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ABSTRACT

Rabies is a zoonotic, viral disease that causes an acute brain inflammation in mammals. It is

transmitted through the saliva of infected animals via bites, scratches or contact with infectious

tissue. In this study, we formulate a deterministic model which measures the effects of culling

and vaccination on dog mediated transmission of rabies for urban areas near wildlife, using the

Arusha region as an example. Various parameter values were deduced from five years worth

of survey data on Arusha’s dog population and dog vaccination coverage from the Mbwa wa

Africa group, a Non Governmental Organisation and from records of dog bite incidence and

deaths cases from the Ministry of Livestock and Fisheries, Tanzania. Three distinct dog popu-

lations were assumed: domestic dogs, stray dogs and Pastoralist dogs. The basic reproduction

number R0 and effective reproduction number Re for rabies were computed to estimate trans-

mission and found to be 1.9 and 1.2 respectively. The disease free equilibrium ε0 was also

computed. When Re< 1 it implies that it is globally asymptotically stable in the feasible region

Φ. When Re> 1, it implies that, there is an equilibrium point which is endemic and locally

asymptotically stable. According to the sensitivity indices, infection rate of stray dogs βs is the

most positive sensitive parameter and natural death rate of stray dogs µs is the most negative

sensitive parameter. This study proposes putting much emphasis on the most positive and most

negative sensitive parameters when fighting against dog-rabies transmission in urban areas near

wildlife reservoirs. Under the assumption that a dog is immune to rabies for 3 years once vac-

cinated, the numerical simulations of the formulated model predict that the number of infected

stray dogs will increase to its highest in 2020. However, the number of infected domestic dogs

is expected to decline to its minimum in 2020, while the number of infected Pastoralist dogs will

stay similar the same as the previous years in 2020. These results show that, rabies incidence

for the infected stray dogs is the highest followed by the incidence for infected Pastoralist dogs

and lastly for the infected domestic dogs. The numerical simulation of the reproduction number

shows that dog mass vaccination is the most appropriate method in the long term to control

rabies transmission among dog sub-populations for urban areas near wildlife reservoirs such as

Arusha. Culling on the other hand, is effective at the moment in time when it is practiced, but

its protective effect quickly decreases after just 6 to 8 months when all culled dogs will have

been replaced by un-vaccinated new born puppies.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Problem

Rabies is a zoonotic, viral disease that causes an acute inflammation of the brain in humans

and other mammals (Tulu & Koya, 2017). Rabies transmission occur through the saliva of an

infected animal by being bitten or scratched, with dogs being the primary source of transmission

to humans (Gongal & Wright, 2011). Rabies is 100% fatal if not treated early enough before

onset of symptoms. People with violently intense rabies exhibit signs of hyperactivity, excitable

behaviour, hydrophobia (fear of water) and sometimes aerophobia (fear of drafts or of fresh air).

Death occurs after a few days due to cardio-respiratory arrest.

Rabies is still a worldwide one of the important health problems since it has became a re-

emergent infection especially for the developing countries (Wunner & Jackson, 2010). Over 150

countries in the world including territories, suffer from rabies disease, with Asia and developing

countries in Africa being the most affected (Ega et al., 2015). Especially poor communities are

mostly in the risk of being attacked with rabies due to increased interactions with domestic

mammals such as dogs (Ega et al., 2015).

Globally, rabies claims an estimated 60 000 human lives annually (Léchenne et al., 2016). This

is the highest number of deaths caused by any zoonotic disease (Hampson et al., 2009; Lembo

et al., 2010). In Tanzania, it claims the lives of around 1500 people yearly and those victims who

receive Post-Exposure Prophylaxis (PEP) after a bite, incur high costs (Mpolya et al., 2017).

There are two main ways that are used to control dog-mediated-rabies transmission, mass-dog

vaccination and culling, whereby the culling method is perceived to be easier and cheaper than

vaccination, especially in the presence of free-roaming and poorly socialized animals and in

areas where veterinarians and animal health workers have relatively little experience or confid-

ence in handling dogs (Morters et al., 2013).

However, despite control efforts, rabies remains a problem and more than 99% of all human

deaths from rabies occur in the low and middle income countries (LMIC) (Knobel et al., 2005).

In Tanzania, wildlife diseases are monitored, but not controlled and dogs are frequently in con-

tact with wild animals due to the fact that all the 17 national parks have no fences. Pastoralists,

such as the Maasai tribe, Sukuma tribe, Barbaig (Mang’ati) tribe, Taturu tribe and others, have
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access to grazing land in and around the national parks and they often have dogs helping to

protect their livestock which travel long distances with them. These dogs therefore can roam far

and encounter wildlife and other dogs, both of which can transmit rabies, in and around villages

and urban areas. Spill over of infectious diseases such as rabies is therefore a constant threat in

these areas.

For public health policy, it is therefore paramount to find the best control method to reduce

transmission and evaluate the impact of mass dog vaccination and culling respectively.

With regard to culling, according to Mbwa wa Africa, an animal welfare organization in Arusha

conducting research, every killed dog is replaced within 6 to 8 months by a new young dog as

resources such as food and shelter are freed-up. Another effect of culling on disease transmis-

sion arises from the fact that dogs are territorial and defend their resting and feeding grounds

in packs, killed members of a pack affect its ability to hold a territory, leading to more fighting

and mixing of the overall dog population. Killing a neutered, vaccinated dog, therefore leads to

having it replaced by an unvaccinated unneutered dog, increasing the number of potential hosts

and thus the risk for rabies outbreaks (Fissenebert, personal communication 2018).

Mass-dog vaccination on the other hand requires resources, trained personnel and time to ensure

up to 70% of the dog population is vaccinated in an area to break rabies transmission (Kaare

et al., 2009). Also, currently, vaccination is not free of charge, which leads to some dog owners

to object (poor awareness) (Kaare et al., 2009).

The best intervention method to control rabies in resource-poor countries and particularly in

areas such as Arusha remains debatable.

To shed light on the impact of the two control methods on rabies transmission and inform public

health policies, Mathematical modeling has been chosen as the best course of action.

Hence, Mathematical modeling can assist with coming up with a strategy to control a disease

and to decrease its incidence. The first epidemic model on rabies was formulated and solved by

Daniel Bernoulli in 1760 (Abta et al., 2014).

Various models have since been used to study different aspects of rabies transmission and con-

trol (Abta et al., 2014; Zhang et al., 2011). However, in the region of Arusha, with unique

factors influencing the decisions of officials, the best strategy to disrupt rabies transmission has

not been presented yet and human rabies incidence remains high. This is most likely due to

unique factors such as close contact to wildlife reservoirs by dogs. This is exacerbated by the

presence of 3 distinct dog populations, with Pastoralist dogs moving into National Parks with
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the livestock they are guarding and covering large distances and with a large population of stray

dogs present.

In the Arusha region, livestock travels from wildlife parks, where they graze, to suburban areas

and cities and also to market. The pastoralists and their animals travel always with many dogs

used for guarding the livestock against wild animals. These dogs can be classed as a specific

dog population and is here labelled as “Pastoralist dogs”.

In the Arusha region, there is a strong interest in keeping human rabies cases low, not only out

of humanitarian reasons, but also due to the importance of tourism in the area. This study has

come up with a model which will best describe the dynamics of rabies here and help decide on

the best technique to fight against the transmission of the disease in urban areas near wildlife

reservoirs, whereby Arusha region has been used as an example.

1.2 Statement of the Problem

In Africa, nearly 24 000 people die due to the rabies disease and this make it the continent

most affected by the disease (Tulu & Koya, 2017). However, this estimate is still considered

to be conservative. Thirty per cent (30%) to sixty per cent (60%) of dog bite victims in dog-

endemic areas are children less than 15 years of age. Unfortunately, the majority of these cases

go unreported to parents or health services (Addo, 2012).

Statistics in Tanzania show that rabies claims the life of around 1500 people annually and those

victims who receive PEP after a bite, incur high costs. Every year several rabies cases and

deaths are reported from the Arusha-Moshi area.

Although various Mathematical models describing the dynamics of rabies disease have been

developed, there is no model which best describes the dynamics of rabies disease based on the

sub-populations of dogs present in this area: domestic dogs, stray dogs and Pastoralist dogs in

urban areas near wildlife reservoirs. To be able to advise on the best strategy to control rabies

in a city like Arusha, an appropriate model has been developed. Here, dog mass vaccination

has been compared to dog culling as a disease control method in terms of its effects on rabies

transmission risk.
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1.3 Justification of the Study

This study has come up with a model which best describes the dynamics of rabies and it has

helped to decide on the best technique to fight against the disease transmission in urban areas

near wildlife reservoirs using Arusha region as an example. The model includes three dog sub-

populations: domestic dogs, stray dogs and Pastoralist dogs. This study will be beneficial to the

health officials, government officials and society at large. Here is a list of a few ways in which

the study will make a significant contribution to society.

(i) The findings of this study will help to suggest the best intervention for rabies control in

urban areas near wildlife reservoirs.

(ii) It will produce a model that can be used by authorities, to decide on the best practice

on studying the dynamics and controlling rabies transmission risks to humans by free-

roaming dogs.

(iii) The developed model can be applied to similar settings all over the world.

1.4 Objectives of the Study

1.4.1 General Objective

The main objective of this study is to develop a Mathematical model for the transmission and

control of rabies disease in dogs for urban areas near wildlife reservoirs, using the Arusha region

as an example to inform control policies.

1.4.2 Specific Objectives

(i) To develop the appropriate Mathematical model based on the specificity of the Tanzania

case.

(ii) To use the available secondary data on rabies cases, number of bites, vaccinations and

culling numbers to test the model and to estimate optimal values of parameters of the

model that give the best accuracy of the model regarding real statistical data.

(iii) To carry out theoretical and numerical analyses of the formulated model, such as stability

analysis, sensitivity analysis and numerical simulation.

4



(iv) To analyse the response of the dynamic system to applications of different control

strategies such as vaccination and culling through numerical simulation.

1.5 Research Questions

(i) Based on the specificity of the Arusha-Tanzania case, what is the most appropriate Math-

ematical model describing the transmission of dog rabies in the most adequate way in

accordance with the given statistical data?

(ii) What are the analysis and simulation results of the formulated model?

(iii) What are the optimal values of parameters of the derived model?

(iv) Based on culling and mass vaccination control methods, what is the dynamic system

response?

1.6 Significance of the Study

The findings of this study will redound to the benefit of society considering that, dog-rabies

disease has remained to be a burden over years. This justifies a need for the best strategy to

combat rabies transmission. Thus, if the government officials and health policy makers for

urban areas near wildlife reservoirs that will will apply the strategy proposed in this study

as per analysis results, dog-rabies transmission will be controlled and if the strategy will be

implemented over years, the disease shall get eliminated. For researchers, this research can be

used as a backup for referencing.

1.7 Delineation of the Study

Mathematical modeling of dog rabies transmission is very broad. This research did not intend

to cover all settings and all mammal sub-populations. Rather, it was very specific to urban

areas near wildlife reservoirs with Arusha region taken as example. This study focused on the

dogs only and more specifically to dog sub-populations namely: domestic dogs, stray dogs

and Pastoralist dogs. This study intended to develop a Mathematical model which so far has

helped to best understand the disease dynamics and hence come up with the best strategy to
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control the disease transmission among the specified dog sub-populations by comparing the

most commonly used strategies which are: dog mass vaccination and dog mass culling.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter explores and summarises various studies on the dynamics and control of rabies

disease transmission and developed disease transmission models.

2.2 Review of Previous Studies

For Tanzania, to start with, Hampson et al. (2009) conducted a study to assess whether global

elimination of canine rabies is possible. In this case, researchers relied on quantitative under-

standing of transmission dynamics in domestic dog populations, whereby they gathered data on

rabies exposures, PEP delivered and deaths in two rural districts in northwestern Tanzania from

2002 to 2006. Interestingly, the results of the study showed that global elimination of canine

rabies can be achieved through appropriately designed and sustained domestic dog vaccination

campaigns including areas near wildlife with a large number of carnivores. This study was

limited as no Mathematical model was formulated to study the disease dynamics. The endem-

icity of the rabies disease was determined with the help of the basic reproduction number. The

strategy suggested by this study can be applied specifically to areas near wildlife with large car-

nivores. Transmission between dog populations with accordance to the specificity of Tanzania

case was not considered.

