>0.037859</td>
<td>1.347104</td>
<td>1.672896</td>
</tr>
<tr>
<td><em>Muraru Wh.</em></td>
<td>3</td>
<td>0.840000</td>
<td>0.060828</td>
<td>0.035119</td>
<td>0.688896</td>
<td>0.991104</td>
</tr>
<tr>
<td><em>Muraru red</em></td>
<td>3</td>
<td>0.940000</td>
<td>0.043589</td>
<td>0.025166</td>
<td>0.831719</td>
<td>1.048281</td>
</tr>
</tbody>
</table>
Appendix 7: ANOVA Table for Fat Content

Univariate Tests of Significance for Fat content (Spreadsheet 4). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>4.493520</td>
<td>1</td>
<td>4.493520</td>
<td>619.0047</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>1.096080</td>
<td>14</td>
<td>0.078291</td>
<td>10.7850</td>
<td>0.000000</td>
</tr>
<tr>
<td>Error</td>
<td>0.217778</td>
<td>30</td>
<td>0.007259</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 8: Descriptive Statistics for Fat Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Fat level Mean</th>
<th>Fat level Std. Dev.</th>
<th>Fat level Std. Err.</th>
<th>Fat level -95.00%</th>
<th>Fat level +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>0.316000</td>
<td>0.172802</td>
<td>0.025760</td>
<td>0.264085</td>
<td>0.367915</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>0.140000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.115159</td>
<td>0.164841</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>0.390000</td>
<td>0.052915</td>
<td>0.030551</td>
<td>0.258552</td>
<td>0.521448</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>0.440000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>0.374276</td>
<td>0.505724</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>0.220000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.176973</td>
<td>0.263027</td>
</tr>
<tr>
<td>Makyugu 1</td>
<td>3</td>
<td>0.150000</td>
<td>0.043589</td>
<td>0.025166</td>
<td>0.041719</td>
<td>0.258281</td>
</tr>
<tr>
<td>Makyugu 2</td>
<td>3</td>
<td>0.530000</td>
<td>0.051856</td>
<td>0.029939</td>
<td>0.401184</td>
<td>0.658816</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>0.380000</td>
<td>0.079373</td>
<td>0.045826</td>
<td>0.182828</td>
<td>0.577172</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>0.300000</td>
<td>0.095394</td>
<td>0.055076</td>
<td>0.063028</td>
<td>0.536972</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>0.120000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.076973</td>
<td>0.163027</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>0.600000</td>
<td>0.264575</td>
<td>0.152753</td>
<td>-0.057241</td>
<td>1.257241</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>0.300000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>0.051586</td>
<td>0.548414</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>0.090000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.046973</td>
<td>0.133027</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>0.420000</td>
<td>0.052915</td>
<td>0.030551</td>
<td>0.288552</td>
<td>0.551448</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>0.480000</td>
<td>0.036056</td>
<td>0.020817</td>
<td>0.390433</td>
<td>0.569567</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>0.180000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.136973</td>
<td>0.223027</td>
</tr>
</tbody>
</table>
Appendix 9: ANOVA Table for Fibre Content

