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Abstract
Temperature is one of the integral environmental drivers that strongly affect the
distribution and density of tsetse fly population. Precisely, ectotherm performance
measures, such as development rate, survival probability and reproductive rate,
increase from low values (even zero) at critical minimum temperature, peak at an
optimum temperature and then decline to low levels (even zero) at a critical
maximum temperature. In this study, a fractional-order Trypanosoma brucei
rhodesiensemodel incorporating vector saturation and temperature dependent
parameters is considered. The proposed model incorporates the interplay between
vectors and two hosts, humans and animals. We computed the basic reproduction
number and established results on the threshold dynamics. Meanwhile, we explored
the effects of vector control and screening of infected host on long-term disease
dynamics. We determine threshold levels essential to reducing the basic reproduction
number to level below unity at various temperature levels. Our findings indicate that
vector control and host screening could significantly control spread of the disease at
different temperature levels.

MSC: 92B05; 93A30; 93C15

Keywords: Trypanosoma brucei rhodesiense; Temperature; Mathematical model;
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1 Introduction
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a neglected
tropical disease that continues to affect people living in world’s poorest communities. In
particular, it is more prevalent in nations or communities with weak health infrastructure,
scanty health information and low food security. Two forms of the disease exist depend-
ing on the parasite involved: Trypanosoma brucei gambiense, which is a chronic form of
the disease present in western and central Africa, and Trypanosoma brucei rhodesiense,
which is an acute disease located in eastern and southern Africa [1]. Of the HAT cases
recorded in the last decade, approximately 98% are attributed to the gambiense form and
the remainder to rhodesiense [1]. With such statistics, several researchers believe that the
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rhodesiense form is a zoonotic disease that affects mainly animals (livestock and wildlife),
with humans being only accidentally infected [1].

Although the signs and symptoms of HAT are generally similar for both forms, their fre-
quency, severity and kinetic appearance differ. The rhodesiense form is an acute disease
that usually progresses to death within six months, whereas the gambiense form is usually
a chronic progressive infection with an average duration of almost three years [1]. Further-
more, clinical signs and symptoms are unspecific in both forms of the disease, and their
appearance varies between individuals and foci. Some of the main signs and symptoms
of the first stage of infection are intermittent fever, headache, lymphadenopathies, weak-
ness, asthenia, anemia, cardiac disorders, endocrine disturbances, musculoskeletal pains
and hepatosplenomegaly [1]. Neuropsychiatric signs and symptoms, including sleep dis-
turbances, are often presented by patients in the second stage of infection. It is worth not-
ing that most of the symptoms of both stages overlap, rendering the distinction between
the stages unclear [1].

HAT is transmitted by more than 20 species of Glossina tsetse flies. Prior studies have
shown that all metabolic processes that occur in tsetse flies strongly depend on tempera-
ture. In particular, it was observed that the interlarval period, pupal period, adult lifespan
and the period between successive feeds are reduced as temperature increases [2]. Phelps
and Lovemore [3] noted that temperature does not only alter the different developmental
periods of the vector but it also plays a huge role in the fly’s flight activity. Furthermore,
for temperature below 17◦C it was noted that tsetse flies will rest in direct sunlight and
when temperatures are above 32◦C the vectors will be inactive and they will seek artificial
refuges, and in most cases these are cool shaded places [4].

According to Phelps and Burrow [5], temperatures above 40◦C are fatal to both small
and large flies and pupae. Bursell [6] opines that temperature and the size of the fly affect
the amount of fat reservation in the fly. Precisely, smaller flies have less fat than larger ones.
This is one of the reasons why temperatures below 16◦C are known not to be suitable for
the development of smaller flies, since the fat which would have been reserved during the
larval periods will get exhausted before the pupa is fully matured. Thus fat reservation is
integral for the development of the fly from pupa to adult as well as the survival of the
fly till it gets its first blood-meal [6]. Phelps and Clarke [7] demonstrated that extreme
temperature is associated with higher mortality among young flies, particularly in small
male flies.

The above discussion clearly demonstrates that temperature has an integral role on
tsetse population dynamics and can be one of the strongest abiotic determinants of tsetse
distributions [8]. Hence, as opined by Leak [9], understanding the relationship between
these factors and vector population dynamics is therefore a potential area for modelling
and further development of the existing models. Mathematical modelling, as a powerful
tool in quantifying the complex and numerous factors, has been widely used to understand
the transmission and control of HAT [8, 10–32]. The aforementioned studies improved
the existing knowledge on HAT dynamics. For example, the study of Hagrove et al. [10]
demonstrated that treating cattle with insecticides could be useful on HAT management.
Pandey et al. [11], Funk et al. [12], Ndondo et al. [13] and Rock et al. [14] among others
explored the role of animals as reservoirs on HAT dynamics. Their studies demonstrated
that animals play an integral role of HAT dynamics hence they need to be incorporated
in the frameworks that seek to explore the intrinsic dynamics of HAT. Stone and Chitnis



Helikumi et al. Advances in Difference Equations        (2020) 2020:284 Page 3 of 23

[15] utilised a mathematical model to explore the effects of heterogeneous biting exposure
and animal hosts on Trypanosoma brucei gambiense transmission and control. Outcomes
from their study highlighted that heterogeneity biting rates as well as ecological and envi-
ronmental factors play a crucial role on Trypanosoma brucei gambiense transmission and
control.

Recently, Lord et al. [16], Alderton et al. [17] and Ackley and Hagrove [18] explored
the role of temperature on HAT dynamics. Alderton et al. [17] utilised an agent based
model to explore the effects of temperature on seasonal HAT transmission. Among sev-
eral other outcomes, their work suggested that mathematical models could strongly mirror
the transmission dynamics of HAT. In particular, they found out that their model solutions
were in agreement with reality. Lord et al. [16] developed a mathematical model for HAT
that incorporated the effects of temperature on mortality, larviposition and emergence
rates. Making use of the epidemiological data for infection in cattle they validated their
framework, and findings from their work highlighted that temperature variations are key
to tsetse distribution and abundance. Ackley and Hagrove [18] developed a dynamical
model to simulate female tsetse populations and the associated changes in their age dis-
tribution. One of the key findings from their work is that for temperatures greater than
25◦C mortality among immature classes of the vector increases substantially.

As concerted efforts to “eliminate” HAT continue to increase, with the current set tar-
get being “the reduction of gambiense HAT incidence to less than 1 new case per 10,000
population at risk in at least 90% of foci with fewer than 2000 cases reportedly globally by
2020” and “to target zero incidence of the disease by 2030” [19], different modelling ap-
proaches need to be utilised to continue the characterisation of the relationship between
temperature and HAT. In this paper, we utilise fractional calculus to explore the effects of
temperature on Trypanosoma brucei rhodesiense.