Lembo et al. (2010) conducted a study on the feasibility of canine rabies elimination in Africa.

In this study, the researcher used a probability decision tree framework and the available data

on animal bites and human rabies deaths to estimate the burden of rabies in Africa and Asia.

The results of this study showed that rabies is an important disease whereby domestic dogs are

the main source of infection to humans. Very interesting information from this study is that,

vaccinating a large enough proportion will not only protect the vaccinated individuals but will

reduce transmission such that, on average, less than one secondary infection will result from

every 6 primary cases. From this the researcher suggested the domestic mass dog vaccination

as the most feasible way of combating rabies. This study considered transmission between

domestic dogs and humans. Mathematical modeling techniques were not incorporated. Also,

the method of fighting against transmission of dog rabies as suggested by the researchers, is
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specific for humans. The study did not suggest a strategy for combating rabies transmission

among dog sub populations for areas near wildlife reservoirs.

Zhang et al. (2011) conducted a study on analysing rabies disease in China. This study pro-

posed a deterministic model to study the transmission dynamics of rabies in China. The model

consisted of Susceptible, Exposed, Infectious and Recovered (SEIR) dogs and humans. It de-

scribes the spread of rabies among dogs and from infectious dogs to humans. Data reported by

the Chinese Ministry of Health were used to test the model. The basic reproduction number

(R0) was approximated to 2 and this predicted that the number of human rabies in China was

decreasing but may reach another peak around 2030. This study was limited to generally dogs

and humans. One might be interested to deal with dog sub groups of a particular setting and

study the model dynamics among dog sub populations. Also, one can be interested in length-

ening the time limit application of the model, by incorporating the vaccination class due to the

fact that once an individual become infected, what follows is death because of the incurability

of the rabies disease.

Hou et al. (2012) proposed a Susceptible-Exposed-Infectious-Vaccinated (SEIV) model for the

dog-human transmission of rabies taking both domestic and stray dogs into consideration. The

results of their study showed that cases of rabies in Guangdong province in China would de-

crease gradually in the next few years and increase slightly afterward, which indicates that

rabies cannot be controlled or eradicated by using the often used culling method. Based on

their study results, the authors suggested that rabies control and prevention strategies should

include public education and awareness about rabies, increase of the domestic dog vaccination

rate and reduction of the stray dog population. Results of this study cannot be directly applied

to Arusha, as it lacks one of the very important group of dogs present in Tanzania. As a limit-

ation to this study, one of the very important group of dogs was not incorporated. That is the

Livestock Guardian Dogs (LGDs). With specificity to Tanzania case in Arusha region, these are

the Pastoralist dogs (Cleaveland et al., 2007). Pastoralist dogs move in two major aspects. That

is when they escort livestock to the market and also for grazing. This study did not consider this

very important aspect which influence rabies transmission among Pastoralist dogs (LGDs used

by Pastoralist tribe in Arusha region) and livestock.

In the United States (US), Keller et al. (2013) conducted a study to model the spread of rabies

in raccoons across a heterogeneous and continuous landscape as a complex geographical setting

in New York State. The heterogeneities included in this study are lakes, mountains and main
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waterways. Numerical simulation of a Susceptible-Exposed-Infectious (SEI) space-continuous

model for the spread of rabies with the inclusion of the diffusion term was used. In this study,

the researchers found that in areas with a setting similar to this setting and also with high

human population density, infectious animals are easily identified and hence can be removed.

So researchers suggested that one of the possibilities to control rabies could be to reduce the

infection rate in these areas as a consequence of a high level of surveillance. In this study, the

researchers did not consider the situation that when an exposed animal gets vaccinated before

it develops symptoms, it is considered as vaccinated and after a time when symptoms could be

observed if it did not get vaccinated, it shifts to the susceptible class. Also, the study considered

raccoons in their general aspect and not in terms of their subgroups.

Townsend et al. (2013) conducted a study on modeling dog rabies in poorly resourced coun-

tries using a stochastic simulation model with inclusion of proper and effective surveillance and

detection probabilities. The researchers found that, rabies disease will be eliminated through a

proactive strategy of continued mass vaccination over a 2-year period if that is followed by 6

consecutive months without any detected cases. Further, the researchers in this study recom-

mended minimum requirements for surveillance capacity including detection of at least 5% and

preferably 10% of all cases. In this study, the researchers were interested in dealing with poorly

resourced countries setting. Conversely, one can be interested in considering a setting such as

areas near wildlife reservoirs whereby rabies infections are largely persisting.

Abta et al. (2014) conducted a study to analyse the dynamics and control of rabies disease trans-

mission. Researchers proposed a Susceptible-Infectious-Recovered (SIR) model with delay as

a bifurcation parameter, to assess the impact of some control measures by reformulating the

model as an optimal control problem with vaccination and treatment. The results of the study

revealed that the optimal strategy becomes more effective when vaccination and other treatment

strategies are combined. One of the shortcoming to this model is that, it does not incorporate

the exposed class of dogs. When a susceptible animal is bitten or scratched by a rabies infected

animal, it become exposed and after developing symptoms it become infected.

Ega et al. (2015) in their study on modeling the dynamics rabies transmission among dogs, live-

stock and humans found that transmission of rabies shall increase in Addis Ababa in Ethiopia

including nearby areas and will max out in 2024 and 2026 for both human and livestock re-

spectively. This setting is very similar to the Arusha region. The researcher suggested the use

of combination of dog mass vaccination and culling interventions to be able to eradicate rabies
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in Ethiopia. The model in study did not consider the dynamics of rabies disease among dogs.

Rather, it did not consider rabies transmission in urban areas near wildlife reservoirs. Another

limitation observed in this study is that, the researchers did not consider vaccinated group of

dogs as a different class.

In other places such as US, other mammals than dogs are the main rabies reservoirs. For ex-

ample, Elmore et al. (2017) conducted a study on management and modeling approaches for

controlling raccoon rabies in wildlife areas in the US. The study identified Oral Rabies Vac-

cination (ORV) programs as one of the methods for managing rabies. Also, the study reveals

that since 1978 it has been used to eliminate the virus from red foxes in Western Europe and

reduced the disease incidence in central Europe. Other rabies management methods identified

by this study include; Trap Vaccine Release (TVR) (for boosting population immunity), pop-

ulation reduction and fertility control. Modeling approaches to understanding wildlife rabies

identified by this paper include; simple epidemic models such as SIR, SIS and SEIR, host het-

erogeneity models, multi-host/multi-pathogen models, seasonal models and spatial models. A

detailed discussion up on which model best fits a particular setting is missing in this study. The

researchers intended to give out the techniques to be used when fighting against rabies trans-

mission but rather they were not specific to which model that best fits in areas similar the stated

setting and give out the theoretical and numerical analyses results of the model. Additionally, it

is unfortunate that ORV cannot be recommended because the exactly amount a dog consumes

cannot be assured, because dogs share their food. No universal bait containing oral vaccination

has been identified to date (Cliquet et al., 2018). What is exciting in this study is that, the re-

searchers acknowledged the contribution of Mathematical modeling in understanding of disease

dynamics.

Ruan (2017) reviewed some spatiotemporal epidemic models for rabies among animals. The

study provided a diminutive review on some reaction-diffusion models describing the spatial

spread of rabies among animals. The researcher specifically introduced the SEI model for the

spatial transmission of rabies among foxes and spatiotemporal epidemic model for rabies among

raccoons. Results showed that the spatial spread of rabies is due to the result of the dispersal of

the host animals. Also, computed parameters from the SEI model indicated that with the move-

ment of dogs, there exist traveling waves in every subgroup of dogs. Thus, the dispersal of dogs

induces the epidemic waves of rabies among the dog population. In this case, the researcher

provided reasons for studying the dynamics of the introduced models. The important compon-
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ents that the researcher mentioned are stability analysis, the existence of traveling solutions and

threshold dynamics. One of the limitation to this study is that it is too general for our purpose.

That is, it does not state the specific setting(s) to which the model fit for application. Also, the

model miss one of the important classes. The vaccinated class.

In the N’Djamena, Chad, Laager et al. (2018) conducted a study to assess the impact of indi-

vidual level heterogeneity on outbreak probability, effectiveness of vaccination campaigns and

likely time to resurgence after a campaign. In this study, the researchers used empirical contact

network data to develop a contact network model of dog rabies transmission incorporated into

the deterministic model for rabies. At the end it showed that domestic dog mass vaccination

(at least 70% of the population) would be sufficient to interrupt transmission for 6 years. Also,

based on the analysis results, researchers recommended targeting dogs for vaccination based on

the degree of centrality. Moreover, this study reveals that vaccination based on movement also

reduces the outbreak probabilities and sizes. One of the shortcomings observed in this study is

that, it does not specify which deterministic model applied. Adding to that, it fails to indicate

the dynamics of the disease.

Chidumayo (2018) conducted a study on system dynamics modeling approach to explore the

effect of dog demography on rabies vaccination coverage in Africa. In this study, a system

dynamics approach was adopted to build a dog population model to simulate the effects of

demographic processes on rabies vaccination coverage. The results of this study indicated that

the vaccination coverage and adjusted vaccination coverage remained over 30% and 20% re-

spectively at 12 months if annual mass vaccinations achieved at least 70% coverage. What

inspires in this study is that, model validation was done using simulations techniques (though

non mathematical) that involved studying the model behavior in relation to the data on owned

dog population size, age specifying mortality rates, mean litter size, annual female reproduction

probability, proportion of spayed females and proportion of: male, female, young (less than 12

months) and adult (more than 12 months) dogs from Machakos district in Kenya. From this

study, one can see that there is no comparison between different strategies to combat rabies.

The researchers did not show why they suggested mass vaccination as a strategy to combat ra-

bies transmission apart from others. Also, the suggested strategy is not specific to a particular

setting because methods vary with different factors one including setting. Further, Mathemat-

ical modeling approach which has always been supported by various scholars in understanding

the disease dynamics and predicting is little bit missing in this study.
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CHAPTER THREE

MATERIALS AND METHODS

3.1 Model Formulation

In this study, a Mathematical model for dog rabies disease for areas near wildlife reservoirs

was developed. The model has measured the effect of culling and vaccination. Statistical data

analysis, specifically least square statistics, has been used to fit parameters.

The researcher developed a basic transmission risk model tailored to areas with similar settings

as Arusha, which will measure the effect of culling and vaccination. The formulated model

consists of three dog sub-populations, which are domestic dogs, stray dogs and Pastoralist dogs.

Domestic dogs (canis familiaris) being defined as the dogs that live in a close relationship

with human being (Dürr et al., 2017), stray dogs being defined as the publicly roaming dogs

(Totton et al., 2010) and Pastoralist dogs being defined as Livestock Guardian Dogs (LGDs) for

Pastoralist tribe in Arusha region (Cleaveland et al., 2007). Each sub-population is categorized

into four classes which are Susceptible, Exposed, Infectious and Vaccinated and hence a SEIV

model for rabies transmission description has been formulated.

The susceptible class consists of individuals, who do not have rabies but they may get infected

with rabies once they have contact with an infectious dog. The exposed class consists of indi-

viduals who have contracted the virus via bites or scratches by another rabid dog but they do not

show signs and symptoms of being affected with the disease yet. The infectious class consists

of individuals who were previously exposed to the disease and later they developed clinical

symptoms of rabies. They can now infect other mammals and will die due to the nature of

the disease. The vaccinated class of individuals are the ones who were formally susceptible or

exposed to the disease but they got vaccinated. The formulated model is a system of differential

equations, which has been derived from the compartmental diagram in Fig. 1.

Theoretical analysis of the model was done by using the MATHEMATICA program while nu-

merical analysis of the model was done by using MATLAB. All model parameters are non

negative. They’re listed and described in Table 1.
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Table 1: Parameter Description

Parameter Description

αd, αs, αm The annual births of domestic dog, stray dog and Pastoralist dog popu-

lations respectively

ωd, ωs, ωm The vaccination immunity loss rate for domestic dog, stray dog and

Pastoralist dog populations respectively.