Univariate Tests of Significance for Fibre level (Spreadsheet 5). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>199.7963</td>
<td>1</td>
<td>199.7963</td>
<td>1422.556</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>9.4543</td>
<td>14</td>
<td>0.6753</td>
<td>4.808</td>
<td>0.000153</td>
</tr>
<tr>
<td>Error</td>
<td>4.2135</td>
<td>30</td>
<td>0.1404</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 10: Descriptive Statistics for Fibre Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Fibre content Mean</th>
<th>Fibre content Std. Dev.</th>
<th>Fibre content Std. Dev.</th>
<th>Fibre content -95.00%</th>
<th>Fibre content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>2.107111</td>
<td>0.557342</td>
<td>0.083084</td>
<td>1.939667</td>
<td>2.274555</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>2.300000</td>
<td>0.173205</td>
<td>0.100000</td>
<td>1.869735</td>
<td>2.730265</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>2.290000</td>
<td>0.135277</td>
<td>0.078102</td>
<td>1.953952</td>
<td>2.626048</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>2.290000</td>
<td>1.317308</td>
<td>0.760548</td>
<td>-0.982374</td>
<td>5.562374</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>1.650000</td>
<td>0.259808</td>
<td>0.150000</td>
<td>1.004602</td>
<td>2.295398</td>
</tr>
<tr>
<td>Makyughu 1</td>
<td>3</td>
<td>2.700000</td>
<td>0.173205</td>
<td>0.100000</td>
<td>2.269735</td>
<td>3.130265</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>3</td>
<td>2.476667</td>
<td>0.341223</td>
<td>0.197005</td>
<td>1.629021</td>
<td>3.324312</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>0.920000</td>
<td>0.013748</td>
<td>0.007937</td>
<td>0.885849</td>
<td>0.954151</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>2.030000</td>
<td>0.092892</td>
<td>0.053631</td>
<td>1.799242</td>
<td>2.260758</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>2.480000</td>
<td>0.103058</td>
<td>0.059501</td>
<td>2.223989</td>
<td>2.736011</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>2.130000</td>
<td>0.043589</td>
<td>0.025166</td>
<td>2.021719</td>
<td>2.238281</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>1.890000</td>
<td>0.115326</td>
<td>0.066583</td>
<td>1.603515</td>
<td>2.176485</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>1.860000</td>
<td>0.209724</td>
<td>0.121084</td>
<td>1.339018</td>
<td>2.380982</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>1.640000</td>
<td>0.118216</td>
<td>0.068252</td>
<td>1.346335</td>
<td>1.933665</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>2.160000</td>
<td>0.051962</td>
<td>0.030000</td>
<td>2.030920</td>
<td>2.289080</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>2.790000</td>
<td>0.117898</td>
<td>0.068069</td>
<td>2.497124</td>
<td>3.082876</td>
</tr>
</tbody>
</table>
Appendix 11: ANOVA Table for Carbohydrate Content

Univariate Tests of Significance for Fibre level (Spreadsheet 6). Sigma-restricted Parameterization Effective Hypothesis Decomposition

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>30104.97</td>
<td>1</td>
<td>30104.97</td>
<td>5250.144</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>323.40</td>
<td>14</td>
<td>23.10</td>
<td>4.029</td>
<td>0.000666</td>
</tr>
<tr>
<td>Error</td>
<td>172.02</td>
<td>30</td>
<td>5.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 12: Descriptive Statistics for Carbohydrate Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Fibre content Mean</th>
<th>Fibre content Std. Dev.</th>
<th>Fibre content Std. Err.</th>
<th>Fibre content -95.00%</th>
<th>Fibre content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>25.86502</td>
<td>3.355549</td>
<td>0.500216</td>
<td>24.85690</td>
<td>26.87314</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>29.19000</td>
<td>5.986586</td>
<td>3.456357</td>
<td>14.31850</td>
<td>44.06150</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>23.99000</td>
<td>0.779487</td>
<td>0.450037</td>
<td>22.05365</td>
<td>25.92635</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>22.55000</td>
<td>3.312062</td>
<td>1.912220</td>
<td>14.32238</td>
<td>30.77762</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>28.05000</td>
<td>1.211175</td>
<td>0.699272</td>
<td>25.04128</td>
<td>31.05872</td>
</tr>
<tr>
<td>Makyughu 1</td>
<td>3</td>
<td>25.84000</td>
<td>1.868411</td>
<td>1.078728</td>
<td>21.19861</td>
<td>30.48139</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>3</td>
<td>28.75500</td>
<td>1.303607</td>
<td>0.752638</td>
<td>25.51666</td>
<td>31.99334</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>29.57000</td>
<td>2.066339</td>
<td>1.193002</td>
<td>24.43693</td>
<td>34.70307</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>29.96000</td>
<td>3.843720</td>
<td>2.219173</td>
<td>20.41167</td>
<td>39.50833</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>24.17000</td>
<td>1.720822</td>
<td>0.993517</td>
<td>19.89524</td>
<td>28.44476</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>22.33000</td>
<td>1.564124</td>
<td>0.903047</td>
<td>18.44450</td>
<td>26.21550</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>24.55000</td>
<td>1.835708</td>
<td>1.059847</td>
<td>19.98985</td>
<td>29.11015</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>21.59000</td>
<td>0.800192</td>
<td>0.461991</td>
<td>19.60221</td>
<td>23.57779</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>26.78000</td>
<td>1.227570</td>
<td>0.708738</td>
<td>23.73055</td>
<td>29.82945</td>
</tr>
<tr>
<td>Mururu Wh.</td>
<td>3</td>
<td>26.28000</td>
<td>1.036803</td>
<td>0.598598</td>
<td>23.70444</td>
<td>28.85556</td>
</tr>
<tr>
<td>Mururu red</td>
<td>3</td>
<td>24.37030</td>
<td>0.945677</td>
<td>0.545987</td>
<td>22.02111</td>
<td>26.71949</td>
</tr>
</tbody>
</table>
Appendix 13: ANOVA Table for Energy