Although the aforementioned studies improved our quantitative and qualitative knowl-
edge on the relationship between temperature and HAT, most of the mathematical models
of infectious diseases have been described by the ordinary differential equations (ODEs)
in which the order of derivative is an integer. However, recent studies suggest that mod-
els that use integer-order differentiation do not adequately capture memory effects, long-
rage interactions and hereditary properties, which govern many real world problems [33].
In contrast, it has been proved that models that utilise fractional differentiation provide
“more reasonable” outcomes compared to those that use integer-order differentiation [33]
since they can capture memory effects. Moreover, several researchers concur that many
real world problems are influenced by history, suggesting that memory has a strong im-
pact on the underlying dynamics. Based on this notion, fractional-order calculus has been
widely and extensively used in many fields such as engineering, biochemistry, finance,
chemistry, medicine, biology and so on, compared to the classical order [34, 35].

Prior studies suggest that evolution and control of epidemic processes in human soci-
eties cannot be considered without any memory effect [33–36]. In particular, they argue
that whenever a disease spreads within a community, individuals gain knowledge or ex-
perience, which greatly influences their response [33]. Thus once people are aware of a
certain disease and its impact they use suitable mitigation strategies to minimise contact
between themselves and vectors, thereby minimising chances of being infected. Evidently,
this results in some endogenous controlled suppression of the spreading, although other
factors can help [33]. Based on this assertion, fractional-order derivative is more suited



Helikumi et al. Advances in Difference Equations        (2020) 2020:284 Page 4 of 23

for modelling problems involving memory, which is the case in most biological systems
[36]. Another advantage of using fractional-order derivative is that it enlarges the stabil-
ity region of the dynamical systems [36]. Motivated by this discussion we believe that the
memory has an effect on HAT dynamics. The framework proposed in this study includes
the life cycle of tsetse flies, humans and animals. Furthermore, the model incorporates the
formulae proposed by Artzrouni and Gouteux [25] to explore the role of human detection
and vector control on short and long term dynamics of the disease at different temperature
levels.

The rest of the paper is organised as follows. In Sect. 2, we present preliminaries on the
Caputo fractional calculus. The proposed model and analytical results are presented in
Sect. 3. In Sect. 4, the dynamical behaviour of the proposed model is investigated. Pre-
cisely, we compute the basic reproduction number and investigate the stability of the
model’s steady states. In Sect. 5, numerical experiments are done in order to verify theo-
retical results presented in the study. Finally, a brief discussion rounds up the paper.

2 Preliminaries on the Caputo fractional calculus
We begin by introducing the definition of Caputo fractional derivative and stating related
theorems (see [37–41]) that we will utilise to derive important results in this work.

Definition 2.1 Suppose that α > 0, t > a, α, a, t ∈ R. The Caputo fractional derivative is
given by

c
aDα

t f (t) =
1

Γ (n – α)

∫ t

a

f n(ξ )
(t – ξ )α+1–n dξ , n – 1 < α, n ∈N.

Definition 2.2 (Linearity property [37]) Let f (t), g(t) : [a, b] →R be such that c
aDα

t f (t) and
c
aDα

t g(t) exist almost everywhere, and let c1, c2 ∈ R. Then c
aDα

t (c1f (t)) + c
aDα

t (c2g(t)) exists
everywhere, and

c
aDα

t
(
c1f (t) + c2g(t)

)
= c1

c
aDα

t f (t) + c2
c
aDα

t g(t).

Definition 2.3 (Caputo derivative of a constant [40]) The fractional derivative for a con-
stant function f (t) = c is zero, that is,

c
aDα

t c = 0.

Let us consider the following general type of fractional differential equations involving
Caputo derivative:

c
t0 Dα

t x(t) = f
(
t, x(t)

)
, α ∈ (0, 1) (1)

with initial condition x0 = x(t0).

Definition 2.4 (see [37]) The constant x∗ is an equilibrium point of the Caputo fractional
dynamic system (1) if and only if f (t, x∗) = 0.

Definition 2.5 (see [41]) For the system described by (1):
(i) The trivial solution is said to be stable if, for any t0 ∈R and any ε > 0, there exists

δ = δ(t0, ε) such that ‖x(t0)‖ < δ implies ‖x(t)‖ < ε for all t > t0.
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(ii) The trivial solution is said to be asymptotically stable if it is stable and, for any
t0 ∈R and any ε > 0, there exists δa = δa(t0, ε) > 0 such that ‖x(t)‖ < δa implies
limt→∞ ‖x(t)‖ = 0.

(iii) The trivial solution is said to be uniformly stable if it is stable and δ = δ(ε) > 0 can
be chosen independently of t0.

(iv) The trivial solution is uniformly asymptotically stable if it is uniformly stable and
there exists δa.0, independent of t0, such that if ‖x(t0)‖ < δa, then limt→∞ ‖x(t)‖ = 0.

(v) The trivial solution is globally (uniformly) asymptotically stable if it is (uniformly)
asymptotically stable and δa can be an arbitrary large finite number.

Theorem 2.1 (Uniform asymptotic stability [37, 42]) Let x∗ be an equilibrium point for
the nonautonomous fractional-order system (1) and Ω ⊂ R

n be a domain containing x∗.
Let L : [0,∞) × Ω →R be a continuously differentiable function such that

W1(x) ≤ L
(
t, x(t)

) ≤ W2(x)

and

c
aDα

t L
(
t, x(t)

) ≤ –W3(x)

for all α ∈ (0, 1) and all x ∈ Ω , where W1(x), W2(x) and W3(x) are continuous positive def-
inite functions on Ω . Then the equilibrium point of system (1) is uniformly asymptotically
stable.

The following theorem summarises a lemma proved in [37], where a Volterra-type Lya-
punov function is obtained for fractional-order epidemic systems.

Theorem 2.2 (see [37]) Let x(·) be a continuous and differentiable function with x(t) ∈R+.
Then, for any time instant t ≥ t0, one has

c
t0 Dα

t

(
x(t) – x∗ – x∗ ln

x(t)
x∗

)
≤

(
1 –

x∗

x(t)

)
c
t0 Dα

t x(t), x∗ ∈R
+,∀α ∈ (0, 1).

Theorem 2.3 (see [43]) Let α > 0, n – 1 < α < n –N. Suppose that f (t), f ′(t), . . . , f (n–1)(t) are
continuous on [t0,∞) and the exponential order and that c

t0 Dα
t f (t) is piecewise continuous

on [t0,∞). Then

L
{c

t0 Dα
t f (t)

}
= sαF (s) –

n–1∑
k=0

sα–k–1f (k)(t0),

where F (s) = L{f (t)}.

Theorem 2.4 (see [44]) Let C be a complex plane. For any α > 0 β > 0 and A ∈ C
n×n, we

have

L
{

tβ–1Eα,β
(
Atα

)}
= sα–β

(
sα – A

)–1

for Rs > ‖A‖ 1
α , where Rs represents the real part of the complex number s, and Eα,β is the

Mittag-Leffler function [45].
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3 Mathematical model
In this section, the Caputo fractional calculus has been used to formulate and explore the
role of temperature on the transmission and control of Trypanosoma brucei rhodesiense.
The proposed mathematical model demonstrates the interplay between the tsetse and two
hosts, humans and animals. Furthermore, the proposed framework consists of two parts
(i) the life cycle of the tsetse flies and (ii) the full model that governs HAT transmission
dynamics when the tsetse fly population growth persists. Comprehensive details on the
modelling of the early stages of the tsetse flies can be found in [13]. As proposed in [13],
let the following system summarise the dynamical growth of the tsetse fly:

c
t0 Dα

t L(t) = bα
l WNv(1 – L

Kα
l

) – (σα
l + μα

p )L,
c
t0 Dα

t Nv(t) = σα
l L – μα

v Nv.