µd, µs, µm Natural death rate of domestic dog, stray dog and Pastoralist dog popu-

lations respectively

βd, βs, βm Rate at which infectious stray dogs infect susceptible domestic dog,

stray dog and Pastoralist dog populations respectively

ρd, ρs, ρm The incubation period in domestic dog, stray dog and Pastoralist dog

populations respectively

σd, σs, σm Vaccination rate of susceptible domestic dog, stray dog and Pastoralist

dog populations respectively

ψmd, ψsd, ψds, ψms Number of dogs migrated from Pastoralist to domestic, stray to do-

mestic, domestic to stray and Pastoralist to stray dogs’ populations re-

spectively

µc Average culling rate of stray dogs

Data on bite injuries provide a useful and accessible source of epidemiological information

that could be used effectively to improve rabies surveillance in human and animal populations,

detect trends in disease incidence, improve the allocation of medical and veterinary resources

and assess the impacts of rabies control measures (Cleaveland et al., 2014).

Five years worth of survey data from Mbwa wa Africa on Arusha’s dog population and vac-

cination coverage, data on dog bite and rabies deaths and the number of dogs killed per year

from the Ministry of Livestock and Fisheries has been used for the model analysis and model

validation.

Based on the results of the analysis, the researcher provides a recommendation for a model to

describe the dynamics and transmission control of rabies disease in the region. This has helped

to inform on the best method to control the transmission in urban areas near wildlife reservoirs.
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3.2 Model Assumptions

The basic transmission risk model will be developed under the assumptions below:

(i) The susceptible populations are recruited by birth rate α;

(ii) Any kind of dog which is bitten or scratched or in contact with the saliva an infectious

dog via any open part of its body, transforms to exposed;

(iii) Dogs in every group are equal in natural death;

(iv) Populations are homogeneous in a sense that every dog has a probability of being bitten

or scratched by another dog and thereby contracting the disease;

(v) Once a dog reaches the infectious stage there is no recovery and death is 100% certain;

(vi) Pastoralist and domestic dog populations are controlled by humans, this means population

growth is restricted; and

(vii) We also assume a closed system where no new infected animals enter a dog population;

3.3 Model Compartment and Dynamics

From the assumptions above, variables definitions and parameters descriptions, below is the

model compartment diagram which illustrates the dynamics of rabies transmission among do-

mestic dogs, stray dogs and Pastoralist dogs as shown in Fig. 1.
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Figure 1: Flow Diagram for Rabies Transmission Among Domestic Dogs, Stray Dogs and

Pastoralist Dogs with Parameters as Described in Table 1

The model parameters are positive. αi where, i = d, s,m represents the annual birth rates

of domestic dogs, stray dogs and Pastoralist dogs populations respectively. The parameters ρi

where, i = d, s,m represent the latency rates of domestic dogs, stray dogs and Pastoralist dogs

so that 1/ρi where, i = d, s,m are the respective incubation periods.

3.4 Model Equations

From the model compartment we formulate a set of twelve differential equations as shown in

equation 3.1.
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dSd
dt

= αd + ωdVd + ψsd + ψmd − µdSd − σdSd − ψds − βdSdIs
dEd
dt

= βdSdIs − µdEd − ρdEd
dId
dt

= ρdEd − (µd + δd)Id

dVd
dt

= σdSd − ωdVd − µdVd

dSs
dt

= αs + ωsVs + ψds + ψms − σsSs − (µs + µc)Ss − ψsd − βsSsIs
dEs
dt

= βsSsIs − µsEs − ρsEs
dIs
dt

= ρsEs − (µs + δs)Is

dVs
dt

= σsSs − ωsVs − µsVs

dSm
dt

= αm + ωmVm − µmSm − ψms − ψmd − σmSm − βmSmIs
dEm
dt

= βmSmIs − µmEm − ρmEm
dIm
dt

= ρmEm − (µm + δm)Im

dVm
dt

= σmSm − ωmVm − µmVm

(3.1)

We add up the systems from each class to get the respective total populations derivatives as

shown below; we know that:

Nd(t) = Sd(t) + Ed(t) + Id(t) + Vd(t)

Ns(t) = Ss(t) + Es(t) + Is(t) + Vs(t)

Nm(t) = Sm(t) + Em(t) + Im(t) + Vm(t)

(3.2)

By applying
d

dt
to both sides we have:

dNd(t)

dt
=
dSd(t)

dt
+
dEd(t)

dt
+
dId(t)

dt
+
dVd(t)

dt
dNs(t)

dt
=
dSs(t)

dt
+
dEs(t)

dt
+
dIs(t)

dt
+
dVs(t)

dt
dNm(t)

dt
=
dSm(t)

dt
+
dEm(t)

dt
+
dIm(t)

dt
+
dVm(t)

dt

(3.3)

which implies:
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dNd(t)

dt
= αd + ψsd + ψmd − µdSd − ψds − µdEd − (µd + δd)Id − µdVd

dNs(t)

dt
= αs + ψds + ψms − (µs + µc)Ss − ψsd − µsEs − (µs + δs)Is − µsVs

dNm(t)

dt
= αm − µmSm − ψms − ψmd − µmEm − (µm + δm)Im − µmVm

(3.4)

Where Ni, i = d, s,m is the total of domestic dogs, stray dogs and Pastoralist dogs.

3.4.1 Invariant Region

The model represented by the system 3.1 of differential equations which deals with domestic

dogs, Stray dogs and Pastoralist dogs, will be analysed in the feasible region Φ and all state

variables and parameters are assumed to be positive for all t≥0. The invariant region will be

obtained through Theorem 3.1.

Theorem 3.1

All solutions of the system 3.1 are contained in the region Φ ∈ R12 and Φ = Φd∪Φs∪Φm where

Φd = {(Sd, Ed, Id, Vd) ∈ R4
+ : 0≤Nd≤

αd
µd
}

Φs = {(Ss, Es, Is, Vs) ∈ R4
+ : 0≤Ns≤

αs
µs
}

Φm = {(Sm, Em, Im, Vm) ∈ R4
+ : 0≤Nm≤

αm
µm
}

(3.5)

and Φ is the positive invariant region.

Proof

Consider the first part of the system 3.1 of differential equations. The population for domestic

dogs is:

dNd(t)

dt
=
dSd(t)

dt
+
dEd(t)

dt
+
dId(t)

dt
+
dVd(t)

dt
(3.6)

Therefore, the sum of total population of domestic dogs will satisfy:

dNd(t)

dt
= αd + ψsd + ψmd − ψds − µdNd − δdId (3.7)
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With an absence of rabies disease:

Id = 0 =⇒ δdId = 0 (3.8)

Thus,

dNd(t)

dt
≤αd + ψsd + ψmd − ψds − µdNd

dNd(t)

dt
+ µdNd≤αd + ψsd + ψmd − ψds

(3.9)

This is a first order linear differential inequality with integrating factor eµdt.

eµdt
dNd(t)

dt
+ eµdtµdNd≤(αd + ψsd + ψmd − ψds)eµdt

d

dt
(eµdtNd(t))≤(αd + ψsd + ψmd − ψds)eµdt

eµdtNd(t)≤
αd + ψsd + ψmd − ψds

µd
eµdt + C

(3.10)

Dividing by eµdt both sides of the inequality we have:

Nd(t)≤
αd + ψsd + ψmd − ψds

µd
+ Ce−µdt (3.11)

We now apply initial conditions when t = 0.

Nd(t = 0) = Nd(0)

Nd(0)≤αd + ψsd + ψmd − ψds
µd

+ C

Nd(0)− αd + ψsd + ψmd − ψds
µd

≤C

(3.12)

Substituting this expression into 3.11 we now have:

Nd(t)≤
αd + ψsd + ψmd − ψds

µd
+ (Nd(0)− αd + ψsd + ψmd − ψds

µd
)e−µdt (3.13)

As t increases and become larger and larger the expression Nd(0)− αd+ψsd+ψmd−ψds

µd
)e−µdt goes

to zero.

Thus we have:

Nd(t)≤
αd + ψsd + ψmd − ψds

µd
(3.14)

Therefore:

0≤Nd≤
αd
µd

(3.15)
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This is the boundary for the domestic dog population. This implies that Nd(t)≥0 ∀t.

Similarly, if we consider the total of the stray dog and the Pastoralist dog populations of sub-

systems of the system 3.1 we get the same results as in 3.15. That is Ns(t)≥0 and Nm(t)≥0

∀t.

Hence the set

{(Sd, Ed, Id, Vd ∈ R4
+), (Ss, Es, Is, Vs ∈ R4

+), (Sm, Em, Im, Vm ∈ R4
+)}

is positively invariant set in Φ.

3.4.2 Positivity of the Solution

For the model system 3.1 to be epidemiologically meaningful and well posed, we need to prove

that all state variables are non-negative ∀t ≥ 0.

Theorem 3.2

Let Sd(0), Ss(0), Sm(0)>0, Ed(0), Es(0), Em(0) > 0, Id(0), Is(0), Im(0) > 0, Vd(0), Vs(0), Vm(0) ∈

Φ. Then the solution set Sd(t), Ed(t), Id(t), Vd(t), Ss(t), Es(t), Is(t), Vs(t), Sm(t), Em(t), Im(t), Vm(t)

of the model system 3.1 is positive ∀t≥0.

Proof

From the first equation of system 3.1 we have:

dSd
dt

= αd + ωdVd + ψsd + ψmd − ψds − (µd + σd + βdIs)Sd (3.16)

This can be written as:

dSd
dt
≥− (µd + σd + βdIs)Sd (3.17)

This is a first order linear differential inequality. By separation of variables we have:

dSd
Sd
≥− (µd + σd + βdIs)dt (3.18)

With the absence of rabies disease:

dSd
Sd
≥− (µd + σd)dt (3.19)

Through integrating both sides we get:
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∫
1

Sd
dSd≥−

∫
(µd + σd)dt (3.20)

This gives:

lnSd≥− (µd + σd)t

Sd≥Sd(0)e−(µd+σd)t > 0
(3.21)

We have shown that Sd is positive ∀t≥0.

Using similar process we have:

Ed≥Ed(0)e−(µd+ρd)t > 0,∀t≥0

Id≥Id(0)e−(µd+δd)t > 0,∀t≥0

Vd≥Vd(0)e−(ωd+µd)t > 0,∀t≥0

Ss≥Ss(0)e−(σs+µs+µc)t > 0,∀t≥0

Es≥Es(0)e−(µs+ρs)t > 0,∀t≥0

Is≥Is(0)e−(µs+δs)t > 0,∀t≥0

Vs≥Vs(0)e−(ωs+µs)t > 0,∀t≥0

Sm≥Sm(0)e−(µm+σm)t > 0,∀t≥0

Em≥Em(0)e−(µm+ρm)t > 0,∀t≥0

Im≥Im(0)e−(µm+δm)t > 0,∀t≥0

Vm≥Vm(0)e−(ωm+µm)t > 0,∀t≥0

(3.22)

Therefore, the solution set {Sd(t), Ed(t), Id(t), Vd(t), Ss(t), Es(t), Is(t), Vs(t), Sm(t), Em(t),

Im(t), Vm(t)} of the model is positive ∀t > 0.