Univariate Tests of Significance for Energy (Spreadsheet 7). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>549346.3</td>
<td>1</td>
<td>549346.3</td>
<td>562566.7</td>
<td>0.00</td>
</tr>
<tr>
<td>Cultivar</td>
<td>6108.1</td>
<td>14</td>
<td>436.3</td>
<td>446.8</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>29.3</td>
<td>30</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 14: Descriptive Statistics for Energy

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Energy level</th>
<th>Energy level</th>
<th>Energy level</th>
<th>Energy level</th>
<th>Energy level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Std. Err.</td>
<td>-95.00%</td>
<td>+95.00%</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>110.4884</td>
<td>11.81043</td>
<td>1.760595</td>
<td>106.9402</td>
<td>114.0367</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>120.7733</td>
<td>0.56889</td>
<td>0.328448</td>
<td>119.3601</td>
<td>122.1865</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>102.7567</td>
<td>0.58389</td>
<td>0.337112</td>
<td>101.3062</td>
<td>104.2071</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>97.4667</td>
<td>0.81739</td>
<td>0.471923</td>
<td>95.4361</td>
<td>99.4972</td>
</tr>
<tr>
<td>Ijihu inkunda</td>
<td>3</td>
<td>117.2100</td>
<td>0.78352</td>
<td>0.452364</td>
<td>115.2636</td>
<td>119.1564</td>
</tr>
<tr>
<td>Makyugha 1</td>
<td>3</td>
<td>108.6800</td>
<td>0.98504</td>
<td>0.568712</td>
<td>106.2330</td>
<td>111.1270</td>
</tr>
<tr>
<td>Makyugha 2</td>
<td>3</td>
<td>128.6233</td>
<td>1.88580</td>
<td>1.088766</td>
<td>123.9388</td>
<td>133.3079</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>127.1833</td>
<td>1.57017</td>
<td>0.906538</td>
<td>123.2828</td>
<td>131.0839</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>126.6300</td>
<td>1.07252</td>
<td>0.619220</td>
<td>123.9657</td>
<td>129.2943</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>102.5200</td>
<td>0.83217</td>
<td>0.480451</td>
<td>100.4528</td>
<td>104.5872</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>96.9767</td>
<td>0.73501</td>
<td>0.424356</td>
<td>95.1508</td>
<td>98.8025</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>105.9633</td>
<td>0.93511</td>
<td>0.539887</td>
<td>103.6404</td>
<td>108.2863</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>90.2200</td>
<td>0.44508</td>
<td>0.256970</td>
<td>89.1143</td>
<td>91.3257</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>116.7100</td>
<td>1.03436</td>
<td>0.597188</td>
<td>114.1405</td>
<td>119.2795</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>112.9967</td>
<td>0.47648</td>
<td>0.275096</td>
<td>111.8130</td>
<td>114.1803</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>102.6167</td>
<td>0.97797</td>
<td>0.564634</td>
<td>100.1872</td>
<td>105.0461</td>
</tr>
</tbody>
</table>
Appendix 15: ANOVA Table for Potassium Content