}
(2)

The variable L(t) represent the pupal stage of the tsetse, and Nv(t) denotes the total adult
vector population at time t, which is comprised of susceptible Sv(t) and infectious Iv(t).
Thus, Nv = Sv + Iv. In addition, all model parameters and variables in system (2) are con-
sidered to be positive, and the parameters are defined as follows: bl represents the rate at
which female flies give birth to larvae; W denotes a fraction of female flies in the popula-
tion of adult flies; Kl is the pupal carrying capacity of the nesting site; σl is the transition
from pupal stage into an adult fly, thus 1/σl represents the average time a fly spends as a
pupa; μp and μv account for mortality rate of pupae and adult flies, respectively.

Assuming that the growth of the tsetse fly persists, we now present the full model
that governs disease transmission. Thus, we subdivide the two host populations (humans
and animals) into compartments of: the susceptible Si(t), the infectious Ii(t) and the re-
covered Ri(t), i = a, h. The subscripts a and h represent the animal and human popula-
tions, respectively. It follows that the total population of each host at time t is given by
Ni(t) = Si(t) + Ii(t) + Ri(t). The proposed fractional-order model has the form

c
t0 Dα

t Sv(t) = σα
l L – (βα

hvIh + βα
avIa)Sv – μα

v Sv,
c
t0 Dα

t Iv(t) = (βα
hvIh + βα

avIa)Sv – μα
v Iv,

c
t0 Dα

t Sh(t) = Λα
h – βα

vhf (Iv)Sh – μα
h Sh,

c
t0 Dα

t Ih(t) = βα
vhf (Iv)Sh – (μα

h + γ α
h )Ih,

c
t0 Dα

t Sa(t) = Λα
a – βα

vaf (Iv)Sa – μα
a Sa,

c
t0 Dα

t Ia(t) = βα
vaf (Iv)Sa – (μα

a + γ α
a )Ia,

c
t0 Dα

t Rh(t) = γ α
h Ih – μα

h Rh,
c
t0 Dα

t Ra(t) = γ α
a Ia – μα

a Ra.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3)

All model parameters and variables in system (3) are considered to be positive, and the
parameters are defined as follows: parameter Λj, j = a, h, represents the constant recruit-
ment rate of the host population through birth and they are assumed to be susceptible, μi,
i = a, h, v, denotes natural mortality rate, βvk represents the transmission rate of infection
from an infected tsetse vector to a susceptible host k given that effective contact between
the two species occurs, βkv represents disease transmission from an infected host k to a
susceptible vector given that effective contact between the two occurs, γk is the recovery
rate for the host population. Furthermore, disease transmission from infectious vectors
to susceptible hosts is modelled by a nonlinear incidence rate, and the function f (Iv) is
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equivalent to

f (Iv) =
Iv

1 + θ Iv
,

where θ is a positive constant.
As highlighted earlier, temperature plays a crucial role on Trypanosoma brucei rhode-

siense transmission dynamics. To account for this effect, we now remodel parameters of
system (2) and (3): bl is the rate at which female flies give birth to larvae; σl denotes pupal
development rate; μp denotes pupal mortality rate and μv is adult tsetse mortality rate;
and functions of temperature. In particular, we adopted the following function [16, 46] to
model the rate at which female flies give birth to larvae:

bl = d1 + d2(T – T0), (4)

where T0 was set to 20◦C [16]. Function (4) was derived by Hargrove [46] when the author
used ovarian dissection data from marked and released G. m. morsitans and G. pallidipes
at Rekomitjie. Precisely, Hargrove’s work suggested that the larviposition rate per day in-
creases linearly between 20◦C and 30◦C. Adult fly mortality rate μv is now modelled by

μv =

⎧⎨
⎩

a1 for T ≤ 25,

a1ea2(T–25) for T > 25,

where T is the temperature in ◦C, a2 parameterises the increase at higher temperatures.
Based on the laboratory experiments performed by Phelps [2], pupal survival to adulthood
depends on temperature variations and is highest for temperatures between about 20◦C
and 30◦C. As temperatures move from this range, the mortality rises sharply, leading to a
U-shaped curve, and a suitable function to represent this relation is

μp = b1 + b2 exp
(
–b3(T – T2)

)
+ b4 exp

(
b5(T – T3)

)
,

where T is the temperature in ◦C, T2 and T3 are not parameters but are constants selected
to ensure that the coefficients b3 and b5 are in a convenient range, and in our simulation
these will be set to 16◦C and 32◦C as in [16].

Additional important result from Phelps’ work was the quantification of the daily rate
of pupal development σL in G. m. morsitans as a function of constant temperature. The
following function was considered to be the best representation of pupal emergence and
temperature variations:

σl =
c1

1 + exp(c2 + c3T)
,

where T represents the mean daily temperature and c1, c2 and c3 parametrise pupal hatch-
ing rate [16].

Remark 3.1 Note that, in order to avoid flaws regarding the time dimension, we intro-
duced α in the model parameters (right-hand side) of both systems (2) and (3), so that the
dimensions of these parameters become (time)–α , which is in agreement with the left-hand
side of the model.
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It is worth noting that there is need to derive the threshold quantity that determines the
growth of the tsetse fly population. Thus, the analysis of the proposed model will begin
with system (2). Once this threshold condition has been determined, one can then proceed
to investigating the dynamical behaviour of system (3).

4 Analytical results of the proposed framework
4.1 The dynamical behaviour of system (2)
In this section, the dynamical behaviour of system (2) is investigated. The basic properties
of the model and other fundamental results will be established.

4.1.1 Basic properties of the model
Theorem 4.1 Let X (t) = (L(t), Nv(t)) be the unique of model (2) for t ≥ 0. Then the solution
X (t) remains in R

2
+.

Proof To demonstrate that the solution X (t) of model (2) is nonnegative, there is need
to investigate the direction of the vector field given by the right-hand side of (2) on each
space and determine whether the vector field points to the interior of R2

+ or is tangent to
the coordinate space. Since

c
t0 Dα

t L(t)|L=0 = bα
l WNv ≥ 0,

c
t0 Dα

t Nv(t)|Nv=0 = σα
l L ≥ 0.

The results presented imply that the vector field given by the right-hand side of (2) on each
coordinate plane is either tangent to the coordinate plane or points to the interior of R2

+.
Hence, the domain R

2
+ is a positively invariant region. Moreover, if the initial conditions

of system (2) are nonnegative, then it follows that the corresponding solutions of model
(2) are nonnegative. �

Theorem 4.2 Let X (t) = (L(t), Nv(t)) be the unique of model (2) for t ≥ 0. Then the solution
X (t) is bounded above, that is, X (t) ∈ Ω where Ω denotes the feasible region and is given
by

Ω =
{

(L, Nv) ∈R
2
+|0 ≤ L ≤ Kα

l , 0 ≤ Nv ≤ C
}

.