3.5 Model Analysis

3.5.1 Disease Free Equilibrium (DFE) Points

The disease-free equilibrium point is defined as the point at which no disease is present in the

population. In the absence of attack or in the absence of rabies, Ed = Id = Vd = Es = Is =

Em = Im = Vm = 0. Then, the DFE ε0 will be ε0 = (s0d, 0, 0, 0, s
0
s, 0, 0, V

0
s , s

0
m, 0, 0, 0)
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where:
S0
d =

αd + ψsd + ψmd − ψds
µd + σd

S0
s =

(µs + ωs) (ψds + ψms + αs − ψsd)

µc (µs + ωs) + µs (µs + σs + ωs)

V 0
s =

αs (ψds + ψms + αs − ψsd)

µc (µs + ωs) + µs (µs + σs + ωs)

S0
m =

αm − ψms − ψmd
µm + σm

(3.23)

The disease free equilibrium points for stray dogs populations that is Vs cannot be zero because

once susceptible stray dog is vaccinated, it transfers to the vaccinated class. Hence the disease

free equilibrium point of the system 3.1 exists and it is given by:

ε0 = (
αd + ψsd + ψmd − ψds

µd + σd
, 0, 0, 0,

(µs + ωs) (ψds + ψms + αs − ψsd)

µc (µs + ωs) + µs (µs + σs + ωs)
, 0, 0,

αs (ψds + ψms + αs − ψsd)

µc (µs + ωs) + µs (µs + σs + ωs)
,
αm − ψms − ψmd

µm + σm
, 0, 0, 0)

(3.24)

3.5.2 The Basic Reproduction Number R0

The basic reproduction number R0 can be defined as the expected number of secondary in-

fections produced by an index case in a completely susceptible population (Van den Driessche

& Watmough, 2008). The basic reproduction number can be used to assess whether a newly

infectious disease can invade a population (Allen & Van den Driessche, 2008). If R0 < 1 it im-

plies that, on average one infected individual brings less than one new infected individual into

the population during its infectious period and hence, the infection cannot grow. Conversely,

if R0 > 1 it indicates that, on average, each infected individual creates, more than one new

infection and the disease can raid the population. It is also important when analysing important

parameters which help to understand dynamics of the disease and stability analyses of DFE and

endemic equilibrium points. To compute R0 it is crucial to pinpoint new infections from all

other changes in the population. We used the next generation matrix method as proposed by

Van den Driessche and Watmough (2008). We considered system 3.1 without vaccination i.e.

ω = σ = 0. In this case we also do not have culling, which means µc = 0. Let fi(x) be the rate

of appearance of new infection in compartment i, v−i (x) be the rate of transfer of individuals

out of compartment i and v+i (x) be the rate of transfer of individuals into compartment i by all

other means and it is assumed that each function is continuously differentiable at least twice

in each variable. The disease transmission model of system 3.1 consists of non-negative initial
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conditions together with the following system of equations:

ẋ = Fi(X) = fi(x)− vi(x), i = 1, ..., 6

where vi = v−i − v+i

We now consider expressions in which the infection is in progress. These are:

Ed, Id, Es, Is, Em, Im

dEd
dt

= βdSdIs − (µd + ρd)Ed

dId
dt

= ρdEd − (µd + δd)Id

dEs
dt

= βsSsIs − (µs + ρs)Es

dIs
dt

= ρsEs − (µs + δs)Is

dEm
dt

= βmSmIs − (µm + ρm)Em

dIm
dt

= ρmEm − (µm + δm)Im

(3.25)

By reorganizing equations of system 3.1 with the absence of vaccination from exposed to infec-

tious class of domestic dog, stray dog and Pastoralist dog populations we have a system 3.25 of

equations. Let F be a non-negative n× n matrix and V be a non-singular N-matrix such that:

F =
[
∂fi(ε0)
xj

]
and

V =
[
∂vi(ε0)
xj

]
for 1≤i, j≤n. The point ε0 is the DFE point in 3.24 with no vaccination where:

fi =



βdSdIs

0

βsSsIs

0

βmSmIs

0
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and

vi =



(µd + ρd)Ed

(µd + δd)Id − ρdEd
(µs + ρs)Es

(µs + δs)Is − ρsEs
(µm + ρm)Em

(µm + δm)Im − ρmEm


We consider classes in which the disease is in progress. Employing the Linearization approach,

we get the Jacobian matrices of f and v at the disease free equilibrium point ε0 as shown below:

F =



0 0 0 βd(αd+ψsd+ψmd−ψds)
µd

0 0

0 0 0 0 0 0

0 0 0 βs(αs+ψds+ψms−ψsd)
µs

0 0

0 0 0 0 0 0

0 0 0 βm(αm−ψms−ψmd)
µm

0 0

0 0 0 0 0 0



V =



µd + ρd 0 0 0 0 0

−ρd µd + δd 0 0 0 0

0 0 µs + ρs 0 0 0

0 0 −ρs µs + δs 0 0

0 0 0 0 µm + ρm 0

0 0 0 0 −ρm µm + δm


Now solving for V −1 we get:

V −1 =



1
µd+ρd

0 0 0 0 0

− −µsρd−ρsρd
(δd+µd)(µd+ρd)(µs+ρs)

1
δd+µd

0 0 0 0

0 0 1
µs+ρs

0 0 0

0 0 ρs
(δs+µs)(µs+ρs)

1
δs+µs

0 0

0 0 0 0 1
µm+ρm

0

0 0 0 0 ρm
(δm+µm)(µm+ρm)

1
δm+µm


We now multiply F and V −1 and then compute the eigen values of the resulting matrix FV −1

and hence we choose the maximum eigen values as the basic reproduction number.
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FV −1 =



0 0 βdρs(αd−ψds+ψmd+ψsd)
µd(δs+µs)(µs+ρs)

βd(αd−ψds+ψmd+ψsd)
µd(δs+µs)

0 0

0 0 0 0 0 0

0 0 βsρs(αs+ψds+ψms−ψsd)
µs(δs+µs)(µs+ρs)

βs(αs+ψds+ψms−ψsd)
µs(δs+µs)

0 0

0 0 0 0 0 0

0 0 βmρs(αm−ψmd−ψms)
µm(δs+µs)(µs+ρs)

βm(αm−ψmd−ψms)
µm(δs+µs)

0 0

0 0 0 0 0 0


Now the eigen values of matrix FV −1 are:



0

0

0

0

0

βsρs(ψds+ψms+αs−ψsd)
µs(δs+µs)(µs+ρs)


Now from that we have the basic reproduction number R0 which is given by:

R0 =
βsρs (ψds + ψms + αs − ψsd)

µs (δs + µs) (µs + ρs)
(3.26)

From the equation 3.26, we see that all parameters depend on stray dog population. This implies

that, putting more effort into the stray dog population combating rabies transmission is very

crucial.

3.5.3 The Effective Reproduction Number Re

The effective reproduction number is defined as the average number of secondary cases that

one index case generates over the course of its infectious period (Cowling et al., 2010). The

prevalence of infection increases or decreases according to whether Re is greater than or less

than one, respectively (Cintrón-Arias et al., 2009). Here we consider the presence of control

methods in our case we have vaccination and culling. In this case ω, µc and σ will not take on

zero values, so we include them and follow the same procedures as we did in computing R0 and

this will result to the following Eigen values of new matrix FV −1 which are:

24





0

0

0

0

0

βsρs(µs+ωs)(ψds+ψms+αs−ψsd)
(δs+µs)(µs+ρs)(µcωs+µcµs+µsσs+µsωs+µ2s)


Therefore; The spectral radius (dominant eigenvalue) of FV −1 denoted by Re = ρ(FV −1) will

be obtained by:

Re =
βsρs (µs + ωs) (ψds + ψms + αs − ψsd)

(δs + µs) (µs + ρs) (µcωs + µcµs + µsσs + µsωs + µ2
s)

(3.27)

Numerical computations ofR0 andRe were done using the data collected from Mbwa wa Africa

and the Ministry of Livestock and Fisheries of The United Republic of Tanzania (URT). We now

substitute the values of the parameters to the expression found in 3.26 and 3.27.

R0 =
(1.7864× 10−4)× 0.83778234× (56 + 35 + 2.5× 103 − 17)

0.32× (0.22 + 0.32)× (0.32 + 0.83778234)
≈ 1.9 (3.28)

With no any control strategy,R0 is greater than one which shows that the disease will still invade

in the population.

Re =
(1.7864× 10−4)× 0.83778234× 0.42(56 + 35 + 2.5× 103 − 17)

0.54× 1.15778234(0.001792 + 0.0057344 + 0.0805568 + 0.032 + 0.322)
≈ 1.2

(3.29)

3.6 Stability Analysis

3.6.1 Local Stability of the DFE Points

In this sub-section we are going to use the trace and determinant of the Jacobian matrix of

system 3.1 at DFE to examine the local stability of the disease free equilibrium points.

Theorem 3.3

If Re < 1, then:

(i) The disease-free equilibrium ε0 of system 3.1 is locally asymptotically stable; and
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(ii) The disease-free equilibrium ε0 of system 3.1 is globally asymptotically stable in the

region φ.

We have the disease free equilibrium point from 3.24 given by:

ε0 = (
αd + ψsd + ψmd − ψds

µd + σd
, 0, 0, 0,

(µs + ωs) (ψds + ψms + αs − ψsd)

µc (µs + ωs) + µs (µs + σs + ωs)
, 0, 0,

αs (ψds + ψms + αs − ψsd)

µc (µs + ωs) + µs (µs + σs + ωs)
,
αm − ψms − ψmd

µm + σm
, 0, 0, 0)

(3.30)

Next we derive the Jacobian matrix of the system 3.1 by differentiating every equation in the

system 3.1 in terms of state variables Sd, Ed, Id, Vd, Ss, Es, Is, Vs, Sm, Em, Im, Vm to have:

Jε0 =



− (µd + σd) 0 0 ωd 0 0 A∗ 0 0 0 0 0

0 − (µd + ρd) 0 0 0 0 B∗ 0 0 0 0 0

0 ρd − (δd + µd) 0 0 0 0 0 0 0 0 0

σd 0 0 − (µd + ωd) 0 0 0 0 0 0 0 0

0 0 0 0 G 0 C∗ ωs 0 0 0 0

0 0 0 0 0 − (µs + ρs) D∗ 0 0 0 0 0

0 0 0 0 0 ρs − (δs + µs) 0 0 0 0 0

0 0 0 0 σs 0 0 − (µs + ωs) 0 0 0 0

0 0 0 0 0 0 e 0 − (µm + σm) 0 0 ωm

0 0 0 0 0 0 F 0 0 − (µm + ρm) 0 0

0 0 0 0 0 0 0 0 0 ρm − (δm + µm) 0

0 0 0 0 0 0 0 0 σm 0 0 − (µm + ωm)


where:

A∗ =
−βd(αd − ψds+ ψmd+ ψsd)

µd + σd

B∗ =
βd(αd − ψds+ ψmd+ ψsd)

µd + σd

C∗ =
−βs(µs + ωs)(αs + ψds+ ψms− ψsd)

µc(µs + ωs) + µs(µs + σs + ωs)

D∗ =
βs(µs + ωs)(αs + ψds+ ψms− ψsd)

µc(µs + ωs) + µs(µs + σs + ωs)

E =
−βm(αm − psimd− ψms)

µm + σm

F =
βm(αm − psimd− ψms)

µm + σm

G = −(µc + µs + σs)

(3.31)

The eigenvalues of the Jacobian Matrix are:
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−δd − µd
−µd

−δm − µm
−µm
−µd − ρd
−µm − ρm

1
2

(
−
√

4D∗ρs + (δs − ρs) 2 − δs − 2µs − ρs
)

1
2

(√
4D∗ρs + (δs − ρs) 2 − δs − 2µs − ρs

)
−µd − σd − ωd
−µm − σm − ωm

1
2

(
−µc −

√
2ωs (σs − µc) + (µc + σs) 2 + ω2

s − 2µs − σs − ωs
)

1
2

(
−µc +

√
2ωs (σs − µc) + (µc + σs) 2 + ω2

s − 2µs − σs − ωs
)


From the above eigenvalues we see that they are all negative but if

√
4D∗ρs + (δs − ρs) 2 < δs + 2µs + ρs (3.32)

and

√
2ωs (σs − µc) + (µc + σs) 2 + ω2

s < µc + 2µs + σs + ωs (3.33)

then the Disease Free Equilibrium points are locally asymptotically stable.

3.6.2 Global Stability of Disease Free Equilibrium Points

In this case we employ the method suggested by Iggidr et al. (2007) to scrutinize the global

stability of the DFE points of the system 3.1.