Univariate Tests of Significance for Potassium (Spreadsheet 8). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>7390845</td>
<td>1</td>
<td>7390845</td>
<td>40166.09</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>113089</td>
<td>14</td>
<td>8078</td>
<td>43.90</td>
<td>0.000000</td>
</tr>
<tr>
<td>Error</td>
<td>5520</td>
<td>30</td>
<td>184</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 16: Descriptive Statistics for Potassium Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>K Content Mean</th>
<th>K Content Std. Dev.</th>
<th>K Content Std. Err.</th>
<th>K Content -95.00%</th>
<th>K Content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>405.2666</td>
<td>51.91975</td>
<td>7.73974</td>
<td>389.6682</td>
<td>420.8650</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>410.0000</td>
<td>14.83903</td>
<td>8.56732</td>
<td>373.1378</td>
<td>446.8622</td>
</tr>
<tr>
<td>Huti hite</td>
<td>3</td>
<td>371.6000</td>
<td>3.02203</td>
<td>1.74477</td>
<td>364.0929</td>
<td>379.1071</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>353.9000</td>
<td>7.60738</td>
<td>4.39212</td>
<td>335.0022</td>
<td>372.7978</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>405.8000</td>
<td>14.51096</td>
<td>8.37979</td>
<td>369.7528</td>
<td>441.8472</td>
</tr>
<tr>
<td>Makyughu 1</td>
<td>3</td>
<td>468.9000</td>
<td>8.16008</td>
<td>4.71123</td>
<td>448.6292</td>
<td>489.1708</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>3</td>
<td>433.2000</td>
<td>15.27849</td>
<td>8.82104</td>
<td>395.2461</td>
<td>471.1539</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>348.9000</td>
<td>6.97373</td>
<td>4.02628</td>
<td>331.5763</td>
<td>366.2237</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>452.2000</td>
<td>22.97932</td>
<td>13.26712</td>
<td>395.1162</td>
<td>509.2838</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>455.1000</td>
<td>23.75864</td>
<td>13.71706</td>
<td>396.0803</td>
<td>514.1197</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>349.4987</td>
<td>10.12240</td>
<td>5.84417</td>
<td>324.3532</td>
<td>374.6441</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>467.3000</td>
<td>16.09224</td>
<td>9.29086</td>
<td>427.3247</td>
<td>507.2753</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>368.3000</td>
<td>9.81070</td>
<td>5.66421</td>
<td>343.9289</td>
<td>392.6711</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>438.5000</td>
<td>6.60654</td>
<td>3.81429</td>
<td>422.0884</td>
<td>454.9116</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>449.6000</td>
<td>13.11439</td>
<td>7.57160</td>
<td>417.0220</td>
<td>482.1780</td>
</tr>
</tbody>
</table>
Appendix 17: ANOVA Table for Calcium Content