Proof For model (2) to be biologically meaningful, all model solutions need to be positive.
Hence, from the first equation of model (2), one can easily note that for all solutions of this
equation to remain positive the following condition must hold 0 ≤ L(t) ≤ Kα

l ; otherwise,
the solutions will be negative and biologically irrelevant. From the bounds of L(t), it follows
that

c
t0 Dα

t Nv(t) = σα
l L – μα

v Nv

≤ σα
l Kα

l – μα
v Nv.

By closely following Theorems 2.3 and 2.4, applying the Laplace transform leads to

sαL
(
NV (t)

)
– sα–1Nv(0) ≤ σα

l Kα
l

s
– μα

vL
(
Nv(t)

)
.
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Combining the like terms, one gets

L
(
Nv(t)

) ≤ σα
l Kα

l
s–1

sα + μα
v

+ Nv(0)
sα–1

sα + μα
v

= σα
l Kα

l
sα–(1+α)

sα + μα
v

+ Nv(0)
sα–1

sα + μα
v

.

Applying the inverse Laplace transform leads to

Nv(t) ≤L–1
{
σα

l Kα
l

sα–(1+α)

sα + μα
v

}
+ L–1

{
Nv(0)

sα–1

sα + μα
v

}

≤ σα
l Kα

l tαEα,α+1
(
–μvtα

)
+ NV (0)Eα,1

(
–μvtα

)

≤ σα
l Kα

l
μα

v
μα

v tαEα,α+1
(
–μvtα

)
+ NV (0)Eα,1

(
–μvtα

)

≤ max

{
σα

l Kα
l

μα
v

, Nv(0)
}(

μα
v tαEα,α+1

(
–μvtα

)
+ Eα,1

(
–μvtα

))

=
C

Γ (1)
= C, (5)

where C = max{ σα
l Kα

l
μα

v
, Nv(0)}. Thus, NV (t) is bounded from above. Hence, one can con-

clude that the solution X1(t) is bounded above. �

4.1.2 Equilibrium points and their stability
In what follows, we derive the fundamental results for model (2). Through direct calcula-
tions, one can note that model (2) has two equilibrium points, trivial (L, Nv) = (0, 0) and
nontrivial

{
L∗, N∗

v
}

=
{(

1 –
1
r

)
Kα

l ,
σα

l
μα

v

(
1 –

1
r

)
Kα

l

}
,

where

r =
σα

l
σα

l + μα
p

bα
l

μα
v

W ,

r is a threshold quantity that determines growth of the tsetse fly population. It is defined as
the likelihood of the fly to survive the pupal stage multiplied by the surviving population
of female flies [13].

Theorem 4.3
(i) If r ≤ 1, then the equilibrium point (0, 0) is the sole equilibrium point of system (2)

and it is globally (uniformly) asymptotically stable in Ω .
(ii) If r > 1, then the equilibrium (L∗, N∗

v ) is globally (uniformly) asymptotically stable in
int(Ω).

Proof We will use Lyapunov functionals to demonstrate that Theorem 4.3 holds.
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(i) To investigate the first part of Theorem 4.3, we consider the following Lyapunov
function:

U1(t) =
μα

v
bα

l W
L(t) + Nv(t).

Observe that the function U(t) is defined, continuous and positive definite for all
L(t) and Nv(t). It follows from Definition (2.2) that

c
t0 Dα

t U1(t) =
μα

v
bα

l W
c
t0 Dα

t L(t) + c
t0 Dα

t Nv(t)

=
μα

v
bα

l W

[
bα

l WNv

(
1 –

L
Kα

l

)
–

(
σα

l + μα
p
)
L
]

+ σα
l L – μα

v Nv

= –
μα

v NvL
Kα

l
–

σα
l
r

(1 – r).

Since c
t0 Dα

t U(t) < 0, for r < 1, we can conclude that the equilibrium point (0, 0) is
globally (uniformly) asymptotically stable in Ω . Now, we proceed to demonstrating
item (ii).

(ii) Consider the following Lyapunov function:

U2(t) = a1

[
L(t) – L∗ – L∗ ln

(
L(t)
L∗

)]
+ a2

[
Nv(t) – N∗

v – N∗
v ln

(
Nv(t)
N∗

v

)]
,

where a1 and a2 are positive constants to be determined. Applying Lemma 2.2 leads
to

c
t0 Dα

t U2(t) ≤ a1

(
1 –

L∗

L(t)

)
c
t0 Dα

t L(t) + a2

(
1 –

N∗
v

Nv(t)

)
c
t0 Dα

t Nv(t)

= a1

(
1 –

L∗

L(t)

)(
g(Nv, L) –

(
σα

l + μα
p
)
L
)

+ a2

(
1 –

N∗
v

Nv(t)

)(
σα

l L – μα
v Nv

)
,

with g(Nv, L) = bα
l WNv(1 – L

Kα
l

).

Setting a1 = 1 and a2 = g(N∗
v , L∗) > 0, with g(N∗

v , L∗) = bα
l WNv(1 – L∗

Kα
l

).
Furthermore, by utilising the identities g(N∗

v , L∗) = (σα
l + μα

p )L∗ and σα
l L∗ = μα

v N∗
v ,

one gets

c
t0 Dα

t U2(t) ≤ g
(
N∗

v , L∗)(2 –
Nv

N∗
v

–
LN∗

v
L∗Nv

–
L∗

L
g(Nv, L)

g(N∗
v , L∗)

+
g(Nv, L)

g(N∗
v , L∗)

)
.

Let Φ(x) = 1 – x + ln x for x > 0. It follows that Φ(x) ≤ 0, with the equality satisfied
if and only if x = 1. Using this relation, we have

2 –
Nv

N∗
v

–
LN∗

V
L∗NV

–
L∗

L
g(NV , L)
g(N∗

V , L∗)
+

g(NV , L)
g(N∗

V , L∗)

= Φ

(
LN∗

V
L∗NV

)
+ Φ

(
L∗

L
g(NV , L)
g(N∗

V , L∗)

)
–

Nv

N∗
v

+
g(NV , L)
g(N∗

V , L∗)
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– ln

(
N∗g(NV , L)
Ng(N∗

V , L∗)

)

≤ ln

(
Nv

N∗
v

)
–

Nv

N∗
v

+
g(NV , L)
g(N∗

V , L∗)
– ln

(
g(NV , L)
g(N∗

V , L∗)

)

≤ 0.