Our model represented in system 3.1 has the following structure.


dx

dt
= A0(x− xε0) + A3y

dy

dt
= A2y

(3.34)

whereby; x ∈ R+ represents classes of susceptible and vaccinated individuals. y ∈ Rn+ repres-

ents classes of exposed and infectious individuals. xε0 represents a vector at DFE point ε0 of
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the vector length as x. With reference to the system 3.1 we define:

x =



Sd

Vd

Ss

Vs

Sm

Vm


, y =



Ed

Id

Es

Is

Em

Im


and xε0 =



αd+ψsd+ψmd−ψds

µd+σd

0

(µs+ωs)(ψds+ψms+αs−ψsd)
µc(µs+ωs)+µs(µs+σs+ωs)

αs(ψds+ψms+αs−ψsd)
µc(µs+ωs)+µs(µs+σs+ωs)

αm−ψms−ψmd

µm+σm

0



x− xε0 =



Sd − αd+ψsd+ψmd−ψds

µd+σd

Vd

Ss − (µs+ωs)(ψds+ψms+αs−ψsd)
µc(µs+ωs)+µs(µs+σs+ωs)

Vs − αs(ψds+ψms+αs−ψsd)
µc(µs+ωs)+µs(µs+σs+ωs)

Sm − αm−ψms−ψmd

µm+σm

Vm


To test for global stability of the disease free equilibrium we need to show that:

(i) A0 should be a matrix whose eigenvalues are real and negative; and

(ii) A2 should be a Metzler matrix.

Using system 3.1 and the representation in 3.34 the two equations can be rewritten as shown

below:
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αd + ωdVd + ψsd + ψmd − ψds − (µd + σd + βdIsSd)

σdSd − (ωd + µd)Vd

αs + ωsVs + ψds + ψms − ψsd − (µs + µc + βsIs)Ss

σsSs − (ωs + µs)Vs

αm + ωmVm − ψms − ψmd − (µm + σm + βmIs)Sm

σmSm − (ωm + µm)Vm


= A0



Sd − αd+ψsd+ψmd−ψds

µd+σd

Vd

Ss − (µs+ωs)(ψds+ψms+αs−ψsd)
µc(µs+ωs)+µs(µs+σs+ωs)

Vs − αs(ψds+ψms+αs−ψsd)
µc(µs+ωs)+µs(µs+σs+ωs)

Sm − αm−ψms−ψmd

µm+σm

Vm



+A3



Ed

Id

Es

Is

Em

Im


(3.35)

and 

βdSdIs − (µd + ρd)Ed

ρdEd − (µd + δd)Id

βsSsIs − (µs + ρs)Es

ρsEs − (µs + δs)Is

βmSmIs − (µm + ρm)Em

ρmEm − (µm + δm)Im


= A2



Ed

Id

Es

Is

Em

Im


(3.36)

MatricesA0,A3 andA2 are of order 6×6. Using elements of x of the Jacobian matrix of system

3.1 at ε0 and representation in 16 we get:

A0 =



−(µd + σd) ωd 0 0 0 0

σd −(ωd + µd) 0 0 0 0

0 0 −(µs + µc) ωs 0 0

0 0 σs −(ωs + µs) 0 0

0 0 0 0 −(µm + σm) ωm

0 0 0 0 σm −(ωm + µm)
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A3 =



0 0 0 βdSd 0 0

0 0 0 0 0 0

0 0 0 βsSs 0 0

0 0 0 0 0 0

0 0 0 βmSm 0 0

0 0 0 0 0 0



A2 =



−(µd + ρd) 0 0 βdSd 0 0

ρd −(µd + σd) 0 0 0 0

0 0 −(µs + ρs) βsSs 0 0

0 0 ρs −(µs + δs) 0 0

0 0 0 βmSm −(µm + ρm) 0

0 0 0 0 0 −(µm + δm)


Now we have deduced that, matrix A0 is an upper triangular matrix with eigen-

values being real and negative located in its main diagonal. The eigenvalues are

−(µd + ρd),−(ωd + µd),−(µs + µc),−(ωs + µs),−(µm + σm) and −(ωm + µm). The

off diagonal elements of matrix A2 are non-negative since all parameters are positive which

proves that it is a Metzler matrix. This also shows that the disease free equilibrium points of

system 3.1 is globally asymptotically stable in the region Φ. This brings us to the following

crucial theorem.

Theorem 3.4

The disease free equilibrium point is globally asymptotically stable in the region Φ if Re < 1

and unstable in the region Φ if Re > 1.

3.7 Endemic Equilibrium Points

3.7.1 Existence of Endemic Equilibrium Points

We equate the right hand side of system 3.1 to zero to be able to compute the equilibrium points

of system 3.1. If the endemic equilibrium points of system 3.1 exist, they are given by:

ε0
∗ = (Sd

∗, Ed
∗, Id

∗, Vd
∗, Ss

∗, Es
∗, Is

∗, Vs
∗, Sm

∗, Em
∗, Im

∗, Vm
∗) (3.37)
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where:
Sd

∗ =
αd + ωdVd

∗ − ψds + ψmd + ψsd

µd + βdIs∗ + σd

Ed
∗ =

βdIs
∗Sd

∗

µd + ρd

Id
∗ =

ρdEd
∗

δd + µd

Vd
∗ =

σdSd
∗

µd + ωd

(3.38)

Ss
∗ =

αs + ωsVs
∗ − ψsd + ψms + ψds

µs + µc + βsIs∗ + σs

Es
∗ =

βsIs
∗Ss

∗

µs + ρs

Is
∗ =

ρsEs
∗

δs + µs

Vs
∗ =

σsSs
∗

µs + ωs

(3.39)

Sm
∗ =

αm + ωmVm
∗ − ψms + ψmd

µm + βmIs∗ + σm

Em
∗ =

βmIs
∗Sm

∗

µm + ρm

Im
∗ =

ρmEm
∗

δm + µm

Vm
∗ =

σmSm
∗

µm + ωm

(3.40)

3.7.2 Local Stability of the Endemic Equilibrium

We employed the following theorem as explained in El-Marhomy & Abdel-Sattar (2004) to

explain and prove the local stability of the endemic equilibrium points of system 3.1.

Theorem 3.5

(Routh-Hurwitz Criterion)

Given a polynomial P (λ) = λn + a1λ
n−1 + ...+ an−1λ+ an .

Where the coefficients ai are real constants, i = 1, .., n define the n Hurwitz matrices using the

coefficients ai of the characteristic polynomial:

H1 =
[
a1

]
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H2 =

a1 1

a3 a2



H3 =


a1 1 0

a3 a2 a1

a5 a4 a3



Hn =



a1 1 0 0 ... 0

a3 a2 a1 1 ... 0

a5 a4 a3 a2 ... 0
...

...
...

... ...
...

0 0 0 0 ... an


Note that, ai=0 iff j > 0. All of the roots of the polynomial P (λ) are negative of have negative

real part iff the determinants of all Hurwitz matrices are positive: det Hj> 0, j = 0, 1, 2, ..., n.

More details on Routh-Hurwitz criterion are given by (Aweya et al., 2004; Gil et al., 2004).

Consider the first part of system 3.1. The Jacobian matrix of that part is given by:

J\ε0 =


−(µd + σd + βdIs) 0 0 ωd

βdIs −(µd + ρd) 0 0

0 ρd −(µd + δd) 0

0 0 0 −(ωd + µd)


Through computations, we derive the following characteristic polynomial.

P (λ) = λ4 + Aλ3 +Bλ2 + Cλ+D (3.41)
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where:

A = δd + 4µd + ρd + Isβd + σd + ωd

B = 3δdµd + δdρd + δdσd + δdωd + 3µdρd + 3µdσd + 3µdωd + 6µ2
d + ρdσd + ρdωd + Isβdδd

+ 3Isβdµd + Isβdρd + Isβdωd + σdωd

C = 2δdµdρd + 2δdµdσd + 2δdµdωd + 3δdµ
2
d + δdρdσd + δdρdωd + δdσdωd + 2µdρdσd + 4µ3

d

+ 3µ2
dρd + 2µdσdωd + 3µ2

dσd + 3µ2
dωd + ρdσdωd + 2µdρdωd + 2Isβdδdµd + Isβdδdρd

+ Isβdδdωd + 2Isβdµdρd + 2Isβdµdωd + 3Isβdµ
2
d + Isβdρdωd

D = δdµdρdσd + δdµdρdωd + δdµ
2
dρd + δdµdσdωd + δdµ

2
dσd + δdµ

2
dωd + δdµ

3
d + δdρdσdωd

+ µdρdσdωd + µ2
dρdσd + µ2

dρdωd + µ3
dρd + µ2

dσdωd + µ3
dσd + µ3

dωd + µ4
d + Isβdδdµdρd

+ Isβdδdµdωd + Isβdδdµ
2
d + Isβdδdρdωd + Isβdµdρdωd + Isβdµ

2
dρd + Isβdµ

2
dωd + Isβdµ

3
d

(3.42)

From the characteristic polynomial represented in 3.41 we have the following Hurwitz matrix

H4 =


A 1 0 0

C B A 1

0 D C B

0 0 0 D


The determinant of the Hurwitz matrix is D(ABC − C2 − A2D). From the Routh-Hurwitz

criteria of Theorem 3.5, we see that the determinant of Hurwitz matrix will be positive if the

following conditions hold true. A > 0, C > 0, D > 0 and ABC > C2 + A2D. Recall that

all parameters of our model are positive. Also recall that all coefficients of the characteristic

polynomial are positive as shown in equation 3.24. Now combining all requirements, we deduce

that all roots of the polynomial represented in 3.41 are negative and hence we prove that the first

part of system 3.1 is locally asymptotically stable.

Moreover, we consider the second part of system 3.1. The Jacobian matrix is given by:

J\ε0 =


−(σs + µs + µc + βsIs) 0 −βsSs ωs

βsIs −(µs + ρs) βsSs 0

0 ρs −(µs + δs) 0

σs 0 0 −(ωs + µs)


Consider the characteristic polynomial

P (λ) = λ4 + A1λ
3 +B1λ

2 + C1λ+D1 (3.43)
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where:

A1 = µc + Isβs + δs + 4µs + ρs + σs + ωs

B1 = µcδs + µcρs + µcωs + 3µcµs + Isβsδs + 3Isβsµs + Isβsρs + Isβsωs + 3δsµs + δsρs

+ δsσs + δsωs + 3µsρs + 3µsσs + 3µsωs + 6µ2
s + ρsσs + ρsωs − βsρsSs

C1 = µcδsρs + µcδsωs + 2µcδsµs + µcρsωs + 2µcµsρs + 2µcµsωs + 3µcµ
2
s − µcβsρsSs

+ 2Isβsδsµs + Isβsδsρs + Isβsδsωs + 2Isβsµsρs + 2Isβsµsωs + 3Isβsµ
2
s + Isβsρsωs

+ 2δsµsρs + 2δsµsσs + 2δsµsωs + 3δsµ
2
s + δsρsσs + δsρsωs + 2µsρsσs + 2µsρsωs

+ 3µ2
sρs + 3µ2

sσs + 3µ2
sωs + 4µ3

s − 2βsµsρsSs − βsρsσsSs − βsρsSsωs

D1 = µcδsρsωs + µcδsµsρs + µcδsµsωs + µcδsµ
2
s + µcµsρsωs + µcµ

2
sρs + µcµ

2
sωs + µcµ

3
s

− µcβsρsSsωs − µcβsµsρsSs + Isβsδsµsρs + Isβsδsµsωs + Isβsδsµ
2
s + Isβsδsρsωs+

Isβsµsρsωs + Isβsµ
2
sρs + Isβsµ

2
sωs + Isβsµ

3
s + δsµsρsσs + δsµsρsωs + δsµ

2
sρs + δsµ

2
sσs

+ δsµ
2
sωs + δsµ

3
s + µ2

sρsσs + µ2
sρsωs + µ3

sρs + µ3
sσs + µ3

sωs + µ4
s − βsµsρsσsSs − βsµ2

sρsSs

− βsµsρsSsωs
(3.44)

From the characteristic polynomial represented by 3.25 we have the Hurwitz matrix being given

by:

H5 =


A1 1 0 0

C1 B1 A1 1

0 D1 C1 B1

0 0 0 D1


It comes behind that the determinant of the Hurwitz matrix given by

D1(A1B1C1−C1
2 − A1

2D1). With reference to Theorem 3.5 the determinant of Hurwitz

matrix become positive iff A1 > 0, C1 > 0, D1 > 0 and A1B1C1 > C1
2 + A1

2D1. Again since

A1 > 0,

B1 > 0 iff µcδs +µcρs +µcωs + 3µcµs + Isβsδs + 3Isβsµs + Isβsρs + Isβsωs + 3δsµs + δsρs +