Univariate Tests of Significance for Potassium (Spreadsheet 8). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>579.3185</td>
<td>1</td>
<td>579.3185</td>
<td>18705.23</td>
<td>0.00</td>
</tr>
<tr>
<td>Cultivar</td>
<td>34.9933</td>
<td>14</td>
<td>2.4995</td>
<td>80.71</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>0.9291</td>
<td>30</td>
<td>0.0310</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 18: Descriptive Statistics for Calcium Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Ca Content Mean</th>
<th>Ca Content Std. Dev.</th>
<th>Ca Content Std. Err.</th>
<th>Ca Content -95.00%</th>
<th>Ca Content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>3.588000</td>
<td>0.903559</td>
<td>0.134695</td>
<td>3.316541</td>
<td>3.859459</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>2.590000</td>
<td>0.051962</td>
<td>0.030000</td>
<td>2.460920</td>
<td>2.719080</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>4.280000</td>
<td>0.055678</td>
<td>0.032146</td>
<td>4.141689</td>
<td>4.418311</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>2.810000</td>
<td>0.151327</td>
<td>0.087369</td>
<td>2.434082</td>
<td>3.185918</td>
</tr>
<tr>
<td>Ijihu inkundi</td>
<td>3</td>
<td>3.910000</td>
<td>0.257099</td>
<td>0.148436</td>
<td>3.271330</td>
<td>4.548670</td>
</tr>
<tr>
<td>Makyughu 1</td>
<td>3</td>
<td>3.650000</td>
<td>0.170587</td>
<td>0.098489</td>
<td>3.226238</td>
<td>4.073762</td>
</tr>
<tr>
<td>Makyughu 2</td>
<td>3</td>
<td>4.550000</td>
<td>0.062450</td>
<td>0.036056</td>
<td>4.394866</td>
<td>4.705134</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>3.770000</td>
<td>0.034641</td>
<td>0.020000</td>
<td>3.683947</td>
<td>3.856053</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>2.890000</td>
<td>0.251595</td>
<td>0.145258</td>
<td>2.265004</td>
<td>3.514996</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>6.070000</td>
<td>0.033061</td>
<td>0.019088</td>
<td>5.987873</td>
<td>6.152127</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>3.500000</td>
<td>0.096286</td>
<td>0.055591</td>
<td>3.260812</td>
<td>3.739188</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>3.200000</td>
<td>0.079373</td>
<td>0.045826</td>
<td>3.002828</td>
<td>3.397172</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>2.620000</td>
<td>0.465725</td>
<td>0.268887</td>
<td>1.463074</td>
<td>3.776926</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>3.760000</td>
<td>0.186815</td>
<td>0.107858</td>
<td>3.295925</td>
<td>4.224075</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>2.730000</td>
<td>0.050000</td>
<td>0.028868</td>
<td>2.605793</td>
<td>2.854207</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>3.490000</td>
<td>0.036056</td>
<td>0.020817</td>
<td>3.400433</td>
<td>3.579567</td>
</tr>
</tbody>
</table>
Appendix 19: ANOVA Table for Iron Content

Univariate Tests of Significance for Iron (Spreadsheet 9). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>15.73656</td>
<td>1</td>
<td>15.73656</td>
<td>22820.34</td>
<td>0.00</td>
</tr>
<tr>
<td>Cultivar</td>
<td>0.79056</td>
<td>14</td>
<td>0.05647</td>
<td>81.89</td>
<td>0.00</td>
</tr>
<tr>
<td>Error</td>
<td>0.02069</td>
<td>30</td>
<td>0.00069</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 20: Descriptive Statistics for Iron Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Fe Content Mean</th>
<th>Fe Content Std. Dev.</th>
<th>Fe Content Std. Err.</th>
<th>Fe Content 95.00%</th>
<th>Fe Content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>0.591356</td>
<td>0.135784</td>
<td>0.020242</td>
<td>0.550561</td>
<td>0.632150</td>
</tr>
<tr>
<td>Melelembo M.</td>
<td>3</td>
<td>0.570000</td>
<td>0.024637</td>
<td>0.014224</td>
<td>0.508797</td>
<td>0.631203</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>0.660000</td>
<td>0.014933</td>
<td>0.008622</td>
<td>0.622904</td>
<td>0.697096</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>0.460000</td>
<td>0.012823</td>
<td>0.007404</td>
<td>0.428145</td>
<td>0.491855</td>
</tr>
<tr>
<td>Ijihu inkundi</td>
<td>3</td>
<td>0.410000</td>
<td>0.020298</td>
<td>0.011719</td>
<td>0.359578</td>
<td>0.460422</td>
</tr>
<tr>
<td>Makyugha 1</td>
<td>3</td>
<td>0.510000</td>
<td>0.036346</td>
<td>0.020984</td>
<td>0.419713</td>
<td>0.600287</td>
</tr>
<tr>
<td>Makyugha 2</td>
<td>3</td>
<td>0.510333</td>
<td>0.009452</td>
<td>0.005457</td>
<td>0.486854</td>
<td>0.533812</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>0.360000</td>
<td>0.021932</td>
<td>0.012662</td>
<td>0.305519</td>
<td>0.414481</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>0.630000</td>
<td>0.036056</td>
<td>0.020817</td>
<td>0.540433</td>
<td>0.719567</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>0.800000</td>
<td>0.060828</td>
<td>0.035119</td>
<td>0.648896</td>
<td>0.951104</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>0.750000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>0.684276</td>
<td>0.815724</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>0.660000</td>
<td>0.020518</td>
<td>0.011846</td>
<td>0.609030</td>
<td>0.710970</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>0.440000</td>
<td>0.020000</td>
<td>0.011547</td>
<td>0.390317</td>
<td>0.489683</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>0.730000</td>
<td>0.018028</td>
<td>0.010408</td>
<td>0.685217</td>
<td>0.774783</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>0.640000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.615159</td>
<td>0.664841</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>0.740000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.715159</td>
<td>0.764841</td>
</tr>
</tbody>
</table>
Appendix 21: ANOVA Table for Zinc Content