Hence, we can conclude that if r > 1, then the equilibrium (L∗, N∗
v ) is globally

(uniformly) asymptotically stable in int(Ω). From the above analytical results we can
also deduce that if r < 1, then the tsetse vector population will go into extinction and
for r > 1 it will persist. Thus, as we proceed to perform the analysis of (2), we will
consider r > 1 implying the tsetse flies are at the equilibrium (L∗, N∗

v ). �

4.2 Analysis of the full model
We have noted that the tsetse population grows if r > 1 and the equilibrium (L∗, N∗

V ) will
be globally (uniformly) asymptotically stable. Therefore, in this section, we explore the
dynamics of the full model, and we will consider L = L∗. Furthermore, as we can observe,
the last two equations in system (3) do not influence the dynamics of the disease since all
the other six equations do not depend on these equations. Hence, without loss of generality
one can explore the dynamics of the disease based on a reduced system:

c
t0 Dα

t Sv(t) = σα
l L∗ – (βα

hvIh + βα
avIa)Sv – μα

v Sv,
c
t0 Dα

t Iv(t) = (βα
hvIh + βα

avIa)Sv – μα
v Iv,

c
t0 Dα

t Sh(t) = Λα
h – βα

vhf (Iv)Sh – μα
h Sh,

c
t0 Dα

t Ih(t) = βα
vhf (Iv)Sh – (μα

h + γ α
h )Ih,

c
t0 Dα

t Sa(t) = Λα
a – βα

vaf (Iv)Sa – μα
a Sa,

c
t0 Dα

t Ia(t) = βα
vaf (Iv)Sa – (μα

a + γ α
a )Ia.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

4.2.1 Basic properties of the model
By closely following the approach in Sect. 4.1.1 one can easily verify the positivity and
boundedness of solutions for system (6). For instance, we can note that all the solutions of
system (6) are unique and positive since

c
t0 Dα

t Sv(t) = σα
l L∗ ≥ 0,

c
t0 Dα

t Iv(t) = (βα
hvIh + βα

avIa)Sv ≥ 0,
c
t0 Dα

t Sh(t) = Λα
h ≥ 0,

c
t0 Dα

t Ih(t) = βα
vhf (Iv)Sh ≥ 0,

c
t0 Dα

t Sa(t) = Λα
a ≥ 0,

c
t0 Dα

t Ia(t) = βα
vaf (Iv)Sa ≥ 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Moreover, by following the approach used earlier, it can determined that 0 ≤ Ni(t) ≤
max{Λα

i
μα

i
, Ni(0)} for i = a, h implying that all the solutions of system (6) are bounded above.

4.2.2 Equilibrium points and their stability
In the absence of the disease in the community, system (6) admits a trivial equilibrium
point also known as the disease-free equilibrium (DFE) and given by

E0 :
(
S0

h, I0
h , S0

a, I0
a , S0

v , I0
v
)

=
(

Λα
h

μα
h

, 0,
Λα

a
μα

a
, 0,

σα
l

μα
v

(
1 –

1
r

)
Kα

l , 0
)

.
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Following the next generation matrix approach [47, 48], it can easily be verified that the
basic reproduction number of system (6) is

R0 =

√
Kα

l
σα

l
μα

v

(
1 –

1
r

)(
βα

vhβ
α
hvΛ

α
h

μα
v μα

h (μα
h + γ α

h )
+

βα
avβ

α
vaΛ

α
a

μα
v μα

a (μα
a + γ α

a )

)
. (8)

The basic reproduction number R0 is defined to be the expected number of secondary
cases (vector or host) produced in a completely susceptible population by one infectious
individual (vector or host, respectively) during its lifetime as infectious. The basic repro-
duction number is an integral epidemiological metric for understanding Trypanosoma
brucei rhodesiense persistence and extinction. As we can observe, this metric depends on
disease transmission parameters βij for i = j = a, h, v, the average infectious period of the
vector (host) 1

(μα
i +γ α

i ) , vector competence and survival σα
l

μ2α
v

(1 – 1
r )Kα

l .

Remark 4.1 From the expression of the basic reproduction number (8), one can observe
that if r = 1, R0 = 0, and for r < 1, we have R0 ≤ 1. This implies that whenever r ≤ 1 the
disease will not persist in the community since the tsetse fly population would naturally
become extinct.

Next, we investigate the stability of the steady states of system (6). We will begin with
the disease-free equilibrium (DFE).

Theorem 4.4 For α ∈ (0, 1), the disease-free equilibrium of system (6) is globally (uni-
formly) asymptotically stable for R0 < 1.

Proof Consider the following Lyapunov functional:

L0(t) = c1

{
Sh(t) – S0

h – S0
h ln

Sh(t)
S0

h

}
+ c1Ih(t) + c2

{
Sa(t) – S0

a – S0
a ln

Sa(t)
S0

a

}

+ c2Ia(t) + c3

{
Sv(t) – S0

v – S0
v ln

Sv(t)
S0

v
+ Iv(t)

}
,

where c1, c2 and c3 are positive constants to be determined. Now, it follows from Defini-
tion 2.2 and Lemma 4.3 that

c
t0 Dα

t L0(t) ≤ c1

(
1 –

S0
h

Sh

)
c
t0 Dα

t Sh + c1
c
t0 Dα

t Ih + c2

(
1 –

S0
a

Sa

)
c
t0 Dα

t Sa

+ c2
c
t0 Dα

t Ia + c3

(
1 –

S0
v

Sv

)
c
t0 Dα

t Sv + c3
c
t0 Dα

t Iv.

Setting

c1 = μα
v βα

hv
(
μα

a + γ α
a
)
, c2 = μα

v βα
av

(
μα

h + γ α
h
)
,

c3 =
(

βα
hvβ

α
vhΛ

α
h (μα

a + γ α
a )

μα
h

+
βα

vaβ
α
avΛ

α
a (μα

h + γ α
h )

μα
a

)
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and simplifying one gets:

c
t0 Dα

t L0(t) ≤ –μα
v μα

hβα
hv

(
μα

a + γ α
a
) (Sh – S0

h)2

Sh
– μα

v μα
aβα

av
(
μα

h + γ α
h
) (Sa – S0

a)2

Sa

–
(

βα
hvβ

α
vhΛ

α
h (μα

a + γ α
a )μα

v
μα

h
+

βα
vaβ

α
avΛ

α
a (μα

h + γ α
h )μα

v
μα

a

)
(Sv – S0

v )2

Sv

–
(

βα
hvβ

α
vhΛ

α
h (μα

a + γ α
a )μα

v

μα
h

+
βα

vaβ
α
avΛ

α
a (μα

h + γ α
h )μα

v

μα
a

)
θ f (Iv)Iv

– μα
v
(
μα

a + γ α
a
)(

μα
h + γ α

h
)(

βα
hvIh + βα

avIa
)(

1 – R2
0
)
.

Since all the parameters and variables in system (6) are nonnegative, it follows that
c
t0 Dα

t L0(t) < 0 holds if R0 < 1. Therefore, by the LaSalle invariance principle [49], we con-
clude that the DFE of system (6) is globally (uniformly) asymptotically stable whenever
R0 < 1. This completes the proof. Biologically, this implies that whenever R0 < 1 then the
disease dies out in the community. �

Theorem 4.5 Let E∗ = (S∗
i , I∗

i ) for i = a, h, v be the endemic equilibrium point of system (6).
Then, for α ∈ (0, 1) and R0 > 1, the endemic equilibrium point E∗ is globally (uniformly)
asymptotically stable.