δsσs + δsωs + 3µsρs + 3µsσs + 3µsωs + 6µ2
s + ρsσs + ρsωs > βsρsSs,

C1 > 0 iff µcδsρs + µcδsωs + 2µcδsµs + µcρsωs + 2µcµsρs + 2µcµsωs + 3µcµ
2
s + 2Isβsδsµs +

Isβsδsρs + Isβsδsωs + 2Isβsµsρs + 2Isβsµsωs + 3Isβsµ
2
s + Isβsρsωs + 2δsµsρs + 2δsµsσs +

2δsµsωs + 3δsµ
2
s + δsρsσs + δsρsωs + 2µsρsσs + 2µsρsωs + 3µ2

sρs + 3µ2
sσs + 3µ2

sωs + 4µ3
s >

2βsµsρsSs + βsρsσsSs + βsρsSsωs + µcβsρsSs,
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D1 > 0 iff µcδsρsωs +µcδsµsρs +µcδsµsωs +µcδsµ
2
s +µcµsρsωs +µcµ

2
sρs +µcµ

2
sωs +µcµ

3
s +

Isβsδsµsρs + Isβsδsµsωs + Isβsδsµ
2
s + Isβsδsρsωs + Isβsµsρsωs + Isβsµ

2
sρs + Isβsµ

2
sωs +

Isβsµ
3
s + δsµsρsσs + δsµsρsωs + δsµ

2
sρs + δsµ

2
sσs + δsµ

2
sωs + δsµ

3
s +µ2

sρsσs +µ2
sρsωs +µ3

sρs +

µ3
sσs + µ3

sωs + µ4
s > βsµsρsσsSs + βsµsρsSsωs + βsµ

2
sρsSs + µcβsρsSsωs + µcβsµsρsSs

When all conditions hold, similarly A1B1C1 > C1
2 + A1

2D1 holds. Hence we can conclude

that all roots of polynomial 3.25 are negative. This verifies that the second part of system 3.1 is

locally asymptotically stable.

Using the same procedure for the third part of system 3.1, will result in the same conclusion.

Therefore, we can generally conclude that the endemic equilibrium point of system 3.1 is locally

asymptotically stable.

3.8 Sensitivity Analysis

Sensitivity analysis helps to determine the most sensitive parameters to the model. It tells us

how important each parameter is to disease transmission and is used to assess how sensitive a

model is to variation in the value of the parameters of the model and to changes in the structure

of the model (Peter et al., 2018). This further helps to decide on which parameters to put more

effort on combating disease transmission. Now, since we want to understand the dynamics

of rabies in Arusha region and therefore control it by targeting the most sensitive parameters,

sensitivity analysis will help us by playing a role to determine those parameters. Parameter

values used in DFE are as in Table 2.
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Table 2: Values of Parameters Used at DFE

Parameter Description Value (year−1) Source

αs The annual births of stray dogs 2.5× 103 Totton et al. (2010)
δs Death rate due rabies for stray 0.22 Amaku et al. (2010)

dogs
ωs Loss rate of vaccination immunity 0.1 Assumption

for stray dogs
µs Natural death rate of stray dogs 0.32 Paul et al. (2016)
βs Rate of infection of stray dogs 1.7864× 10−4 Data
ρs The incubation period of stray dogs 0.837 782 34 Leung & Davis (2017)
σs Vaccination rate of the susceptible 0.251 74 Data

stray dogs
ψms Average number of Pastoralist dogs 35 Fitting

that migrate to stray dog population
ψsd Average number of stray dogs that 17 Fitting

migrate to domestic dog population
ψds Average number of domestic dogs 56 Fitting

that migrate to stray dog population
µc Average culling rate of stray dogs 0.017 92 Data

3.8.1 Sensitivity Analysis of Re

Sensitivity analysis tells us how important each parameter is to disease transmission and is used

to assess how sensitive a model is to variation in the value of the parameters of the model and to

changes in the structure of the model (Peter et al., 2018). In this case, the normalised forward

sensitivity index was employed by using the MATHEMATICA program.

The normalised forward sensitivity index is the ratio of relative change of a variable to the

relative change in parameter. If the variable is a differentiable function of the parameter then

the sensitivity index is defined as follows:

Definition 3.1: The normalised forward sensitivity index of variable V that depends on para-

meter ρ is defined as:

SVρ =
∂V

∂ρ
× ρ

V
(3.45)

For example in our case, we have the effective reproduction number Re computed. The norm-
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alised forward sensitivity with respect to the parameter ρ is given by:

SRe
ρ =

∂Re

∂ρ
× ρ

Re
(3.46)

For instance, the sensitivity index of Re with respect to parameter βs is given by:

SRe
βs

=
∂Re

∂βs
× βs
Re

= +1 (3.47)

By using the same idea, the sensitivity indices of Re given by the expression below:

Re =
βsρs (µs + ωs) (ψds + ψms + αs − ψsd)

(δs + µs) (µs + ρs) (µcωs + µcµs + µsσs + µsωs + µ2
s)

(3.48)

Is calculated w.r.t all parameters fixed to Re and are as shown in the Table 3.

Table 3: Sensitivity Indices of Re

Parameter Value

αs +0.9713
δs -0.4074
ωs +0.0866
µs -1.5593
βs +1
ρs +0.2764
σs -0.3621
ψms +0.0136
ψsd −6.6045× 10−3

ψds +0.0218
µc -0.0338

According to the sensitivity indices, infection rate of stray dogs βs is the most positive sensitive

parameter followed by the annual births of stray dogs αs and the incubation period of stray dogs

ρs. This means, increasing these parameters, will result to increase in the effective reproduction

number Re. For example, increasing βs by 10% will result to increase in Re by 10% also

decreasing βs by 10% will result to decrease in Re by 10%. Average number of Pastoralist dogs

that migrate to a stray dog population ψms, loss rate of vaccination immunity of stray dogs ωs

and average number of domestic dogs that migrate to a stray dog population ψds are the less

positively sensitive parameters.
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Also, natural death rate of stray dogs µs is the most negative sensitive parameter followed by

death rate for stray dogs due to rabies δs and vaccination rate of the susceptible stray dogs σs.

This implies that increase in this parameter will result to decrease in the effective reproduction

number Re. For instance, increase in natural death rate µs by 10% results to decrease in Re by

approximately 16%. Average number of stray dogs that migrate to domestic dog population ψsd

and average culling rate of stray dogs µc are the less negatively sensitive parameters.

We can deduce that, putting much emphasis on the most positive and most negative sensitive

parameter will be the most effective way in combating dog-rabies transmission in the Arusha

region.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, results of several numerical simulations and the interpretations of both our basic

model and the modified model are presented. The ode45 MATLAB’s ordinary differential equa-

tions (ODEs) standard solver was used. In this function a Runge-Kutta method with a variable

time step for efficient computation is implemented. The 2013 to 2018 reported data from the

Ministry of Livestock and Fisheries of the URT and also survey data from Mbwa wa Africa

were used. Information on the number of dogs that migrate from one population to another was

missing so the parameters were obtained through data fitting.

4.2 Numerical Analysis of the Basic Model

This sections presents and interpret the numerical results of the basic model. By starting we

consider Fig. 2.
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Figure 2: Reproduction Numbers for Various Coverages in Vaccination and Combination

of Vaccination and Culling

From Fig. 2 we can see that, Re4 < Re3 < Re2 < Re1 < R0. This indicates that if we

increase vaccination of the stray dogs, the effective reproduction number will decrease to less
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than one. Due to the high rabies transmission rate from stray dogs to domestic dogs and Pastor-

alist dogs, increasing vaccination to stray dogs is highly recommended as it leads to a less than

one effective reproduction number.
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Figure 3: Reproduction Numbers for Different Culling Coverages with the Current Vac-

cination Coverage Being Constant

From Fig. 3 we see that culling alone has got a very minute impact in combating rabies trans-

mission risk. The effect observed is for the current 25% vaccination coverage only. This study

insists on using vaccination of stray dogs to control rabies transmission since culling is less ad-

vantageous due to the fact that it has a very small contribution in combating rabies transmission

while it is very costly.

In the simulation results of Fig. 2, R0 is without any control, Re1 is the current 25% vaccination

coverage, Re2 is the 40% vaccination coverage and Re3 is the 50% vaccination coverage and

Re4 combination of 60% vaccination coverage and 40% culling.

In Fig. 3, R0 is without control, Re1 is a combination of 25% vaccination coverage and 40%

culling, Re2 is the 50% culling, Re3 is the 60% culling and Re4 is the 75% culling.
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Figure 4: Comparison Between the Reported Data and Simulation of System 3.1 for Ra-

bies Infected Stray Dogs in the Arusha Region From 2013 to 2018

In Fig. 4, we fit the data on infectious stray dogs to the model from the year 2013 to 2018. We

compare the reported data and the simulation of our model system of differential equations. The

dashed red line is for the data and the full green line is the simulation of our model system. We

see that there is a good match between the reported data and our model. Also, our model predicts

that, the number of infectious stray dogs will increase but later on the number will stabilize

because the basic reproduction number of 1.9 for rabies will determine the maximum number

of infectious stray dogs in the population. The initial conditions of the variables were obtained

through the reported data from the Ministry of Livestock and Fisheries of the URT and Mbwa

wa Africa, logical assumptions and data fitting. Thus, Sd(0) = 14063, Ed(0) = 83, Id(0) = 21,

Vd(0) = 7276, Ss(0) = 20000, Es(0) = 1500, Is(0) = 75, Vs(0) = 0, Sm(0) = 2500,

Em(0) = 90, Im(0) = 15, Vm(0) = 1500.
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Figure 5: Comparison Between Reported Data and Simulation of System 3.1 for Rabies

Infected Domestic Dogs in Arusha Region From 2013 to 2018

Using the same initial conditions, we fitted the data for rabies infected domestic dogs from the

year 2013 to 2018 into the model. From Fig. 5 we see that the number of rabies infected do-

mestic dogs is decreasing. This is because the infected dogs die and the increase in vaccination

rate protects the remaining dogs. The full magenta line indicates our model and the dotted blue

line stands for the data. We also observe that there is an outstanding resemblance between the

reported data and our model.
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Figure 6: The Effect of Natural Death Rate of Stray Dogs on Stray Dog Rabies Infection

for the Next 40 Years
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From the sensitivity analysis we found that, natural death rate is the most sensitive parameter

for controlling the dynamics of dog rabies transmission and dynamics. Figure 6 shows how

a minor increase in the natural death rate of stray dogs results in a decrease in the number of

infectious stray dogs. This means increasing the natural death rate by vaccinating more dogs

than are born every year will reduce the number of infected dogs. However, this would be very

costly.

0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18
Trend of Infectious Pastoralist dogs

t(year)

Im

Figure 7: Trend of Infected Pastoralist Dogs for a Period of 50 Years

From Fig. 7, we see that the population of infectious Pastoralist dogs will increase rapidly and

it will reach the peak in 2020. The increase is because exposed Pastoralist dogs will move to the

infectious group once they develop symptoms of rabies and hence it will result in an increase in

the infectious group. Assuming that no new infections will enter the population from outside,

the number of infected Pastoralist dogs will naturally decline since infection will die out when

the population get vaccinated.
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Figure 8: Trend of Stray Dog Population for a Period of 50 Years

From the Fig. 8 we see that the group of susceptible stray dogs will decline because once a sus-

ceptible dog is attacked and scratched or bitten, it become exposed. This results in an increase

in the exposed stray dog class. The number of dogs in the susceptible group stabilizes because

vaccination rate is assumed to stay constant. Before exposed stray dogs develop symptoms, if

they are vaccinated, they also shift to the vaccinated group but if not, they become infectious

and later on die. Therefore the number of infected dogs will now stabilize, due to R0. In the

first five years, the number of dogs in the vaccinated group increases as the vaccination rate

increases. After that the vaccinated group will stabilize because of a now constant vaccination

rate.