Univariate Tests of Significance for Zinc (Spreadsheet 10). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.510721</td>
<td>1</td>
<td>0.510721</td>
<td>1593.678</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>0.051131</td>
<td>14</td>
<td>0.003652</td>
<td>11.397</td>
<td>0.000000</td>
</tr>
<tr>
<td>Error</td>
<td>0.009614</td>
<td>30</td>
<td>0.000320</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 22: Descriptive Statistics for Zinc Content

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>Zn Content Mean</th>
<th>Zn Content Std. Dev.</th>
<th>Zn Content Std. Err.</th>
<th>Zn Content -95.00%</th>
<th>Zn Content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>0.106533</td>
<td>0.037156</td>
<td>0.005539</td>
<td>0.095370</td>
<td>0.117696</td>
</tr>
<tr>
<td>Melelembo M.</td>
<td>3</td>
<td>0.090000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.065159</td>
<td>0.114841</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>0.070000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.045159</td>
<td>0.094841</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>0.060000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.035159</td>
<td>0.084841</td>
</tr>
<tr>
<td>Ijihu inkanda</td>
<td>3</td>
<td>0.180000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.155159</td>
<td>0.204841</td>
</tr>
<tr>
<td>Makyugha 1</td>
<td>3</td>
<td>0.130000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.086973</td>
<td>0.173027</td>
</tr>
<tr>
<td>Makyugha 2</td>
<td>3</td>
<td>0.070000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.026973</td>
<td>0.113027</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>0.090000</td>
<td>0.034641</td>
<td>0.020000</td>
<td>0.003947</td>
<td>0.176053</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>0.120000</td>
<td>0.017321</td>
<td>0.010000</td>
<td>0.076973</td>
<td>0.163027</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>0.160000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>0.094276</td>
<td>0.225724</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>0.078000</td>
<td>0.002646</td>
<td>0.001528</td>
<td>0.071428</td>
<td>0.084572</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>0.090000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.090000</td>
<td>0.090000</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>0.090000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>0.024276</td>
<td>0.155724</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>0.120000</td>
<td>0.026458</td>
<td>0.015275</td>
<td>0.054276</td>
<td>0.185724</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>0.140000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.115159</td>
<td>0.164841</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>0.110000</td>
<td>0.010000</td>
<td>0.005774</td>
<td>0.085159</td>
<td>0.134841</td>
</tr>
</tbody>
</table>
Appendix 23: ANOVA Table for Total Soluble Solids (TSS)

Univariate Tests of Significance for TSS (Spreadsheet 11). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>126.6722</td>
<td>1</td>
<td>126.6722</td>
<td>5588.480</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>1.1778</td>
<td>14</td>
<td>0.0841</td>
<td>3.711</td>
<td>0.001257</td>
</tr>
<tr>
<td>Error</td>
<td>0.6800</td>
<td>30</td>
<td>0.0227</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 24: Descriptive Statistics for Total Soluble Solids (TSS)