Proof Consider the following Lyapunov functional:

L1(t) = b1

(
Sh(t) – S∗

h – S∗
h ln

Sh(t)
S∗

h

)
+ b2

(
Ih(t) – I∗

h – I∗
h ln

Ih(t)
I∗

h

)

+ b3

(
Sa(t) – S∗

a – S∗
a ln

Sa(t)
S∗

a

)
+ b4

(
Ia(t) – I∗

a – I∗
a ln

Ia(t)
I∗

a

)

+ b5
(

Sv(t) – S∗
v – S∗

v ln
Sv(t)

S∗
v

)
+ b6

(
Iv(t) – I∗

v – I∗
v ln

Iv(t)
I∗

v

)
,

where bi =, i = 1, 2, 3, . . . , 6, are positive constants to be determined. Applying Lemma 4.3
leads to

c
t0 Dα

t L1(t) ≤ b1

(
1 –

S∗
h

Sh

)
c
t0 Dα

t Sh + b2

(
1 –

I∗
h

Ih

)
c
t0 Dα

t Ih + b3

(
1 –

S∗
a

Sa

)
c
t0 Dα

t Sa

+ b4

(
1 –

I∗
a

Ia

)
c
t0 Dα

t Ia + b5

(
1 –

S∗
v

Sv

)
c
t0 Dα

t Sv + b6

(
1 –

I∗
v

Iv

)
c
t0 Dα

t Iv.

Setting bi = 1 for i = 1, 2, 3, 4 and b5 = b6 = βα
vhf (I∗v )S∗

h
βα

hvI∗h S∗
v

+ βα
vaf (I∗v )S∗

a
βα

avI∗a S∗
v

and utilising the following
identities (which exist at the endemic point)

⎧⎪⎪⎨
⎪⎪⎩

Λα
h = βα

vhf (I∗
v )S∗

h + μα
h S∗

h, (μα
h + γ α

h )I∗
h = βα

vhf (I∗
v )S∗

h,

Λα
a = βα

vaf (I∗
v )S∗

a + μα
a S∗

a, (μα
a + γ α

a )I∗
a = βα

vaf (I∗
v )S∗

a,

σα
l L∗ = (βα

hvI∗
h + βα

avI∗
a )S∗

v + μα
v S∗

v , μα
v I∗

v = (βα
hvI∗

h + βα
avI∗

a (t))S∗
v ,
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one gets

DαL1(t) ≤ μα
h S∗

h

(
2 –

Sh

S∗
h

–
S∗

h
Sh

)

︸ ︷︷ ︸
(1)

+βα
vaf

(
I∗

v
)
S∗

a
βα

hvI∗
h

βα
avI∗

a

(
2 –

S∗
v

Sv
–

Iv

I∗
v

–
SvI∗

v Ih

S∗
v IvI∗

h
+

Ih

I∗
h

)

︸ ︷︷ ︸
(2)

+ βα
vhf

(
I∗

v
)
S∗

h

(
4 –

S∗
h

Sh
–

ShI∗
h f (Iv)

S∗
hIhf (I∗

v )
–

S∗
v

Sv
–

Iv

I∗
v

–
SvI∗

v Ih

S∗
v IvI∗

h
+

f (Iv)
f (I∗

v )

)

︸ ︷︷ ︸
(3)

+ μα
a S∗

a

(
2 –

Sa

S∗
a

–
S∗

a
Sa

)

︸ ︷︷ ︸
(4)

+βα
vhf

(
I∗

v
)
S∗

h
βα

avI∗
a

βα
hvI∗

h

(
2 –

S∗
v

Sv
–

Iv

I∗
v

–
SvI∗

v Ia

S∗
v IvI∗

a
+

Ia

I∗
a

)

︸ ︷︷ ︸
(5)

+ βα
vaf

(
I∗

v
)
S∗

a

(
4 –

S∗
a

Sa
–

SaI∗
a f (Iv)

S∗
aIaf (I∗

v )
–

S∗
v

Sv
–

Iv

I∗
v

–
SvI∗

v Ia

S∗
v IvI∗

a
+

f (Iv)
f (I∗

v )

)

︸ ︷︷ ︸
(6)

+ μα
v S∗

v

(
βα

vhf (I∗
v )S∗

h
βα

hvI∗
h S∗

v
+

βα
vaf (I∗

v )S∗
a

βα
avI∗

a S∗
v

)(
2 –

Sv

S∗
v

–
S∗

v
Sv

)

︸ ︷︷ ︸
(7)

.

Since the arithmetic mean is greater than or equal to the geometric mean, it follows that
for (1), (4) and (7) the following is satisfied:

(
2 –

Si

S∗
i

–
S∗

i
Si

)
≤ 0. (9)

Furthermore, let Φ(x) = 1 – x + ln x for x > 0. It follows that Φ(x) ≤ 0 with equality if and
only if x = 1. Utilising the aforementioned properties of Φ(x), we can demonstrate that the
terms in the brackets are less or equal to zero. Let k = a, h, so that from (2) and (5) we can
write

2 –
S∗

v
Sv

+
Ik

I∗
k

–
Iv

I∗
v

–
SvI∗

v Ik

S∗
v IvI∗

k
,

= Φ

(
S∗

v
Sv

)
+ Φ

(
SvI∗

v Ik

S∗
v IvI∗

k

)
– ln

(
I∗

v Ik

IvI∗
k

)
+

Ik

I∗
k

–
Iv

I∗
v

≤ Ik

I∗
k

– ln

(
Ik

I∗
k

)
–

Iv

I∗
v

+ ln

(
Iv

I∗
v

)

≤ 0. (10)

In addition, from (3) and (6) we have

4 –
S∗

k
Sk

–
SkI∗

k f (Iv)
S∗

k Ikf (I∗
v )

–
S∗

v
Sv

–
Iv

I∗
v

–
SvI∗

v Ik

S∗
v IvI∗

k
+

f (Iv)
f (I∗

v )
,

= Φ

(
S∗

k
Sk

)
+ Φ

(
S∗

v
Sv

)
+ Φ

(
SkI∗

k f (Iv)
S∗

k Ikf (I∗
v )

)
+ Φ

(
SvI∗

v Ik

S∗
v IvI∗

k

)

–
Iv

I∗
v

+
f (Iv)
f (I∗

v )
– ln

(
f (Iv)I∗

v
f (I∗

v )Iv

)
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≤ ln

(
Iv

I∗
v

)
–

Iv

I∗
v

+
f (Iv)
f (I∗

v )
– ln

(
f (Iv)
f (I∗

v )

)

≤ 0. (11)

From (9), (10) and (11), it follows that DαL1(t) ≤ 0 whenever R0 > 1. Therefore, by the
invariant principle of LaSalle [49], system (6) admits a globally (uniformly) asymptotically
stable endemic equilibrium for R0 > 1. In a nutshell, the result implies that whenever R0 >
1 the disease will persist unless intervention strategies that are capable of reducing R0 to
value less than unity are implemented. �

5 Numerical results and discussion
In this section, numerical experiments are conducted using MATLAB software in order
to support analytical findings presented in the previous section. For the numerical im-
plementation of fractional derivatives, we have utilised the Adam–Bashforth–Moulton
(ABM) scheme, which has been implemented in the Matlab code fde12 by Garrappa [50].
This code implements a predictor-corrector PECE method of ABM type, as described in
[51]. For aspects on convergence and accuracy of the numerical technique utilised, we re-
fer readers to [52]. Furthermore, comprehensive details on stability of predictor-corrector
algorithms for fractional differential equations are found in [53].