4.3 Analysing the Model with Impacts of Migration Being Treated as Functions

In the previous section we have seen the analysis results of the basic model with the impacts

of migration being treated as scalar. In this section we have modified our model a little bit and

analysed it with the impacts of migration being treated as function of some parameters. Below

is the modification of the model and definition of some new parameters slotted into the model.
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dSd
dt

= αd + ωdVd + θsdSs + θmdSm − µdSd − σdSd − θdsSd − βdSdIs
dEd
dt

= βdSdIs − µdEd − ρdEd
dId
dt

= ρdEd − (µd + δd)Id

dVd
dt

= σdSd − ωdVd − µdVd

dSs
dt

= αs + ωsVs + θdsSd + θmsSm − σsSs − (µs + µc)Ss − θsdSs − βsSsIs
dEs
dt

= βsSsIs − µsEs − ρsEs
dIs
dt

= ρsEs − (µs + δs)Is

dVs
dt

= σsSs − ωsVs − µsVs

dSm
dt

= αm + ωmVm − µmSm − θmsSm − θmdSm − σmSm − βmSmIs
dEm
dt

= βmSmIs − µmEm − ρmEm
dIm
dt

= ρmEm − (µm + δm)Im

dVm
dt

= σmSm − ωmVm − µmVm

(4.1)

Whereby:

θds →Rate of domestic dogs’ migration to stray dog population.

θsd →Rate of stray dogs’ migration to domestic dog population.

θms →Rate of Pastoralist dogs’ migration to stray dog population.

θmd →Rate of Pastoralist dogs’ migration to domestic dog population.

We define our θ’s as shown in the Sub-section 4.3.1 below.

4.3.1 Analysing the Model After Inclusion of Mass Culling of Stray Dogs and Numerical

Simulations Over a One Year Period

Based on the modified model, we want to analyse and get to know what happens if almost all

stray dogs are culled. In this case we are going to consider the following logical conditions that;

θmdSm is constant ε (it has nothing to do with stray dog population)
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θsd ≈ 0 since we shall no longer have stray dogs so we do not expect any migrations from stray

dogs population.

We define:

θds = τd(1− Ss+Vs
Ms

)

θms = τm(1− Ss+Vs
Ms

)

Where τd is the percentage of domestic dogs that migrate to stray dog population.

τm is the percentage of Pastoralist dogs that migrate to stray dog population.

Ms is the maximum possible number of stray dogs in the population.

From the definitions and the conditions above, we have our model as shown below.

dSd
dt

= αd + ωdVd + ε− µdSd − σdSd − τd(1−
Ss + Vs
Ms

)Sd − βdSdIs

dEd
dt

= βdSdIs − µdEd − ρdEd
dId
dt

= ρdEd − (µd + δd)Id

dVd
dt

= σdSd − ωdVd − µdVd

dSs
dt

= αs + ωsVs + τd(1−
Ss + Vs
Ms

)Sd + τm(1− Ss + Vs
Ms

)Sm − σsSs − (µs + µc)Ss − βsSsIs

dEs
dt

= βsSsIs − µsEs − ρsEs
dIs
dt

= ρsEs − (µs + δs)Is

dVs
dt

= σsSs − ωsVs − µsVs

dSm
dt

= αm + ωmVm − µmSm − τm(1− Ss + Vs
Ms

)Sm − ε− σmSm − βmSmIs

dEm
dt

= βmSmIs − µmEm − ρmEm
dIm
dt

= ρmEm − (µm + δm)Im

dVm
dt

= σmSm − ωmVm − µmVm
(4.2)

In the Fig. 9, one can notice that, the number of susceptible stray dogs will increase from the

beginning of 2019 and reach its maximum at the end of the year. This is because after mass

46



culling there will be very few susceptible stray dogs left, something which will influence migra-

tion of dogs from domestic dog and Pastoralist dog sub-populations to the stray dog population

and hence the number of susceptible stray dogs will grow.
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Figure 9: Trend of Susceptible Stray Dogs After Mass Culling of Stray Dogs

Based on the recorded data from laboratory brain tests of exposed stray dogs, up to the end of

the year 2018, there were around 50 infectious stray dogs. Now, as per analysis, results show

that if we cull almost all stray dogs the number of infectious stray dogs will actually increase.

These results are also supported by literature, indicating that every culled stray dog will get

replaced by an un-vaccinated newborn puppy after 6 to 8 months (Cleaveland, 1998). This is

depicted in the Fig. 10.
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Figure 10: Trend of Infectious Stray Dogs After Mass Culling of Stray Dogs

4.3.2 Analysing the Model After Mass Vaccination of Stray Dogs and Numerical Simu-

lations Over a One Year Period

In this section, we have analyzed model system 4.1 by considering a case where mass vaccin-

ation of more than 75% of stray dogs is conducted. In addition to this case θsd ≈ 0 since it is

rare for people to adopt stray dogs hence we have taken the rate of migration from stray dogs to

domestic dogs to be minimum close to zero.
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Figure 11: Trend of Vaccinated Stray Dogs After Mass Vaccination of Stray Dogs

Based on the reported data, up to the end of 2018, there were around 9000 vaccinated stray dogs.
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From the Fig. 11 we can see that this number gradually decreases to around 6000 by 2020 as

more un-vaccinated puppies are born and immunity of vaccinated dogs is lost. According to

simulation results vaccinated stray dogs will shift to susceptible hence the number of stray dogs

in the vaccinated class will decrease.
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Figure 12: Trend of Infectious Stray Dogs After Mass Vaccination of Stray Dogs

Based on the results of model analysis, after mass vaccination of stray dogs, the number of

infectious stray dogs will decrease in the first four months as shown in the Fig. 12. Yet, after

the first four months of the year, the number will increase again, since some of exposed stray

dogs will become infected and shift to the infectious class.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

After modeling, we conclude that the risk of transmission to humans is best controlled by mass

vaccination of dogs in the long term, particularly by vaccinating the stray dog population. The

results in this study are in line with existing literature reporting that immunity against rabies is

present up to 3 years and longer after vaccination (Lakshmanan et al., 2006). However, results

also suggest that culling seems the best method to reduce transmission risk in the short term.

While applying dog mass vaccination of stray dogs will help to control transmission over time,

culling will help at the moment in time it is practiced, but after 6 to 8 months all culled dogs

will get replaced by un-vaccinated new born puppies (Gsell et al., 2012).

Due to meaningfulness, accuracy and reliability of the rabies data, three years predictions were

done. The numerical simulations of the model formulated in this study predict that the number

of infected stray dogs in Arusha will increase to nearly 1000 in 2020. The results further show

that, rabies incidence for infected stray dogs will be the highest as compared to the 2 other dog

sub populations. The number of rabies infected domestic dogs on the other hand is expected to

decrease to approximately 4 and even less in 2020. This is the lowest rabies incidence among

the dog sub groups. For the infected Pastoralist dogs, the numerical results predict that there

will be around 17 infected Pastoralist dogs in 2020, a medium rabies incidence among dog sub

population.

The analysis of the modified model also shows that, mass culling of stray dogs result in an

exponential increase in the susceptible class, the infectious class and the vaccinated class of the

model for a short period of one year. Also, the behaviour of the model after mass vaccination

indicates that the number of infected stray dogs decreases but will increase after the first four

months. Furthermore, mass vaccination of stray dogs results in an increase in the number of

vaccinated stray dog sub-population.

The one year transient analysis of the model, has been done using the data for 2018 to 2019. At

the same time, it is applicable for analysis of disease dynamics at any year if it will be started

from initial conditions taken from the real data set of the analysed year. Therefore, we can
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use the developed model as the predictive model describing the dynamics in dependence on the

applied controls such as culling and vaccination.

The main problem of using the findings of this model to break rabies transmission in the Arusha

setting remains that vaccinating stray dogs successfully has been reported to be hampered by

the issue of safely catching and handling the animals so that they can be injected (Cliquet et al.,

2007). This is one of the reasons which make culling the preferred control method for untrained

government workers. However, recent discoveries and developments make oral vaccination

(distributing food bait containing causative oral vaccine in capsules) a viable alternative option

for vaccinating stray dogs (Zhang et al., 2011). Currently, other rabies hosts such as raccoons

and foxes are frequently vaccinated using oral vaccination. These animals differ from dogs in

their feeding habits, so this method still needs to be perfected to ensure a sufficient amount of

vaccine is consumed by each dog.

The main limitation to this study is that vaccination data were not available for the year 2019

and vaccination numbers vary greatly among the years depending on available resources such

as vaccines and trained volunteers.

5.2 Recommendations

The following recommendations are the result of the information obtained by using actual data

for a modeling approach to establish the best method for controlling rabies in the Arusha region:

(i) Coordinated vaccination campaigns especially in areas where national parks are closest

to urban areas.

(ii) Proper surveillance system especially of mobile dog populations such as Pastoralist dogs

and stray dogs.

(iii) Law enforcement of obligatory dog vaccination of domestic dogs.

(iv) Awareness campaigns to educate people on the importance of dog vaccination.

(v) An economic cost-benefit analysis based on this model would give more information on

the best control methods in resource limited settings.

(vi) This study can be extended by applying optimal control theory for more detailed findings.

(vii) Stochastic models can be applied to check random movements of dog sub-populations.
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(viii) Future studies may take into account a consideration of distinct dog populations and other

rabies hosts such as cats, wild dogs, lions etc.
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APPENDICES

Appendix 1: MATLAB Codes for Figure 2

Reproduction Number for Different Vaccination Coverages and Combination of Vaccination

and Culling.

%R0andRe.m

%constant values of parameters of reproduction numbers

set(0,'defaulttextinterpreter','Latex');

rhos=0.83778234;

psids=56; psims=35; alphas=2500; psisd=17;

mus=0.32; deltas=0.22; omegas=0.1; muc=0.01792; sigmas1

=0.25174; sigmas2=0.39351;

sigmas3=0.50825; sigmas4=0.75687; muc2=0.02503;

betas=0:0.00000001:1.7864*10ˆ-4;

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

Re1=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas1

)+(mus*omegas)+musˆ2));

Re2=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas2

)+(mus*omegas)+musˆ2));

Re3=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas3

)+(mus*omegas)+musˆ2));

Re4=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc2*omegas)+(muc*mus)+(mus*

sigmas4)+(mus*omegas)+musˆ2));

Y=[R0' Re1' Re2' Re3' Re4']*4;

plot(betas,R0,'r-',betas,Re1,'k-',betas,Re2,'b-',betas,Re3,'g',

betas,Re4,'c','LineWidth',2)

xlabel('Exposure rate \beta_s')

ylabel('Reproduction number')
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legend('R_0','R_{e1}','R_{e2}','R_{e3}','R_{e4}')

title('Variation of Reproduction Number with Exposure rate \

beta_s')

ylim([0 2])
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Appendix 2: MATLAB Codes for Figure 3

Reproduction Number for Different Culling Coverages with the Current Vaccination Coverage

Being Constant.

%R0andRe.m

%constant values of parameters of reproduction numbers

set(0,'defaulttextinterpreter','Latex');

rhos=0.83778234;

psids=56; psims=35; alphas=2500; psisd=17;

mus=0.32; deltas=0.22; omegas=0.1; muc=0.01792; sigmas1

=0.25174; sigmas2=0.39351;

sigmas3=0.50825; sigmas4=0.75687; muc2=0.02503;muc3=0.0343;

muc4=0.0412;

betas=0:0.00000001:1.7864*10ˆ-4;

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

Re1=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas1

)+(mus*omegas)+musˆ2));

Re2=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc2*omegas)+(muc2*mus)+(mus*

sigmas1)+(mus*omegas)+musˆ2));

Re3=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc3*omegas)+(muc3*mus)+(mus*

sigmas1)+(mus*omegas)+musˆ2));

Re4=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc4*omegas)+(muc4*mus)+(mus*

sigmas1)+(mus*omegas)+musˆ2));

Y=[R0' Re1' Re2' Re3' Re4']*4;

plot(betas,R0,'r-',betas,Re1,'k-',betas,Re2,'b-',betas,Re3,'g',

betas,Re4,'c','LineWidth',2)

xlabel('Exposure rate \beta_s')

ylabel('Reproduction number')
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legend('R_0','R_{e1}','R_{e2}','R_{e3}','R_{e4}')

title('Variation of Reproduction Number with Exposure rate \

beta_s')

ylim([0 2])
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Appendix 3: MATLAB Codes for Figure 4

Comparison Between Reported Data and Simulation of System 3.1 for Rabies Infected Stray

Dogs in Arusha Region From 2013 to 2018.