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>TSS Content Mean</th>
<th>TSS Content Std. Dev.</th>
<th>TSS Content Std. Err.</th>
<th>TSS Content -95.00%</th>
<th>TSS Content +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>1.677778</td>
<td>0.205480</td>
<td>0.030631</td>
<td>1.616045</td>
<td>1.739511</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>1.866667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.723245</td>
<td>2.010088</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>1.433333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.289912</td>
<td>1.576755</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>1.766667</td>
<td>0.152753</td>
<td>0.088192</td>
<td>1.387208</td>
<td>2.146125</td>
</tr>
<tr>
<td>Ijihu inkundu</td>
<td>3</td>
<td>1.800000</td>
<td>0.200000</td>
<td>0.115470</td>
<td>1.303172</td>
<td>2.296828</td>
</tr>
<tr>
<td>Makyugha 1</td>
<td>3</td>
<td>1.766667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.623245</td>
<td>1.910088</td>
</tr>
<tr>
<td>Makyugha 2</td>
<td>3</td>
<td>1.700000</td>
<td>0.173205</td>
<td>0.100000</td>
<td>1.269735</td>
<td>2.130265</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>1.766667</td>
<td>0.208167</td>
<td>0.120185</td>
<td>1.249552</td>
<td>2.283781</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>1.466667</td>
<td>0.115470</td>
<td>0.066667</td>
<td>1.179823</td>
<td>1.753510</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>1.800000</td>
<td>0.264575</td>
<td>0.152753</td>
<td>1.142759</td>
<td>2.457241</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>1.766667</td>
<td>0.152753</td>
<td>0.088192</td>
<td>1.387208</td>
<td>2.146125</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>1.766667</td>
<td>0.152753</td>
<td>0.088192</td>
<td>1.387208</td>
<td>2.146125</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>1.833333</td>
<td>0.115470</td>
<td>0.066667</td>
<td>1.546490</td>
<td>2.120177</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>1.366667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.223245</td>
<td>1.510088</td>
</tr>
<tr>
<td>Muraru wh.</td>
<td>3</td>
<td>1.633333</td>
<td>0.208167</td>
<td>0.120185</td>
<td>1.116219</td>
<td>2.150448</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>1.433333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.289912</td>
<td>1.576755</td>
</tr>
</tbody>
</table>
Appendix 25: ANOVA Table for Total Titratable Acidity (TTA)

Univariate Tests of Significance for TA (Spreadsheet 12). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>142.6492</td>
<td>1</td>
<td>142.6492</td>
<td>14575.87</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>3.2156</td>
<td>14</td>
<td>0.2297</td>
<td>23.47</td>
<td>0.000000</td>
</tr>
<tr>
<td>Error</td>
<td>0.2936</td>
<td>30</td>
<td>0.0098</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 26: Descriptive Statistics for Total Titratable Acidity (TTA)

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>TA Level Mean</th>
<th>TA Level Std. Dev.</th>
<th>TA Level Std. Err.</th>
<th>TA Level -95.00%</th>
<th>TA Level +95.00%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>45</td>
<td>1.780444</td>
<td>0.282408</td>
<td>0.042099</td>
<td>1.695600</td>
<td>1.865289</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>1.600000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>1.351586</td>
<td>1.848414</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>1.933333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.789912</td>
<td>2.076755</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>2.000000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>1.751586</td>
<td>2.248414</td>
</tr>
<tr>
<td>Ijihu inkunda</td>
<td>3</td>
<td>2.200000</td>
<td>0.264575</td>
<td>0.152753</td>
<td>1.542759</td>
<td>2.857241</td>
</tr>
<tr>
<td>Makyuhu 1</td>
<td>3</td>
<td>1.700000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>1.451586</td>
<td>1.948414</td>
</tr>
<tr>
<td>Makyuhu 2</td>
<td>3</td>
<td>1.566667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.423245</td>
<td>1.710088</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>1.633333</td>
<td>0.115470</td>
<td>0.066667</td>
<td>1.346490</td>
<td>1.920177</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>1.700000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.700000</td>
<td>1.700000</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>2.300000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>2.051586</td>
<td>2.548414</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>1.633333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.489912</td>
<td>1.776755</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>2.206667</td>
<td>0.011547</td>
<td>0.006667</td>
<td>2.177982</td>
<td>2.235351</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>1.500000</td>
<td>0.050000</td>
<td>0.028868</td>
<td>1.375793</td>
<td>1.624207</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>1.500000</td>
<td>0.086603</td>
<td>0.050000</td>
<td>1.284867</td>
<td>1.715133</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>1.500000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>1.500000</td>
<td>1.500000</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>1.733333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>1.589912</td>
<td>1.876755</td>
</tr>
</tbody>
</table>
Appendix 27: ANOVA Table for pH

Univariate Tests of Significance for pH (Spreadsheet 13). Sigma-restricted Parameterization Effective Hypothesis Decomposition.