The baseline values for temperature dependent parameters are given in Table 1, and the
remaining model parameters which are not temperature are given in Table 2. We have
redefined some of the parameters as follows: Λh = μhNh, Λa = μaNa, implying that the
host birth rate is now regarded to be equivalent to natural mortality rate. In addition, we set
βav = pξψ , βhv = (1–p)ξω, βva = pξu and βvh = (1–p)ξb, where p is the proportion of tsetse
fly bite on animals, ξα is the fly biting rate, ψ is the probability that a susceptible fly gets
infected upon contact with an infectious animals, ω is the probability that a susceptible
fly gets infected upon contact with an infectious human, u and b represent the probability
that an infectious fly infects an animal and a human, respectively, upon contact. In all the
simulation results we set ω = ψ = 3.55×10–4 and b = u = 8.3×10–4. These baseline values
were based upon consultation of several published frameworks.

On simulating system (6) we assumed the following initial population levels: L = 1300,
Nv = 1500, Sv = 1000, Iv = 500, Sh = 900, Ih = 100, Sa = 380, Ia = 120 and θ = 0.8. Without
loss of generality, we set the values of the fractional order to be α = 0.5, α = 0.7, α = 0.9, α =
1.0. Model parameters that are considered to be independent of temperature are in Table 2.
All the baseline values for these parameters were adopted from the work of Ndondo et al.
[13]. Note that K will be varied in order to obtain different values of R0. Additional model
parameters dependent on temperature are presented in Table 1, and all the baseline values
were adopted from the work of Lord et al. [16].

Numerical results in Fig. 1 demonstrate the relationship between the basic reproduction
number R0 and temperature in ◦C. We can observe that as temperature increases from
the critical minimum T = 16◦ C, the basic reproduction number R0 gradually increases
till the highest value is attained at optimum temperature T = 25◦C, thereafter R0 sharply
declines. Furthermore, we can also note that when T < 16◦C then R0 < 1.

Numerical results in Fig. 2 illustrate the dynamics of the infected population when for
R0 ≤ 1. As we can note, all the populations converged to the disease-free equilibrium,
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Table 1 Description of temperature dependent model parameters used in system (6). All the
parameter values were adopted from the work of Lord et al. [16]

Function Definition Parameter Baseline value Range

bl (day–1) Larviposition rate d1 0.1050 0.1046± 0.0004
Larviposition rate d2 0.0053 0.0052± 0.0001

μv (day–1) Adult mortality rate a1 0.027 0.027± 0.001
Adult mortality rate a2 0.153 0.153± 0.020

μp (day–1) Pupal mortality rate b1 0.0019 0.0019± 0.0004
Pupal mortality rate b2 0.006 0.006± 0.001
Pupal mortality rate b3 1.4881 1.481± 0.681
Pupal mortality rate b4 0.003 0.003± 0.001
Pupal mortality rate b5 1.094 1.211± 0.117

σl (day–1) Pupal emergence rate c1 0.05884 0.05884± 0.00289
Pupal emergence rate c2 4.8829 4.8829± 0.0993
Pupal emergence rate c3 –0.2159 –0.2159± 0.0050

Table 2 Description of non-temperature dependent model parameters used in system (6). All the
parameter values were adopted from the work of Ndondo et al. [13]

Symbol Description Value Units

W Proportion of female flies 0.6 Dimensionless

μh Human population birth/natural death rate 1
50×365 Day–1

μa Animal population birth/death rate 1
15×365 Day–1

γh Human recovery rate 1
30 Day–1

γa Animal recovery rate 1
25 Day–1

ξ Tsetse fly biting rate 1
4 Day–1

p Proportion of tsetse fly bite on animal 0.7 Dimensionless

Figure 1 The relationship between the basic reproduction numberR0 and temperature T . Parameter values
used are given in Tables 2 and 1. Furthermore, we set Kl = 1500, Nh = 1000, Na = 500, Nv = 1500 and varied the
temperature from 16–27◦C

despite the chosen value of α. These results concur with analytical findings presented in
Theorem 4.4 that whenever R0 ≤ 1 the proposed model is stable and the disease dies out
in the community.

Simulation results in Fig. 3 show the solutions of model (6) at different levels of α =
(0.5, 0.7, 0.9, 1.0) for R0 = 3.7 > 1. We set T = 25◦C and Kl = 3300. As we can note, solu-
tion profiles converge to a nonzero equilibrium point, implying that whenever R0 > 1 the
model is stable and admits a unique endemic equilibrium point. Biologically, this means
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Figure 2 Numerical results of system (6) demonstrating the convergence of infected population to the
disease-free equilibrium forR0 ≤ 1. On construction of the simulations, we considered initial population
levels discussed earlier, while baseline values for the model parameters are as in Tables 2 and 1. In addition,
we also set T = 16.5◦C and K = 3300, givingR0 = 1.0. As we can observe, the results concur with analytical
findings presented in Theorem 4.4 that wheneverR0 ≤ 1 the disease dies out in the community

that R0 > 1 the disease will persist in the community. These simulation results support
analytical findings presented in Theorem 4.5.

Figure 4 shows the numbers of infected vectors, humans and animals, at different tem-
perature values over a period of 500 days. As we can observe, low temperature values
(T < 25◦C) are associated with low infection levels and as the temperature increased to
the optimum value T = 25◦C, the number of infections increases over time. We can also
observe that for t < 100 days the impact of different temperature values on population
levels will not be extremely distinct. However, thereafter there is a significant distinc-
tion.

Next, we investigate the effects of screening infected hosts and vector control on dis-
ease dynamics. Detection and treatment of humans has been a primary control strategy
for HAT. Cases detection can be carried out either periodically (usually large-scale screen-
ing) or on continuous basis (usually small scale) at health care centres [29]. In this study,
we explore the potential effects of continuous detection and treatment and we follow the
approach in Artzrouni and Gouteux [25]. Artzrouni and Gouteux proposed a model for
HAT that had a new parameter Ch, which was meant to account for the month percent
detections of infected individuals. Furthermore, Artzrouni and Gouteux proposed that
the rate of exit of infected host to the recovery stage can be presented as a composite of
the intrinsic underlying disease progression (say, γint and the removal rate by treatment
(extrinsic, say γext) such that

γh = γint + γext, (12)
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Figure 3 Numerical results of system (6) demonstrating the convergence of infected population to the
endemic equilibrium forR0 > 1. On simulating the model, we considered initial population levels discussed
earlier, while baseline values for the model parameters are as in Tables 2 and 1. In addition, we also set
T = 25◦C and K = 3300, givingR0 = 3.7. As we can observe, the results concur with analytical findings
presented in Theorem 4.5 that wheneverR0 > 1 the system is stable and the infection persists in the
community

then the monthly percent detection is given by

Ch = 100
[
1 – exp(–30γext)

]
. (13)

Consequently, the exit rate from the infected class for human host is given by

γh = γint –
1

30
ln

(
1 –

Ch

100

)
. (14)

From (14) we can observe that linear detection of infected individual does not result in
linear changes in γh. Rock et al. [29] opine that this representation of the recovery rate leads
to a meaningful way in which the influence of the parameter on the basic reproduction
number can be extensively explored.