%stray_dogs_rabies_data_fitting.m

clc

clear all

set(0,'defaulttextinterpreter','Latex');

c=['b ','g ','c ','g- ','g ','b- ','r ','k- ','r--','m. ','b ',

'y '];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-4; rhos=0.83778234; sigmas=0.25174; psims=35;

psisd=17; psids=56; muc=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124;

Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

%y0=[Sd Ed Id Vd Ss Es Is Vs Sm Em Im Vm]. Compartment values

y0=[14063 83 21 7276 20000 1500 75 0 2500 90 15 1500];

tspan=[2013 2018];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psisd

,psimd,mud,sigmad,psids,betad,rhod,deltad,alphas,omegas,

psims,sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,

sigmam,betam,rhom,deltam);

for i=7:7

plot(t,y(:,i),c(:,i),'LineWidth',2)
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xlabel('t(year)');ylabel('I_{s}')

title('Comparison Between Reported Data and Model')

hold on

end

time = 2013:1:2018;

Is=[180 800 1550 1900 2100 2100];

plot(time,Is,'r--','LineWidth',2)

legend('Model','Data')

Isspan=[30 35 40 45 50 55];

hold on
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Appendix 4: MATLAB Codes for Figure 5

Comparison Between Reported Data and Simulation of System 3.1 for Rabies Infected Do-

mestic Dogs in Arusha Region From 2013 to 2018

%Domestic_dogs_data_fitting.m

clc

clear all

set(0,'defaulttextinterpreter','Latex');

c=['b ','m ','c ','r- ','g ','b- ','r ','k- ','r--','m. ','b ',

'y '];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-4; rhos=0.83778234; sigmas=0.25174; psims=35;

psisd=17; psids=56; muc=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124;

%Effective and basic reproduction numbers

Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

%y0=[Sd Ed Id Vd Ss Es Is Vs Sm Em Im Vm]. Compartment values

y0=[14063 83 21 7276 20000 1500 75 0 2500 90 150 1500];

tspan=[2013 2018];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psisd

,psimd,mud,sigmad,psids,betad,rhod,deltad,alphas,omegas,

psims,sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,

sigmam,betam,rhom,deltam);

for i=3:3
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plot(t,y(:,i),c(:,i),'LineWidth',2)

xlabel('t(year)');ylabel('I_{d}')

hold on

end

time = 2013:1:2018;

Id=[22 15 11 8 6 5];

plot(time,Id,'b--','LineWidth',2)

legend('Model','Data')

Idspan=[0 5 10 15 20 25];

hold on
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Appendix 5: MATLAB Codes for Figure 6

The Effect of Natural Death Rate of Stray Dogs to Stray dogs Rabies Infection

%naturaldeathofstraydogs

clc

clear all

set(0,'defaulttextinterpreter','Latex');

%changing the color of infected stray dogs for each mus

c=['b ','g ',' r','c- ','g ','b- ','r ','k- ','r--','m. ','b ',

'y '];

% c=['b ','g ','r ','g ','b- ','g ','r ','k- ','r--','m. ','b

','y '];

%change the value of mus(naturaldeathofstraydogs) for each

simulation of stray dogs infection

% mus=0.32;

% mus=0.34;

% mus=0.36;

mus=0.38;

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;

alphas=2500; deltas=0.22; omegas=0.1; betas=1.7864*10ˆ-4; rhos

=0.83778234; sigmas=0.25174; psims=35; psisd=17; psids=56;

muc=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124;

Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

y0=[14063 83 21 7276 20000 1500 10 0 2500 90 15 1500];

tspan=[0 40];
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[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psisd

,psimd,mud,sigmad,psids,betad,rhod,deltad,alphas,omegas,

psims,sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,

sigmam,betam,rhom,deltam);

for i=7:7

plot(t,y(:,i),c(:,i),'Linewidth',2)

legend('\mu_s=0.32','\mu_s=0.34','\mu_s=0.36','\mu_s=0.38')

xlabel('t(year)');ylabel('I_{s}')

hold on

end

67



Appendix 6: MATLAB Codes for Figure 7

Trend of Infected Pastoralist Dogs

%infectedmaasaidogs.m

clc

clear all

set(0,'defaulttextinterpreter','Latex');

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-4; rhos=0.83778234; sigmas=0.25174; psims=35;

psisd=17; psids=56; muc=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124;

Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

y0=[14063 83 21 7276 20000 1500 10 0 2500 90 15 1500];

tspan=[0 50];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psisd

,psimd,mud,sigmad,psids,betad,rhod,deltad,alphas,omegas,

psims,sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,

sigmam,betam,rhom,deltam);

for i=11:11

plot(t,y(:,i),'r','Linewidth',2)

xlabel('t(year)');ylabel('I_{m}')

hold on

end
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Appendix 7: MATLAB Codes for Figure 8

Trend of Stray Dog Population for a Period of 50 Years

%Transmission of rabies in stray dog population in 50 years

time

set(0,'defaulttextinterpreter','Latex');

clear all

clc

c=['b','g-','r','c-','r','g-','r','k-','r--','m.','b.','y'];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-4; rhos=0.83778234; sigmas=0.25174; psims=35;

psisd=17; psids=56; muc=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124;

Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus)

*(mus+rhos));

y0=[14063 83 21 7276 20000 1500 10 0 2500 90 15 1500];

tspan=[0 50];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psisd

,psimd,mud,sigmad,psids,betad,rhod,deltad,alphas,omegas,

psims,sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,

sigmam,betam,rhom,deltam);

for i=5:8

plot(t,y(:,i),c(:,i),'Linewidth',2)

title('Trend of stray dogs population')

ylabel('Number of stray dogs population')
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legend('Susceptible','Exposed','Infected','Vaccinated')

xlabel('t(year)');

hold on

end
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APPENDIX 8: MATLAB Codes for Figure 9

Trend of Susceptible Stray Dogs After Mass Culling of Stray Dogs.

clc

clear all

set(0,'defaulttextinterpreter','Latex');

c=['b ','b ','g ','r- ','b ','b- ','r ','k- ','r--','m. ','b ',

'y '];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;psisd=0;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-4; rhos=0.83778234; sigmas=0.15174; muc=0.7592;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124; taud=0.05;taum=0.03;Mus

=10000;

% Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

% R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus

)*(mus+rhos));

%y0=[Sd Ed Id Vd Ss Es Is Vs Sm Em Im Vm]. Compartment values

y0=[14063 83 21 7276 500 1500 50 5 2500 90 15 1500];

tspan=[0 1];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psimd

,mud,sigmad,taud,Mus,betad,rhod,deltad,alphas,omegas,taum,

sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,sigmam,

betam,rhom,deltam);

for i=5:5

plot(t,y(:,i),c(:,i),'LineWidth',2)

xlabel('t(year)');ylabel('Ss')

%legend('Susceptible','Exposed','Infectious')
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title('Trend of Susceptible stray dogs after mass culling of

stray dogs')

hold on

end

hold on

% time = 2013:1:2018;

% Is=[180 800 1550 1900 2100 2100];

% plot(time,Is,'r--','LineWidth',2)

% legend('Model','Data')

% Isspan=[30 35 40 45 50 55];

% hold on
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Appendix 9: MATLAB Codes for Figure 10

Trend of Infected Stray Dogs After Mass Culling of Stray Dogs.

clc

clear all

set(0,'defaulttextinterpreter','Latex');

c=['b ','b ','g ','r- ','b ','b- ','r ','k- ','r--','m. ','b ',

'y '];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;psisd=0;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-4; rhos=0.083778234; sigmas=0.15174; muc=0.7592;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124; taud=0.05;taum=0.03; Mus

=10000;

% Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

% R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus

)*(mus+rhos));

%y0=[Sd Ed Id Vd Ss Es Is Vs Sm Em Im Vm]. Compartment values

y0=[14063 83 21 7276 500 1500 50 5 2500 90 15 1500];

tspan=[0 1];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psimd

,mud,sigmad,taud,Mus,betad,rhod,deltad,alphas,omegas,taum,

sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,sigmam,

betam,rhom,deltam);

for i=7:7

plot(t,y(:,i),c(:,i),'LineWidth',2)

xlabel('t(year)');ylabel('Is')

%legend('Susceptible','Exposed','Infectious')
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title('Trend of Infected stray dogs after mass culling of stray

dogs')

hold on

end

hold on

% time = 2013:1:2018;

% Is=[180 800 1550 1900 2100 2100];

% plot(time,Is,'r--','LineWidth',2)

% legend('Model','Data')

% Isspan=[30 35 40 45 50 55];

% hold on
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Appendix 10: MATLAB Codes for Figure 11

Trend of Vaccinated Stray Dogs After Mass Vaccination of Stray Dogs.

clc

clear all

set(0,'defaulttextinterpreter','Latex');

c=['b- ','c ','g ','m- ','b- ','b- ','r ','k- ','r--','m. ','b

','y '];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;psisd=0;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.82; betas

=1.7864*10ˆ-4; rhos=0.083778234; sigmas=0.75174; muc

=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124; taud=0.05;taum=0.03;Mus

=10000;

% Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

% R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus

)*(mus+rhos));

%y0=[Sd Ed Id Vd Ss Es Is Vs Sm Em Im Vm]. Compartment values

y0=[14063 83 21 7276 500 1500 50 9000 2500 90 15 1500];

tspan=[0 1];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psimd

,mud,sigmad,taud,Mus,betad,rhod,deltad,alphas,omegas,taum,

sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,sigmam,

betam,rhom,deltam);

for i=8:8

plot(t,y(:,i),c(:,i),'LineWidth',2)

xlabel('t(year)');ylabel('Vs')
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title('Trend of Vaccinated stray dogs after mass vaccination of

stray dogs')

hold on

end

hold on

% time = 2013:1:2018;

% Is=[180 800 1550 1900 2100 2100];

% plot(time,Is,'r--','LineWidth',2)

% legend('Model','Data')

% Isspan=[30 35 40 45 50 55];

% hold on
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Appendix 11: MATLAB Codes for Figure 12

Trend of Infected Stray Dogs After Mass Vaccination of Stray Dogs.

clc

clear all

set(0,'defaulttextinterpreter','Latex');

c=['b ','c ','g ','r ','b ','b ','r ','k- ','r--','m. ','b ','y

'];

%Paramter used for EEP

alphad=2450; deltad=0.33; omegad=0; mud=0.23; betad=1*10ˆ-8;

rhod=0.06109589;sigmad=0.5751; psimd=13;psisd=0;

alphas=2500; deltas=0.22; omegas=0.1; mus=0.32; betas

=1.7864*10ˆ-1; rhos=0.0083778234; sigmas=0.75174; muc

=0.01792;

alpham=1674; deltam=0.11; omegam=0; mum=0.16; betam=1*10ˆ-7;

rhom=0.069863013; sigmam=0.3124; taud=0.05;taum=0.03;Mus

=9000;

% Re=(betas.*rhos*(mus+omegas)*(psids+psims+alphas-psisd))./((

deltas+mus).*(mus+rhos)*((muc*omegas)+(muc*mus)+(mus*sigmas)

+(mus*omegas)+musˆ2));

% R0=(betas*rhos*(psids+psims+alphas-psisd))./(mus.*(deltas+mus

)*(mus+rhos));

%y0=[Sd Ed Id Vd Ss Es Is Vs Sm Em Im Vm]. Compartment values

y0=[14063 83 21 7276 0 1500 50 2000 2500 90 15 1500];

tspan=[0 1];

[t,y]=ode45(@rabiesmodelsystem1,tspan,y0,[],alphad,omegad,psimd

,mud,sigmad,taud,Mus,betad,rhod,deltad,alphas,omegas,taum,

sigmas,mus,muc,betas,rhos,deltas,alpham,omegam,mum,sigmam,

betam,rhom,deltam);

for i=7:7

plot(t,y(:,i),c(:,i),'LineWidth',2)

xlabel('t(year)');ylabel('Is')
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title('Trend of Infected stray dogs after mass vaccination of

stray dogs')

hold on

end

hold on

% time = 2013:1:2018;

% Is=[180 800 1550 1900 2100 2100];

% plot(time,Is,'r--','LineWidth',2)

% legend('Model','Data')

% Isspan=[30 35 40 45 50 55];

% hold on
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