<table>
<thead>
<tr>
<th>Effect</th>
<th>SS</th>
<th>DF</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1406.724</td>
<td>1</td>
<td>1406.724</td>
<td>204201.8</td>
<td>0.000000</td>
</tr>
<tr>
<td>Cultivar</td>
<td>0.510</td>
<td>14</td>
<td>0.036</td>
<td>5.3</td>
<td>0.000066</td>
</tr>
<tr>
<td>Error</td>
<td>0.207</td>
<td>30</td>
<td>0.007</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix 28: Descriptive Statistics for pH

<table>
<thead>
<tr>
<th>Variety</th>
<th>N</th>
<th>pH Level</th>
<th>pH Level</th>
<th>pH Level</th>
<th>pH Level</th>
<th>pH Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>Std. Dev.</td>
<td>Std. Err.</td>
<td>-95.00%</td>
<td>+95.00%</td>
</tr>
<tr>
<td>Total</td>
<td>45</td>
<td>5.591111</td>
<td>0.127604</td>
<td>0.019022</td>
<td>5.552775</td>
<td>5.629448</td>
</tr>
<tr>
<td>Mlelembo M.</td>
<td>3</td>
<td>5.666667</td>
<td>0.115470</td>
<td>0.066667</td>
<td>5.379823</td>
<td>5.953510</td>
</tr>
<tr>
<td>Huti white</td>
<td>3</td>
<td>5.566667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.423245</td>
<td>5.710088</td>
</tr>
<tr>
<td>Kahuti</td>
<td>3</td>
<td>5.466667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.323245</td>
<td>5.610088</td>
</tr>
<tr>
<td>Ijihu inkunda</td>
<td>3</td>
<td>5.566667</td>
<td>0.152753</td>
<td>0.088192</td>
<td>5.187208</td>
<td>5.946125</td>
</tr>
<tr>
<td>Makyugha 1</td>
<td>3</td>
<td>5.666667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.523245</td>
<td>5.810088</td>
</tr>
<tr>
<td>Makyugha 2</td>
<td>3</td>
<td>5.700000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>5.451586</td>
<td>5.948414</td>
</tr>
<tr>
<td>Mchare laini</td>
<td>3</td>
<td>5.766667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.623245</td>
<td>5.910088</td>
</tr>
<tr>
<td>Huti green</td>
<td>3</td>
<td>5.733333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.589912</td>
<td>5.876755</td>
</tr>
<tr>
<td>Akondro M.</td>
<td>3</td>
<td>5.466667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.323245</td>
<td>5.610088</td>
</tr>
<tr>
<td>Njuru</td>
<td>3</td>
<td>5.633333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.489912</td>
<td>5.776755</td>
</tr>
<tr>
<td>Muraru M.</td>
<td>3</td>
<td>5.466667</td>
<td>0.115470</td>
<td>0.066667</td>
<td>5.179823</td>
<td>5.753510</td>
</tr>
<tr>
<td>Majimaji</td>
<td>3</td>
<td>5.466667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.323245</td>
<td>5.610088</td>
</tr>
<tr>
<td>Muraru</td>
<td>3</td>
<td>5.600000</td>
<td>0.100000</td>
<td>0.057735</td>
<td>5.351586</td>
<td>5.848414</td>
</tr>
<tr>
<td>Muraru Wh.</td>
<td>3</td>
<td>5.433333</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.289912</td>
<td>5.576755</td>
</tr>
<tr>
<td>Muraru red</td>
<td>3</td>
<td>5.666667</td>
<td>0.057735</td>
<td>0.033333</td>
<td>5.523245</td>
<td>5.810088</td>
</tr>
</tbody>
</table>