Despite the fact that there are several methods to control the density of the tsetse, such
as aerial spraying and the deployment of natural or artificial baits, essentially altering the
total population parameter Nv, birth rate and natural mortality rate μα

v will alter the den-
sity of the tsetse population. Cognisant of these fundamental parameters, Artzrouni and
Gouteux [25] hypothesised that tsetse controls will affect mortality rate but not the pop-
ulation size. Hence in an analogous approach to modelling detection and treatment of
human, they model ‘natural’ mortality rate of the vectors a follows:

μv = μv,int + μv,ext, (15)
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Figure 4 Numerical results depicting the effects of temperature variation on the dynamics of infected hosts
and vectors. We set α = 0.7, Kl = 3300, Nh = 1000, Na = 500, L = 1300, Nv = 1500, Sv = 1000, Iv = 500, Ih = 100,
Sa = 380 and Ia = 17. The rest of the model parameters were adopted as in Tables 2 and 1

where μv,int accounts for the mortality experienced by flies in their environment and μv,ext

describes an additional death rate which occurs as result of control strategies. Further-
more, they suggested that this death rate μα

v is related to the daily percentage of flies killed
and denoted here by Cv:

Cv = 100
[
1 – exp(–30μv,ext)

]
. (16)

Thus, the total mortality rate of vectors due to ‘natural’ and control measures is given by

μv = μv,int – ln

(
1 –

Cv

100

)
. (17)

Note that in the work of Artzrouni and Gouteux they used rates with three days as the
unit of time on equation (17).

In what follows, we numerically explore the effectiveness of case detection and vector
on the spread of the disease. Precisely, we will use contour plot to determine the influence
of ch and cv on the basic reproduction number, since it an integral epidemiological metric
for understanding the power of Trypanosoma brucei rhodesiense to invade the commu-
nity. A contour plot in Fig. 5 illustrates the impact of human case detection and vector
control on Trypanosoma brucei rhodesiense dynamics at T = 20◦C. As we can observe,
an increase in both case detection and vector control percentages will lead to a decrease
in the magnitude of R0. We can also note that vector control has a strong influence on
minimising the magnitude of R0 compared to human detection. In particular, whenever
Cv > 30, then R0 < 1 despite any value of Ch.
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Figure 5 A contour plot illustrating the effects of
human detection and vector control on
Trypanosoma brucei rhodesiense dynamics. We set
T = 20◦C, Kl = 3300, βhv = βav = 3.55× 10–4,
βvh = βva = 8.3× 10–4, Nh = 1000, Na = 500,
γint = 0.009 and μv,int = 0.027

Figure 6 A contour plot illustrating the effects of
human detection and vector control on
Trypanosoma brucei rhodesiense dynamics. We set
T = 25◦C, Kl = 1500, Nh = 1000, Na = 500, γint = 0.009
and μv,int = 0.027

Figure 7 Simulation results showing the effects of temperature onR0 in the presence of human screening
and vector control. We set Ch = Cv = 50, Kl = 1500, Nh = 1000, Na = 500, L = 1300, Nv = 1500, Sv = 1000,
Iv = 500, Ih = 100, Sa = 380 and Ia = 17. The rest of the parameter values are as in Tables 2 and 1

A contour plot in Fig. 6 demonstrates the impact of Ch and Cv on the transmission dy-
namics of Trypanosoma brucei rhodesiense at T = 25◦C. Comparing the results in Fig. 5
and Fig. 6, we can observe that at optimum temperature T = 25◦C, vector control needs
to be greater that 50 (Cv > 50) in order to reduce the magnitude of the basic reproduction
number to values less than unity, whereas in Fig. 5, Cv > 30 is sufficient to obtain R0 < 1.
Therefore, we can conclude that if the average temperature in the community is very close
to the optimum temperature, then intensity of vector control needs to be at least 50%.

In Fig. 7 we explore the relationship between temperature and R0 in the presence of
human screening and vector control. Wet set Ch = Cv = 50. As we can observe, R0 > 1 for
23 < T < 26◦C. This implies that at 50% human detection and 50% killing of vectors, the
disease can only persist in the community when the average temperature is between 23
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Figure 8 Simulation results showing the effects of temperature onR0 in the presence of human screening
and vector control. We set Ch = 50, Cv = 55, kl = 1500, Nh = 1000, Na = 500, L = 1300, Nv = 1500, Sv = 1000,
Iv = 500, Ih = 100, Sa = 380 and Ia = 17. The rest of the parameter values are as in Tables 2 and 1

and 26◦C; otherwise, the disease dies out. However, if we set Ch = 50 and Cv = 55 (Fig. 8),
the disease will not persist even at optimum temperature T = 25◦C.

6 Concluding remarks
In this work, a fractional-order model with long run memory has been used to explore the
effects of temperature on Trypanosoma brucei rhodesiense transmission and control. The
memory effects are represented by the Caputo derivative. The proposed model incorpo-
rates the interplay between the tsetse flies and two hosts, humans and animals. The model
incorporates all the necessary and relevant biological information concerning transmis-
sion and control of Trypanosoma brucei rhodesiense, hence in the framework we incor-
porated the early stages of the vector. Key stages of the vector population that strongly
depend on temperature were modelled as functions of temperature. We computed the
basic reproduction number and established results on the threshold dynamics. Further-
more, we utilised the formulae proposed by Artzrouni and Gouteux [25] to explore the ef-
fects of daily human detection and vector control on long term disease dynamics. Among
other several outcomes, we have established that vector control has strong influence on
minimising the spread of the disease. In particular, we note that when daily averaged tem-
perature is around T = 20◦C, destruction of 30% or more vectors in three days will reduce
the basic reproduction number to levels below unity despite any level of human detection.
In addition, we also observed that if human detection is around 50% and vector control is
55% or more, then the disease will die out in the community even at optimum temperature
T = 25◦C. Overall, findings from this study have demonstrated the impact of temperature
and control strategies on long term dynamics of Trypanosoma brucei rhodesiense, and the
outcomes enhance our understanding on effective management of the disease.

Like other modelling studies, the proposed study could be extended by validating the
model using data obtained from specific countries and associated laboratory experiments
conducted in those countries. Aspects of heterogeneity (high and low risk populations)
can also be included. Instead of average daily temperatures, seasonal variation in temper-
ature can also be factored into the framework.
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